Adding docker-compose.yaml, starting to simplify

This commit is contained in:
Ashwin Bharambe 2024-11-16 10:56:38 -08:00
parent e4509cb568
commit f38e76ee98
14 changed files with 516 additions and 386 deletions

View file

@ -4,37 +4,10 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Optional
from llama_stack.distribution.datatypes import RemoteProviderConfig
from llama_stack.providers.utils.docker.service_config import DockerComposeServiceConfig
from .config import OllamaImplConfig
DEFAULT_OLLAMA_PORT = 11434
class OllamaImplConfig(RemoteProviderConfig):
port: int = DEFAULT_OLLAMA_PORT
@classmethod
def sample_docker_compose_config(cls) -> Optional[DockerComposeServiceConfig]:
return DockerComposeServiceConfig(
image="ollama/ollama:latest",
volumes=["$HOME/.ollama:/root/.ollama"],
devices=["nvidia.com/gpu=all"],
deploy={
"resources": {
"reservations": {
"devices": [{"driver": "nvidia", "capabilities": ["gpu"]}]
}
}
},
runtime="nvidia",
ports=[f"{DEFAULT_OLLAMA_PORT}:{DEFAULT_OLLAMA_PORT}"],
)
async def get_adapter_impl(config: RemoteProviderConfig, _deps):
async def get_adapter_impl(config: OllamaImplConfig, _deps):
from .ollama import OllamaInferenceAdapter
impl = OllamaInferenceAdapter(config.url)

View file

@ -0,0 +1,65 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import List
from llama_stack.distribution.datatypes import RemoteProviderConfig
from llama_stack.providers.utils.docker.service_config import DockerComposeServiceConfig
DEFAULT_OLLAMA_PORT = 11434
class OllamaImplConfig(RemoteProviderConfig):
port: int = DEFAULT_OLLAMA_PORT
@classmethod
def sample_docker_compose_services(cls) -> List[DockerComposeServiceConfig]:
return [
DockerComposeServiceConfig(
service_name="ollama",
image="ollama/ollama:latest",
volumes=["$HOME/.ollama:/root/.ollama"],
devices=["nvidia.com/gpu=all"],
deploy={
"resources": {
"reservations": {
"devices": [{"driver": "nvidia", "capabilities": ["gpu"]}]
}
}
},
runtime="nvidia",
ports=[f"{DEFAULT_OLLAMA_PORT}:{DEFAULT_OLLAMA_PORT}"],
healthcheck={
"test": ["CMD", "curl", "-f", "http://ollama:11434"],
"interval": "10s",
"timeout": "5s",
"retries": 5,
},
),
DockerComposeServiceConfig(
service_name="ollama-init",
image="ollama/ollama",
depends_on={"ollama": {"condition": "service_healthy"}},
environment={
"OLLAMA_HOST": "ollama",
"OLLAMA_MODELS": "${OLLAMA_MODELS}",
},
volumes=["ollama_data:/root/.ollama"],
entrypoint=(
'sh -c \'max_attempts=30;attempt=0;echo "Waiting for Ollama server...";'
"until curl -s http://ollama:11434 > /dev/null; do"
"attempt=$((attempt + 1));"
"if [ $attempt -ge $max_attempts ]; then"
'echo "Timeout waiting for Ollama server";'
"exit 1;"
"fi;"
'echo "Attempt $attempt: Server not ready yet...";'
"sleep 5;"
"done'"
),
),
]

View file

@ -0,0 +1,55 @@
services:
${SERVICE_NAME:-ollama}:
image: ollama/ollama:latest
ports:
- ${OLLAMA_PORT:-11434}:${OLLAMA_PORT:-11434}
volumes:
- $HOME/.ollama:/root/.ollama
devices:
- nvidia.com/gpu=all
runtime: nvidia
healthcheck:
test: ["CMD", "curl", "-f", "http://ollama:11434"]
interval: 10s
timeout: 5s
retries: 5
${SERVICE_NAME:-ollama}-init:
image: ollama/ollama
depends_on:
- ${SERVICE_NAME:-ollama}:
condition: service_healthy
environment:
- OLLAMA_HOST=ollama
- OLLAMA_MODELS=${OLLAMA_MODELS}
volumes:
- $HOME/.ollama:/root/.ollama
entrypoint: >
sh -c '
max_attempts=30;
attempt=0;
echo "Waiting for Ollama server...";
until curl -s http://ollama:11434 > /dev/null; do
attempt=$((attempt + 1));
if [ $attempt -ge $max_attempts ]; then
echo "Timeout waiting for Ollama server";
exit 1;
fi;
echo "Attempt $attempt: Server not ready yet...";
sleep 5;
done;
echo "Server ready. Pulling models...";
models="${OLLAMA_MODELS}";
for model in $models; do
echo "Pulling $model...";
if ! ollama pull "$model"; then
echo "Failed to pull $model";
exit 1;
fi;
done;
echo "All models pulled successfully"
'

View file

@ -0,0 +1,35 @@
services:
${SERVICE_NAME:-tgi}:
image: ghcr.io/huggingface/text-generation-inference:2.3.1
network_mode: "host"
volumes:
- $HOME/.cache/huggingface:/data
ports:
- ${TGI_PORT:-8000}:${TGI_PORT:-8000}
devices:
- nvidia.com/gpu=all
environment:
- CUDA_VISIBLE_DEVICES=${CUDA_VISIBLE_DEVICES:-0}
- HF_HOME=/data
- HF_DATASETS_CACHE=/data
- HF_MODULES_CACHE=/data
- HF_HUB_CACHE=/data
command: >
--dtype bfloat16
--usage-stats off
--sharded false
--model-id ${TGI_MODEL:-meta-llama/Llama-3.2-3B-Instruct}
--port ${TGI_PORT:-8000}
--cuda-memory-fraction ${TGI_CUDA_MEMORY_FRACTION:-0.8}
deploy:
resources:
reservations:
devices:
- driver: nvidia
capabilities: [gpu]
runtime: nvidia
healthcheck:
test: ["CMD", "curl", "-f", "http://${SERVICE_NAME:-tgi}:${TGI_PORT:-8000}/health"]
interval: 5s
timeout: 5s
retries: 30

View file

@ -9,11 +9,6 @@ from typing import Optional
from llama_models.schema_utils import json_schema_type
from pydantic import BaseModel, Field
from llama_stack.providers.utils.docker.service_config import DockerComposeServiceConfig
DEFAULT_VLLM_PORT = 8000
@json_schema_type
class VLLMInferenceAdapterConfig(BaseModel):
@ -33,48 +28,10 @@ class VLLMInferenceAdapterConfig(BaseModel):
@classmethod
def sample_run_config(
cls,
url: str = "${env.VLLM_URL:http://host.docker.internal:5100/v1}",
url: str = "${env.VLLM_URL}",
):
return {
"url": url,
"max_tokens": "${env.VLLM_MAX_TOKENS:4096}",
"api_token": "${env.VLLM_API_TOKEN:fake}",
}
@classmethod
def sample_docker_compose_config(
cls,
port: int = DEFAULT_VLLM_PORT,
cuda_visible_devices: str = "0",
model: str = "meta-llama/Llama-3.2-3B-Instruct",
) -> Optional[DockerComposeServiceConfig]:
return DockerComposeServiceConfig(
image="vllm/vllm-openai:latest",
volumes=["$HOME/.cache/huggingface:/root/.cache/huggingface"],
devices=["nvidia.com/gpu=all"],
deploy={
"resources": {
"reservations": {
"devices": [{"driver": "nvidia", "capabilities": ["gpu"]}]
}
}
},
runtime="nvidia",
ports=[f"{port}:{port}"],
environment={
"CUDA_VISIBLE_DEVICES": cuda_visible_devices,
"HUGGING_FACE_HUB_TOKEN": "$HF_TOKEN",
},
command=(
" ".join(
[
"--gpu-memory-utilization 0.75",
f"--model {model}",
"--enforce-eager",
"--max-model-len 8192",
"--max-num-seqs 16",
f"--port {port}",
]
)
),
)

View file

@ -0,0 +1,26 @@
services:
${SERVICE_NAME:-vllm}:
image: vllm/vllm-openai:latest
ports:
- ${VLLM_PORT:-5100}:${VLLM_PORT:-5100}
volumes:
- $HOME/.cache/huggingface:/root/.cache/huggingface
devices:
- nvidia.com/gpu=all
deploy:
resources:
reservations:
devices:
- driver: nvidia
capabilities: [gpu]
runtime: nvidia
environment:
- CUDA_VISIBLE_DEVICES=${CUDA_VISIBLE_DEVICES:-0}
- HUGGING_FACE_HUB_TOKEN=${HF_TOKEN}
command: >
--gpu-memory-utilization 0.75
--model ${VLLM_MODEL:-meta-llama/Llama-3.2-3B-Instruct}
--enforce-eager
--max-model-len 8192
--max-num-seqs 16
--port ${VLLM_PORT:-5100}

View file

@ -1,5 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

View file

@ -1,29 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict, List, Optional
from pydantic import BaseModel
class LiteralString(str):
pass # Marker class for strings we want to format with >
class DockerComposeServiceConfig(BaseModel):
"""Configuration for a single service in docker-compose."""
image: str
volumes: Optional[List[str]] = None
network_mode: str = "bridge"
ports: Optional[List[str]] = None
devices: Optional[List[str]] = None
environment: Optional[Dict[str, str]] = None
command: Optional[str] = None
depends_on: Optional[List[str]] = None
deploy: Optional[Dict[str, Any]] = None
runtime: Optional[str] = None
entrypoint: Optional[str] = None

View file

@ -54,11 +54,11 @@ class SqliteKVStoreConfig(CommonConfig):
)
@classmethod
def sample_run_config(cls, db_name: str = "kvstore.db"):
def sample_run_config(cls, dir: str = "runtime", db_name: str = "kvstore.db"):
return {
"type": "sqlite",
"namespace": None,
"db_path": "${env.SQLITE_STORE_DIR:~/.llama/runtime/" + db_name + "}",
"db_path": "${env.SQLITE_STORE_DIR:~/.llama/" + f"{dir}/{db_name}" + "}",
}