feat: Add missing Vector Store Files API surface (#2468)
Some checks failed
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 2s
Integration Tests / test-matrix (http, 3.11, tool_runtime) (push) Failing after 13s
Integration Tests / test-matrix (http, 3.11, providers) (push) Failing after 13s
Integration Tests / test-matrix (http, 3.11, datasets) (push) Failing after 14s
Integration Tests / test-matrix (http, 3.11, inspect) (push) Failing after 14s
Integration Tests / test-matrix (http, 3.12, agents) (push) Failing after 14s
Integration Tests / test-matrix (http, 3.12, scoring) (push) Failing after 13s
Integration Tests / test-matrix (library, 3.11, inspect) (push) Failing after 12s
Integration Tests / test-matrix (library, 3.11, tool_runtime) (push) Failing after 12s
Integration Tests / test-matrix (http, 3.12, post_training) (push) Failing after 15s
Integration Tests / test-matrix (http, 3.12, inference) (push) Failing after 19s
Integration Tests / test-matrix (http, 3.12, inspect) (push) Failing after 22s
Integration Tests / test-matrix (http, 3.12, vector_io) (push) Failing after 17s
Integration Tests / test-matrix (http, 3.11, post_training) (push) Failing after 23s
Integration Tests / test-matrix (library, 3.11, datasets) (push) Failing after 14s
Integration Tests / test-matrix (http, 3.11, vector_io) (push) Failing after 20s
Integration Tests / test-matrix (library, 3.11, inference) (push) Failing after 16s
Integration Tests / test-matrix (http, 3.11, agents) (push) Failing after 26s
Integration Tests / test-matrix (http, 3.12, tool_runtime) (push) Failing after 19s
Python Package Build Test / build (3.11) (push) Failing after 5s
Integration Tests / test-matrix (library, 3.12, post_training) (push) Failing after 6s
Python Package Build Test / build (3.12) (push) Failing after 3s
Integration Tests / test-matrix (http, 3.12, providers) (push) Failing after 18s
Integration Tests / test-matrix (library, 3.12, providers) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.11, post_training) (push) Failing after 17s
Integration Tests / test-matrix (library, 3.11, vector_io) (push) Failing after 15s
Integration Tests / test-matrix (library, 3.11, scoring) (push) Failing after 18s
Integration Tests / test-matrix (library, 3.12, datasets) (push) Failing after 13s
Integration Tests / test-matrix (library, 3.12, scoring) (push) Failing after 8s
Python Package Build Test / build (3.13) (push) Failing after 5s
Integration Tests / test-matrix (http, 3.11, scoring) (push) Failing after 24s
Integration Tests / test-matrix (library, 3.11, agents) (push) Failing after 20s
Integration Tests / test-matrix (library, 3.12, inspect) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.12, tool_runtime) (push) Failing after 7s
Integration Tests / test-matrix (library, 3.11, providers) (push) Failing after 15s
Integration Tests / test-matrix (http, 3.12, datasets) (push) Failing after 21s
Integration Tests / test-matrix (library, 3.12, inference) (push) Failing after 12s
Integration Tests / test-matrix (library, 3.12, agents) (push) Failing after 15s
Integration Tests / test-matrix (http, 3.11, inference) (push) Failing after 22s
Unit Tests / unit-tests (3.11) (push) Failing after 7s
Update ReadTheDocs / update-readthedocs (push) Failing after 4s
Unit Tests / unit-tests (3.12) (push) Failing after 7s
Integration Tests / test-matrix (library, 3.12, vector_io) (push) Failing after 48s
Test External Providers / test-external-providers (venv) (push) Failing after 43s
Unit Tests / unit-tests (3.13) (push) Failing after 52s
Pre-commit / pre-commit (push) Successful in 2m4s

# What does this PR do?

This adds the ability to list, retrieve, update, and delete Vector Store
Files. It implements these new APIs for the faiss and sqlite-vec
providers, since those are the two that also have the rest of the vector
store files implementation.

Closes #2445 

## Test Plan

### test_openai_vector_stores Integration Tests

There are a number of new integration tests added, which I ran for each
provider as outlined below.

faiss (from ollama distro):

```
INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" \
llama stack run llama_stack/templates/ollama/run.yaml

LLAMA_STACK_CONFIG=http://localhost:8321 \
pytest -sv tests/integration/vector_io/test_openai_vector_stores.py \
  --embedding-model=all-MiniLM-L6-v2
```

sqlite-vec (from starter distro):

```
llama stack run llama_stack/templates/starter/run.yaml

LLAMA_STACK_CONFIG=http://localhost:8321 \
pytest -sv tests/integration/vector_io/test_openai_vector_stores.py \
  --embedding-model=all-MiniLM-L6-v2
```

### file_search verification tests

I also ensured the file_search verification tests continue to work, both
for faiss and sqlite-vec.

faiss (ollama distro):

```
INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" \
llama stack run llama_stack/templates/ollama/run.yaml

pytest -sv tests/verifications/openai_api/test_responses.py \
  -k'file_search' \
  --base-url=http://localhost:8321/v1/openai/v1 \
  --model=meta-llama/Llama-3.2-3B-Instruct
```


sqlite-vec (starter distro):

```
llama stack run llama_stack/templates/starter/run.yaml

pytest -sv tests/verifications/openai_api/test_responses.py \
  -k'file_search' \
  --base-url=http://localhost:8321/v1/openai/v1 \
  --model=together/meta-llama/Llama-3.2-3B-Instruct-Turbo
```

---------

Signed-off-by: Ben Browning <bbrownin@redhat.com>
This commit is contained in:
Ben Browning 2025-06-19 11:08:24 -04:00 committed by GitHub
parent a2f054607d
commit f394c7f2d9
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
11 changed files with 1991 additions and 122 deletions

View file

@ -3241,6 +3241,87 @@
} }
}, },
"/v1/openai/v1/vector_stores/{vector_store_id}/files": { "/v1/openai/v1/vector_stores/{vector_store_id}/files": {
"get": {
"responses": {
"200": {
"description": "A VectorStoreListFilesResponse containing the list of files.",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/VectorStoreListFilesResponse"
}
}
}
},
"400": {
"$ref": "#/components/responses/BadRequest400"
},
"429": {
"$ref": "#/components/responses/TooManyRequests429"
},
"500": {
"$ref": "#/components/responses/InternalServerError500"
},
"default": {
"$ref": "#/components/responses/DefaultError"
}
},
"tags": [
"VectorIO"
],
"description": "List files in a vector store.",
"parameters": [
{
"name": "vector_store_id",
"in": "path",
"description": "The ID of the vector store to list files from.",
"required": true,
"schema": {
"type": "string"
}
},
{
"name": "limit",
"in": "query",
"required": false,
"schema": {
"type": "integer"
}
},
{
"name": "order",
"in": "query",
"required": false,
"schema": {
"type": "string"
}
},
{
"name": "after",
"in": "query",
"required": false,
"schema": {
"type": "string"
}
},
{
"name": "before",
"in": "query",
"required": false,
"schema": {
"type": "string"
}
},
{
"name": "filter",
"in": "query",
"required": false,
"schema": {
"$ref": "#/components/schemas/VectorStoreFileStatus"
}
}
]
},
"post": { "post": {
"responses": { "responses": {
"200": { "200": {
@ -3666,6 +3747,168 @@
] ]
} }
}, },
"/v1/openai/v1/vector_stores/{vector_store_id}/files/{file_id}": {
"get": {
"responses": {
"200": {
"description": "A VectorStoreFileObject representing the file.",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/VectorStoreFileObject"
}
}
}
},
"400": {
"$ref": "#/components/responses/BadRequest400"
},
"429": {
"$ref": "#/components/responses/TooManyRequests429"
},
"500": {
"$ref": "#/components/responses/InternalServerError500"
},
"default": {
"$ref": "#/components/responses/DefaultError"
}
},
"tags": [
"VectorIO"
],
"description": "Retrieves a vector store file.",
"parameters": [
{
"name": "vector_store_id",
"in": "path",
"description": "The ID of the vector store containing the file to retrieve.",
"required": true,
"schema": {
"type": "string"
}
},
{
"name": "file_id",
"in": "path",
"description": "The ID of the file to retrieve.",
"required": true,
"schema": {
"type": "string"
}
}
]
},
"post": {
"responses": {
"200": {
"description": "A VectorStoreFileObject representing the updated file.",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/VectorStoreFileObject"
}
}
}
},
"400": {
"$ref": "#/components/responses/BadRequest400"
},
"429": {
"$ref": "#/components/responses/TooManyRequests429"
},
"500": {
"$ref": "#/components/responses/InternalServerError500"
},
"default": {
"$ref": "#/components/responses/DefaultError"
}
},
"tags": [
"VectorIO"
],
"description": "Updates a vector store file.",
"parameters": [
{
"name": "vector_store_id",
"in": "path",
"description": "The ID of the vector store containing the file to update.",
"required": true,
"schema": {
"type": "string"
}
},
{
"name": "file_id",
"in": "path",
"description": "The ID of the file to update.",
"required": true,
"schema": {
"type": "string"
}
}
],
"requestBody": {
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/OpenaiUpdateVectorStoreFileRequest"
}
}
},
"required": true
}
},
"delete": {
"responses": {
"200": {
"description": "A VectorStoreFileDeleteResponse indicating the deletion status.",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/VectorStoreFileDeleteResponse"
}
}
}
},
"400": {
"$ref": "#/components/responses/BadRequest400"
},
"429": {
"$ref": "#/components/responses/TooManyRequests429"
},
"500": {
"$ref": "#/components/responses/InternalServerError500"
},
"default": {
"$ref": "#/components/responses/DefaultError"
}
},
"tags": [
"VectorIO"
],
"description": "Delete a vector store file.",
"parameters": [
{
"name": "vector_store_id",
"in": "path",
"description": "The ID of the vector store containing the file to delete.",
"required": true,
"schema": {
"type": "string"
}
},
{
"name": "file_id",
"in": "path",
"description": "The ID of the file to delete.",
"required": true,
"schema": {
"type": "string"
}
}
]
}
},
"/v1/openai/v1/embeddings": { "/v1/openai/v1/embeddings": {
"post": { "post": {
"responses": { "responses": {
@ -3909,6 +4152,58 @@
] ]
} }
}, },
"/v1/openai/v1/vector_stores/{vector_store_id}/files/{file_id}/content": {
"get": {
"responses": {
"200": {
"description": "A list of InterleavedContent representing the file contents.",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/VectorStoreFileContentsResponse"
}
}
}
},
"400": {
"$ref": "#/components/responses/BadRequest400"
},
"429": {
"$ref": "#/components/responses/TooManyRequests429"
},
"500": {
"$ref": "#/components/responses/InternalServerError500"
},
"default": {
"$ref": "#/components/responses/DefaultError"
}
},
"tags": [
"VectorIO"
],
"description": "Retrieves the contents of a vector store file.",
"parameters": [
{
"name": "vector_store_id",
"in": "path",
"description": "The ID of the vector store containing the file to retrieve.",
"required": true,
"schema": {
"type": "string"
}
},
{
"name": "file_id",
"in": "path",
"description": "The ID of the file to retrieve.",
"required": true,
"schema": {
"type": "string"
}
}
]
}
},
"/v1/openai/v1/vector_stores/{vector_store_id}/search": { "/v1/openai/v1/vector_stores/{vector_store_id}/search": {
"post": { "post": {
"responses": { "responses": {
@ -12102,24 +12397,7 @@
"$ref": "#/components/schemas/VectorStoreFileLastError" "$ref": "#/components/schemas/VectorStoreFileLastError"
}, },
"status": { "status": {
"oneOf": [ "$ref": "#/components/schemas/VectorStoreFileStatus"
{
"type": "string",
"const": "completed"
},
{
"type": "string",
"const": "in_progress"
},
{
"type": "string",
"const": "cancelled"
},
{
"type": "string",
"const": "failed"
}
]
}, },
"usage_bytes": { "usage_bytes": {
"type": "integer", "type": "integer",
@ -12143,6 +12421,26 @@
"title": "VectorStoreFileObject", "title": "VectorStoreFileObject",
"description": "OpenAI Vector Store File object." "description": "OpenAI Vector Store File object."
}, },
"VectorStoreFileStatus": {
"oneOf": [
{
"type": "string",
"const": "completed"
},
{
"type": "string",
"const": "in_progress"
},
{
"type": "string",
"const": "cancelled"
},
{
"type": "string",
"const": "failed"
}
]
},
"OpenAIJSONSchema": { "OpenAIJSONSchema": {
"type": "object", "type": "object",
"properties": { "properties": {
@ -12969,6 +13267,35 @@
], ],
"title": "OpenaiCreateVectorStoreRequest" "title": "OpenaiCreateVectorStoreRequest"
}, },
"VectorStoreFileCounts": {
"type": "object",
"properties": {
"completed": {
"type": "integer"
},
"cancelled": {
"type": "integer"
},
"failed": {
"type": "integer"
},
"in_progress": {
"type": "integer"
},
"total": {
"type": "integer"
}
},
"additionalProperties": false,
"required": [
"completed",
"cancelled",
"failed",
"in_progress",
"total"
],
"title": "VectorStoreFileCounts"
},
"VectorStoreObject": { "VectorStoreObject": {
"type": "object", "type": "object",
"properties": { "properties": {
@ -12990,10 +13317,7 @@
"default": 0 "default": 0
}, },
"file_counts": { "file_counts": {
"type": "object", "$ref": "#/components/schemas/VectorStoreFileCounts"
"additionalProperties": {
"type": "integer"
}
}, },
"status": { "status": {
"type": "string", "type": "string",
@ -13120,6 +13444,30 @@
"title": "VectorStoreDeleteResponse", "title": "VectorStoreDeleteResponse",
"description": "Response from deleting a vector store." "description": "Response from deleting a vector store."
}, },
"VectorStoreFileDeleteResponse": {
"type": "object",
"properties": {
"id": {
"type": "string"
},
"object": {
"type": "string",
"default": "vector_store.file.deleted"
},
"deleted": {
"type": "boolean",
"default": true
}
},
"additionalProperties": false,
"required": [
"id",
"object",
"deleted"
],
"title": "VectorStoreFileDeleteResponse",
"description": "Response from deleting a vector store file."
},
"OpenaiEmbeddingsRequest": { "OpenaiEmbeddingsRequest": {
"type": "object", "type": "object",
"properties": { "properties": {
@ -13348,6 +13696,39 @@
"title": "OpenAIFileObject", "title": "OpenAIFileObject",
"description": "OpenAI File object as defined in the OpenAI Files API." "description": "OpenAI File object as defined in the OpenAI Files API."
}, },
"VectorStoreListFilesResponse": {
"type": "object",
"properties": {
"object": {
"type": "string",
"default": "list"
},
"data": {
"type": "array",
"items": {
"$ref": "#/components/schemas/VectorStoreFileObject"
}
},
"first_id": {
"type": "string"
},
"last_id": {
"type": "string"
},
"has_more": {
"type": "boolean",
"default": false
}
},
"additionalProperties": false,
"required": [
"object",
"data",
"has_more"
],
"title": "VectorStoreListFilesResponse",
"description": "Response from listing vector stores."
},
"OpenAIModel": { "OpenAIModel": {
"type": "object", "type": "object",
"properties": { "properties": {
@ -13429,6 +13810,75 @@
"type": "object", "type": "object",
"title": "Response" "title": "Response"
}, },
"VectorStoreContent": {
"type": "object",
"properties": {
"type": {
"type": "string",
"const": "text"
},
"text": {
"type": "string"
}
},
"additionalProperties": false,
"required": [
"type",
"text"
],
"title": "VectorStoreContent"
},
"VectorStoreFileContentsResponse": {
"type": "object",
"properties": {
"file_id": {
"type": "string"
},
"filename": {
"type": "string"
},
"attributes": {
"type": "object",
"additionalProperties": {
"oneOf": [
{
"type": "null"
},
{
"type": "boolean"
},
{
"type": "number"
},
{
"type": "string"
},
{
"type": "array"
},
{
"type": "object"
}
]
}
},
"content": {
"type": "array",
"items": {
"$ref": "#/components/schemas/VectorStoreContent"
}
}
},
"additionalProperties": false,
"required": [
"file_id",
"filename",
"attributes",
"content"
],
"title": "VectorStoreFileContentsResponse",
"description": "Response from retrieving the contents of a vector store file."
},
"OpenaiSearchVectorStoreRequest": { "OpenaiSearchVectorStoreRequest": {
"type": "object", "type": "object",
"properties": { "properties": {
@ -13501,24 +13951,6 @@
], ],
"title": "OpenaiSearchVectorStoreRequest" "title": "OpenaiSearchVectorStoreRequest"
}, },
"VectorStoreContent": {
"type": "object",
"properties": {
"type": {
"type": "string",
"const": "text"
},
"text": {
"type": "string"
}
},
"additionalProperties": false,
"required": [
"type",
"text"
],
"title": "VectorStoreContent"
},
"VectorStoreSearchResponse": { "VectorStoreSearchResponse": {
"type": "object", "type": "object",
"properties": { "properties": {
@ -13661,6 +14093,42 @@
"additionalProperties": false, "additionalProperties": false,
"title": "OpenaiUpdateVectorStoreRequest" "title": "OpenaiUpdateVectorStoreRequest"
}, },
"OpenaiUpdateVectorStoreFileRequest": {
"type": "object",
"properties": {
"attributes": {
"type": "object",
"additionalProperties": {
"oneOf": [
{
"type": "null"
},
{
"type": "boolean"
},
{
"type": "number"
},
{
"type": "string"
},
{
"type": "array"
},
{
"type": "object"
}
]
},
"description": "The updated key-value attributes to store with the file."
}
},
"additionalProperties": false,
"required": [
"attributes"
],
"title": "OpenaiUpdateVectorStoreFileRequest"
},
"DPOAlignmentConfig": { "DPOAlignmentConfig": {
"type": "object", "type": "object",
"properties": { "properties": {

View file

@ -2264,6 +2264,61 @@ paths:
$ref: '#/components/schemas/LogEventRequest' $ref: '#/components/schemas/LogEventRequest'
required: true required: true
/v1/openai/v1/vector_stores/{vector_store_id}/files: /v1/openai/v1/vector_stores/{vector_store_id}/files:
get:
responses:
'200':
description: >-
A VectorStoreListFilesResponse containing the list of files.
content:
application/json:
schema:
$ref: '#/components/schemas/VectorStoreListFilesResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- VectorIO
description: List files in a vector store.
parameters:
- name: vector_store_id
in: path
description: >-
The ID of the vector store to list files from.
required: true
schema:
type: string
- name: limit
in: query
required: false
schema:
type: integer
- name: order
in: query
required: false
schema:
type: string
- name: after
in: query
required: false
schema:
type: string
- name: before
in: query
required: false
schema:
type: string
- name: filter
in: query
required: false
schema:
$ref: '#/components/schemas/VectorStoreFileStatus'
post: post:
responses: responses:
'200': '200':
@ -2572,6 +2627,121 @@ paths:
required: true required: true
schema: schema:
type: string type: string
/v1/openai/v1/vector_stores/{vector_store_id}/files/{file_id}:
get:
responses:
'200':
description: >-
A VectorStoreFileObject representing the file.
content:
application/json:
schema:
$ref: '#/components/schemas/VectorStoreFileObject'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- VectorIO
description: Retrieves a vector store file.
parameters:
- name: vector_store_id
in: path
description: >-
The ID of the vector store containing the file to retrieve.
required: true
schema:
type: string
- name: file_id
in: path
description: The ID of the file to retrieve.
required: true
schema:
type: string
post:
responses:
'200':
description: >-
A VectorStoreFileObject representing the updated file.
content:
application/json:
schema:
$ref: '#/components/schemas/VectorStoreFileObject'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- VectorIO
description: Updates a vector store file.
parameters:
- name: vector_store_id
in: path
description: >-
The ID of the vector store containing the file to update.
required: true
schema:
type: string
- name: file_id
in: path
description: The ID of the file to update.
required: true
schema:
type: string
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/OpenaiUpdateVectorStoreFileRequest'
required: true
delete:
responses:
'200':
description: >-
A VectorStoreFileDeleteResponse indicating the deletion status.
content:
application/json:
schema:
$ref: '#/components/schemas/VectorStoreFileDeleteResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- VectorIO
description: Delete a vector store file.
parameters:
- name: vector_store_id
in: path
description: >-
The ID of the vector store containing the file to delete.
required: true
schema:
type: string
- name: file_id
in: path
description: The ID of the file to delete.
required: true
schema:
type: string
/v1/openai/v1/embeddings: /v1/openai/v1/embeddings:
post: post:
responses: responses:
@ -2762,6 +2932,44 @@ paths:
required: true required: true
schema: schema:
type: string type: string
/v1/openai/v1/vector_stores/{vector_store_id}/files/{file_id}/content:
get:
responses:
'200':
description: >-
A list of InterleavedContent representing the file contents.
content:
application/json:
schema:
$ref: '#/components/schemas/VectorStoreFileContentsResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- VectorIO
description: >-
Retrieves the contents of a vector store file.
parameters:
- name: vector_store_id
in: path
description: >-
The ID of the vector store containing the file to retrieve.
required: true
schema:
type: string
- name: file_id
in: path
description: The ID of the file to retrieve.
required: true
schema:
type: string
/v1/openai/v1/vector_stores/{vector_store_id}/search: /v1/openai/v1/vector_stores/{vector_store_id}/search:
post: post:
responses: responses:
@ -8458,15 +8666,7 @@ components:
last_error: last_error:
$ref: '#/components/schemas/VectorStoreFileLastError' $ref: '#/components/schemas/VectorStoreFileLastError'
status: status:
oneOf: $ref: '#/components/schemas/VectorStoreFileStatus'
- type: string
const: completed
- type: string
const: in_progress
- type: string
const: cancelled
- type: string
const: failed
usage_bytes: usage_bytes:
type: integer type: integer
default: 0 default: 0
@ -8484,6 +8684,16 @@ components:
- vector_store_id - vector_store_id
title: VectorStoreFileObject title: VectorStoreFileObject
description: OpenAI Vector Store File object. description: OpenAI Vector Store File object.
VectorStoreFileStatus:
oneOf:
- type: string
const: completed
- type: string
const: in_progress
- type: string
const: cancelled
- type: string
const: failed
OpenAIJSONSchema: OpenAIJSONSchema:
type: object type: object
properties: properties:
@ -9031,6 +9241,27 @@ components:
required: required:
- name - name
title: OpenaiCreateVectorStoreRequest title: OpenaiCreateVectorStoreRequest
VectorStoreFileCounts:
type: object
properties:
completed:
type: integer
cancelled:
type: integer
failed:
type: integer
in_progress:
type: integer
total:
type: integer
additionalProperties: false
required:
- completed
- cancelled
- failed
- in_progress
- total
title: VectorStoreFileCounts
VectorStoreObject: VectorStoreObject:
type: object type: object
properties: properties:
@ -9047,9 +9278,7 @@ components:
type: integer type: integer
default: 0 default: 0
file_counts: file_counts:
type: object $ref: '#/components/schemas/VectorStoreFileCounts'
additionalProperties:
type: integer
status: status:
type: string type: string
default: completed default: completed
@ -9129,6 +9358,25 @@ components:
- deleted - deleted
title: VectorStoreDeleteResponse title: VectorStoreDeleteResponse
description: Response from deleting a vector store. description: Response from deleting a vector store.
VectorStoreFileDeleteResponse:
type: object
properties:
id:
type: string
object:
type: string
default: vector_store.file.deleted
deleted:
type: boolean
default: true
additionalProperties: false
required:
- id
- object
- deleted
title: VectorStoreFileDeleteResponse
description: >-
Response from deleting a vector store file.
OpenaiEmbeddingsRequest: OpenaiEmbeddingsRequest:
type: object type: object
properties: properties:
@ -9320,6 +9568,30 @@ components:
title: OpenAIFileObject title: OpenAIFileObject
description: >- description: >-
OpenAI File object as defined in the OpenAI Files API. OpenAI File object as defined in the OpenAI Files API.
VectorStoreListFilesResponse:
type: object
properties:
object:
type: string
default: list
data:
type: array
items:
$ref: '#/components/schemas/VectorStoreFileObject'
first_id:
type: string
last_id:
type: string
has_more:
type: boolean
default: false
additionalProperties: false
required:
- object
- data
- has_more
title: VectorStoreListFilesResponse
description: Response from listing vector stores.
OpenAIModel: OpenAIModel:
type: object type: object
properties: properties:
@ -9379,6 +9651,49 @@ components:
Response: Response:
type: object type: object
title: Response title: Response
VectorStoreContent:
type: object
properties:
type:
type: string
const: text
text:
type: string
additionalProperties: false
required:
- type
- text
title: VectorStoreContent
VectorStoreFileContentsResponse:
type: object
properties:
file_id:
type: string
filename:
type: string
attributes:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
content:
type: array
items:
$ref: '#/components/schemas/VectorStoreContent'
additionalProperties: false
required:
- file_id
- filename
- attributes
- content
title: VectorStoreFileContentsResponse
description: >-
Response from retrieving the contents of a vector store file.
OpenaiSearchVectorStoreRequest: OpenaiSearchVectorStoreRequest:
type: object type: object
properties: properties:
@ -9426,19 +9741,6 @@ components:
required: required:
- query - query
title: OpenaiSearchVectorStoreRequest title: OpenaiSearchVectorStoreRequest
VectorStoreContent:
type: object
properties:
type:
type: string
const: text
text:
type: string
additionalProperties: false
required:
- type
- text
title: VectorStoreContent
VectorStoreSearchResponse: VectorStoreSearchResponse:
type: object type: object
properties: properties:
@ -9524,6 +9826,25 @@ components:
Set of 16 key-value pairs that can be attached to an object. Set of 16 key-value pairs that can be attached to an object.
additionalProperties: false additionalProperties: false
title: OpenaiUpdateVectorStoreRequest title: OpenaiUpdateVectorStoreRequest
OpenaiUpdateVectorStoreFileRequest:
type: object
properties:
attributes:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
The updated key-value attributes to store with the file.
additionalProperties: false
required:
- attributes
title: OpenaiUpdateVectorStoreFileRequest
DPOAlignmentConfig: DPOAlignmentConfig:
type: object type: object
properties: properties:

View file

@ -38,6 +38,15 @@ class QueryChunksResponse(BaseModel):
scores: list[float] scores: list[float]
@json_schema_type
class VectorStoreFileCounts(BaseModel):
completed: int
cancelled: int
failed: int
in_progress: int
total: int
@json_schema_type @json_schema_type
class VectorStoreObject(BaseModel): class VectorStoreObject(BaseModel):
"""OpenAI Vector Store object.""" """OpenAI Vector Store object."""
@ -47,7 +56,7 @@ class VectorStoreObject(BaseModel):
created_at: int created_at: int
name: str | None = None name: str | None = None
usage_bytes: int = 0 usage_bytes: int = 0
file_counts: dict[str, int] = Field(default_factory=dict) file_counts: VectorStoreFileCounts
status: str = "completed" status: str = "completed"
expires_after: dict[str, Any] | None = None expires_after: dict[str, Any] | None = None
expires_at: int | None = None expires_at: int | None = None
@ -168,6 +177,10 @@ class VectorStoreFileLastError(BaseModel):
message: str message: str
VectorStoreFileStatus = Literal["completed"] | Literal["in_progress"] | Literal["cancelled"] | Literal["failed"]
register_schema(VectorStoreFileStatus, name="VectorStoreFileStatus")
@json_schema_type @json_schema_type
class VectorStoreFileObject(BaseModel): class VectorStoreFileObject(BaseModel):
"""OpenAI Vector Store File object.""" """OpenAI Vector Store File object."""
@ -178,11 +191,41 @@ class VectorStoreFileObject(BaseModel):
chunking_strategy: VectorStoreChunkingStrategy chunking_strategy: VectorStoreChunkingStrategy
created_at: int created_at: int
last_error: VectorStoreFileLastError | None = None last_error: VectorStoreFileLastError | None = None
status: Literal["completed"] | Literal["in_progress"] | Literal["cancelled"] | Literal["failed"] status: VectorStoreFileStatus
usage_bytes: int = 0 usage_bytes: int = 0
vector_store_id: str vector_store_id: str
@json_schema_type
class VectorStoreListFilesResponse(BaseModel):
"""Response from listing vector stores."""
object: str = "list"
data: list[VectorStoreFileObject]
first_id: str | None = None
last_id: str | None = None
has_more: bool = False
@json_schema_type
class VectorStoreFileContentsResponse(BaseModel):
"""Response from retrieving the contents of a vector store file."""
file_id: str
filename: str
attributes: dict[str, Any]
content: list[VectorStoreContent]
@json_schema_type
class VectorStoreFileDeleteResponse(BaseModel):
"""Response from deleting a vector store file."""
id: str
object: str = "vector_store.file.deleted"
deleted: bool = True
class VectorDBStore(Protocol): class VectorDBStore(Protocol):
def get_vector_db(self, vector_db_id: str) -> VectorDB | None: ... def get_vector_db(self, vector_db_id: str) -> VectorDB | None: ...
@ -358,3 +401,78 @@ class VectorIO(Protocol):
:returns: A VectorStoreFileObject representing the attached file. :returns: A VectorStoreFileObject representing the attached file.
""" """
... ...
@webmethod(route="/openai/v1/vector_stores/{vector_store_id}/files", method="GET")
async def openai_list_files_in_vector_store(
self,
vector_store_id: str,
limit: int | None = 20,
order: str | None = "desc",
after: str | None = None,
before: str | None = None,
filter: VectorStoreFileStatus | None = None,
) -> VectorStoreListFilesResponse:
"""List files in a vector store.
:param vector_store_id: The ID of the vector store to list files from.
:returns: A VectorStoreListFilesResponse containing the list of files.
"""
...
@webmethod(route="/openai/v1/vector_stores/{vector_store_id}/files/{file_id}", method="GET")
async def openai_retrieve_vector_store_file(
self,
vector_store_id: str,
file_id: str,
) -> VectorStoreFileObject:
"""Retrieves a vector store file.
:param vector_store_id: The ID of the vector store containing the file to retrieve.
:param file_id: The ID of the file to retrieve.
:returns: A VectorStoreFileObject representing the file.
"""
...
@webmethod(route="/openai/v1/vector_stores/{vector_store_id}/files/{file_id}/content", method="GET")
async def openai_retrieve_vector_store_file_contents(
self,
vector_store_id: str,
file_id: str,
) -> VectorStoreFileContentsResponse:
"""Retrieves the contents of a vector store file.
:param vector_store_id: The ID of the vector store containing the file to retrieve.
:param file_id: The ID of the file to retrieve.
:returns: A list of InterleavedContent representing the file contents.
"""
...
@webmethod(route="/openai/v1/vector_stores/{vector_store_id}/files/{file_id}", method="POST")
async def openai_update_vector_store_file(
self,
vector_store_id: str,
file_id: str,
attributes: dict[str, Any],
) -> VectorStoreFileObject:
"""Updates a vector store file.
:param vector_store_id: The ID of the vector store containing the file to update.
:param file_id: The ID of the file to update.
:param attributes: The updated key-value attributes to store with the file.
:returns: A VectorStoreFileObject representing the updated file.
"""
...
@webmethod(route="/openai/v1/vector_stores/{vector_store_id}/files/{file_id}", method="DELETE")
async def openai_delete_vector_store_file(
self,
vector_store_id: str,
file_id: str,
) -> VectorStoreFileDeleteResponse:
"""Delete a vector store file.
:param vector_store_id: The ID of the vector store containing the file to delete.
:param file_id: The ID of the file to delete.
:returns: A VectorStoreFileDeleteResponse indicating the deletion status.
"""
...

View file

@ -21,7 +21,13 @@ from llama_stack.apis.vector_io import (
VectorStoreObject, VectorStoreObject,
VectorStoreSearchResponsePage, VectorStoreSearchResponsePage,
) )
from llama_stack.apis.vector_io.vector_io import VectorStoreChunkingStrategy, VectorStoreFileObject from llama_stack.apis.vector_io.vector_io import (
VectorStoreChunkingStrategy,
VectorStoreFileContentsResponse,
VectorStoreFileDeleteResponse,
VectorStoreFileObject,
VectorStoreFileStatus,
)
from llama_stack.log import get_logger from llama_stack.log import get_logger
from llama_stack.providers.datatypes import HealthResponse, HealthStatus, RoutingTable from llama_stack.providers.datatypes import HealthResponse, HealthStatus, RoutingTable
@ -279,6 +285,81 @@ class VectorIORouter(VectorIO):
chunking_strategy=chunking_strategy, chunking_strategy=chunking_strategy,
) )
async def openai_list_files_in_vector_store(
self,
vector_store_id: str,
limit: int | None = 20,
order: str | None = "desc",
after: str | None = None,
before: str | None = None,
filter: VectorStoreFileStatus | None = None,
) -> list[VectorStoreFileObject]:
logger.debug(f"VectorIORouter.openai_list_files_in_vector_store: {vector_store_id}")
# Route based on vector store ID
provider = self.routing_table.get_provider_impl(vector_store_id)
return await provider.openai_list_files_in_vector_store(
vector_store_id=vector_store_id,
limit=limit,
order=order,
after=after,
before=before,
filter=filter,
)
async def openai_retrieve_vector_store_file(
self,
vector_store_id: str,
file_id: str,
) -> VectorStoreFileObject:
logger.debug(f"VectorIORouter.openai_retrieve_vector_store_file: {vector_store_id}, {file_id}")
# Route based on vector store ID
provider = self.routing_table.get_provider_impl(vector_store_id)
return await provider.openai_retrieve_vector_store_file(
vector_store_id=vector_store_id,
file_id=file_id,
)
async def openai_retrieve_vector_store_file_contents(
self,
vector_store_id: str,
file_id: str,
) -> VectorStoreFileContentsResponse:
logger.debug(f"VectorIORouter.openai_retrieve_vector_store_file_contents: {vector_store_id}, {file_id}")
# Route based on vector store ID
provider = self.routing_table.get_provider_impl(vector_store_id)
return await provider.openai_retrieve_vector_store_file_contents(
vector_store_id=vector_store_id,
file_id=file_id,
)
async def openai_update_vector_store_file(
self,
vector_store_id: str,
file_id: str,
attributes: dict[str, Any],
) -> VectorStoreFileObject:
logger.debug(f"VectorIORouter.openai_update_vector_store_file: {vector_store_id}, {file_id}")
# Route based on vector store ID
provider = self.routing_table.get_provider_impl(vector_store_id)
return await provider.openai_update_vector_store_file(
vector_store_id=vector_store_id,
file_id=file_id,
attributes=attributes,
)
async def openai_delete_vector_store_file(
self,
vector_store_id: str,
file_id: str,
) -> VectorStoreFileDeleteResponse:
logger.debug(f"VectorIORouter.openai_delete_vector_store_file: {vector_store_id}, {file_id}")
# Route based on vector store ID
provider = self.routing_table.get_provider_impl(vector_store_id)
return await provider.openai_delete_vector_store_file(
vector_store_id=vector_store_id,
file_id=file_id,
)
async def health(self) -> dict[str, HealthResponse]: async def health(self) -> dict[str, HealthResponse]:
health_statuses = {} health_statuses = {}
timeout = 1 # increasing the timeout to 1 second for health checks timeout = 1 # increasing the timeout to 1 second for health checks

View file

@ -45,6 +45,8 @@ VERSION = "v3"
VECTOR_DBS_PREFIX = f"vector_dbs:{VERSION}::" VECTOR_DBS_PREFIX = f"vector_dbs:{VERSION}::"
FAISS_INDEX_PREFIX = f"faiss_index:{VERSION}::" FAISS_INDEX_PREFIX = f"faiss_index:{VERSION}::"
OPENAI_VECTOR_STORES_PREFIX = f"openai_vector_stores:{VERSION}::" OPENAI_VECTOR_STORES_PREFIX = f"openai_vector_stores:{VERSION}::"
OPENAI_VECTOR_STORES_FILES_PREFIX = f"openai_vector_stores_files:{VERSION}::"
OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX = f"openai_vector_stores_files_contents:{VERSION}::"
class FaissIndex(EmbeddingIndex): class FaissIndex(EmbeddingIndex):
@ -283,3 +285,39 @@ class FaissVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPr
assert self.kvstore is not None assert self.kvstore is not None
key = f"{OPENAI_VECTOR_STORES_PREFIX}{store_id}" key = f"{OPENAI_VECTOR_STORES_PREFIX}{store_id}"
await self.kvstore.delete(key) await self.kvstore.delete(key)
async def _save_openai_vector_store_file(
self, store_id: str, file_id: str, file_info: dict[str, Any], file_contents: list[dict[str, Any]]
) -> None:
"""Save vector store file metadata to kvstore."""
assert self.kvstore is not None
key = f"{OPENAI_VECTOR_STORES_FILES_PREFIX}{store_id}:{file_id}"
await self.kvstore.set(key=key, value=json.dumps(file_info))
content_key = f"{OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX}{store_id}:{file_id}"
await self.kvstore.set(key=content_key, value=json.dumps(file_contents))
async def _load_openai_vector_store_file(self, store_id: str, file_id: str) -> dict[str, Any]:
"""Load vector store file metadata from kvstore."""
assert self.kvstore is not None
key = f"{OPENAI_VECTOR_STORES_FILES_PREFIX}{store_id}:{file_id}"
stored_data = await self.kvstore.get(key)
return json.loads(stored_data) if stored_data else {}
async def _load_openai_vector_store_file_contents(self, store_id: str, file_id: str) -> list[dict[str, Any]]:
"""Load vector store file contents from kvstore."""
assert self.kvstore is not None
key = f"{OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX}{store_id}:{file_id}"
stored_data = await self.kvstore.get(key)
return json.loads(stored_data) if stored_data else []
async def _update_openai_vector_store_file(self, store_id: str, file_id: str, file_info: dict[str, Any]) -> None:
"""Update vector store file metadata in kvstore."""
assert self.kvstore is not None
key = f"{OPENAI_VECTOR_STORES_FILES_PREFIX}{store_id}:{file_id}"
await self.kvstore.set(key=key, value=json.dumps(file_info))
async def _delete_openai_vector_store_file_from_storage(self, store_id: str, file_id: str) -> None:
"""Delete vector store file metadata from kvstore."""
assert self.kvstore is not None
key = f"{OPENAI_VECTOR_STORES_FILES_PREFIX}{store_id}:{file_id}"
await self.kvstore.delete(key)

View file

@ -461,6 +461,23 @@ class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoc
metadata TEXT metadata TEXT
); );
""") """)
# Create a table to persist OpenAI vector store files.
cur.execute("""
CREATE TABLE IF NOT EXISTS openai_vector_store_files (
store_id TEXT,
file_id TEXT,
metadata TEXT,
PRIMARY KEY (store_id, file_id)
);
""")
cur.execute("""
CREATE TABLE IF NOT EXISTS openai_vector_store_files_contents (
store_id TEXT,
file_id TEXT,
contents TEXT,
PRIMARY KEY (store_id, file_id)
);
""")
connection.commit() connection.commit()
# Load any existing vector DB registrations. # Load any existing vector DB registrations.
cur.execute("SELECT metadata FROM vector_dbs") cur.execute("SELECT metadata FROM vector_dbs")
@ -615,6 +632,118 @@ class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoc
await asyncio.to_thread(_delete) await asyncio.to_thread(_delete)
async def _save_openai_vector_store_file(
self, store_id: str, file_id: str, file_info: dict[str, Any], file_contents: list[dict[str, Any]]
) -> None:
"""Save vector store file metadata to SQLite database."""
def _store():
connection = _create_sqlite_connection(self.config.db_path)
cur = connection.cursor()
try:
cur.execute(
"INSERT OR REPLACE INTO openai_vector_store_files (store_id, file_id, metadata) VALUES (?, ?, ?)",
(store_id, file_id, json.dumps(file_info)),
)
cur.execute(
"INSERT OR REPLACE INTO openai_vector_store_files_contents (store_id, file_id, contents) VALUES (?, ?, ?)",
(store_id, file_id, json.dumps(file_contents)),
)
connection.commit()
except Exception as e:
logger.error(f"Error saving openai vector store file {store_id} {file_id}: {e}")
raise
finally:
cur.close()
connection.close()
try:
await asyncio.to_thread(_store)
except Exception as e:
logger.error(f"Error saving openai vector store file {store_id} {file_id}: {e}")
raise
async def _load_openai_vector_store_file(self, store_id: str, file_id: str) -> dict[str, Any]:
"""Load vector store file metadata from SQLite database."""
def _load():
connection = _create_sqlite_connection(self.config.db_path)
cur = connection.cursor()
try:
cur.execute(
"SELECT metadata FROM openai_vector_store_files WHERE store_id = ? AND file_id = ?",
(store_id, file_id),
)
row = cur.fetchone()
if row is None:
return None
(metadata,) = row
return metadata
finally:
cur.close()
connection.close()
stored_data = await asyncio.to_thread(_load)
return json.loads(stored_data) if stored_data else {}
async def _load_openai_vector_store_file_contents(self, store_id: str, file_id: str) -> list[dict[str, Any]]:
"""Load vector store file contents from SQLite database."""
def _load():
connection = _create_sqlite_connection(self.config.db_path)
cur = connection.cursor()
try:
cur.execute(
"SELECT contents FROM openai_vector_store_files_contents WHERE store_id = ? AND file_id = ?",
(store_id, file_id),
)
row = cur.fetchone()
if row is None:
return None
(contents,) = row
return contents
finally:
cur.close()
connection.close()
stored_contents = await asyncio.to_thread(_load)
return json.loads(stored_contents) if stored_contents else []
async def _update_openai_vector_store_file(self, store_id: str, file_id: str, file_info: dict[str, Any]) -> None:
"""Update vector store file metadata in SQLite database."""
def _update():
connection = _create_sqlite_connection(self.config.db_path)
cur = connection.cursor()
try:
cur.execute(
"UPDATE openai_vector_store_files SET metadata = ? WHERE store_id = ? AND file_id = ?",
(json.dumps(file_info), store_id, file_id),
)
connection.commit()
finally:
cur.close()
connection.close()
await asyncio.to_thread(_update)
async def _delete_openai_vector_store_file_from_storage(self, store_id: str, file_id: str) -> None:
"""Delete vector store file metadata from SQLite database."""
def _delete():
connection = _create_sqlite_connection(self.config.db_path)
cur = connection.cursor()
try:
cur.execute(
"DELETE FROM openai_vector_store_files WHERE store_id = ? AND file_id = ?", (store_id, file_id)
)
connection.commit()
finally:
cur.close()
connection.close()
await asyncio.to_thread(_delete)
async def insert_chunks(self, vector_db_id: str, chunks: list[Chunk], ttl_seconds: int | None = None) -> None: async def insert_chunks(self, vector_db_id: str, chunks: list[Chunk], ttl_seconds: int | None = None) -> None:
if vector_db_id not in self.cache: if vector_db_id not in self.cache:
raise ValueError(f"Vector DB {vector_db_id} not found. Found: {list(self.cache.keys())}") raise ValueError(f"Vector DB {vector_db_id} not found. Found: {list(self.cache.keys())}")

View file

@ -24,7 +24,12 @@ from llama_stack.apis.vector_io import (
VectorStoreObject, VectorStoreObject,
VectorStoreSearchResponsePage, VectorStoreSearchResponsePage,
) )
from llama_stack.apis.vector_io.vector_io import VectorStoreChunkingStrategy, VectorStoreFileObject from llama_stack.apis.vector_io.vector_io import (
VectorStoreChunkingStrategy,
VectorStoreFileContentsResponse,
VectorStoreFileObject,
VectorStoreListFilesResponse,
)
from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate
from llama_stack.providers.inline.vector_io.chroma import ChromaVectorIOConfig as InlineChromaVectorIOConfig from llama_stack.providers.inline.vector_io.chroma import ChromaVectorIOConfig as InlineChromaVectorIOConfig
from llama_stack.providers.utils.memory.vector_store import ( from llama_stack.providers.utils.memory.vector_store import (
@ -263,3 +268,38 @@ class ChromaVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
chunking_strategy: VectorStoreChunkingStrategy | None = None, chunking_strategy: VectorStoreChunkingStrategy | None = None,
) -> VectorStoreFileObject: ) -> VectorStoreFileObject:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma") raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
async def openai_list_files_in_vector_store(
self,
vector_store_id: str,
) -> VectorStoreListFilesResponse:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
async def openai_retrieve_vector_store_file(
self,
vector_store_id: str,
file_id: str,
) -> VectorStoreFileObject:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
async def openai_retrieve_vector_store_file_contents(
self,
vector_store_id: str,
file_id: str,
) -> VectorStoreFileContentsResponse:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
async def openai_update_vector_store_file(
self,
vector_store_id: str,
file_id: str,
attributes: dict[str, Any] | None = None,
) -> VectorStoreFileObject:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
async def openai_delete_vector_store_file(
self,
vector_store_id: str,
file_id: str,
) -> VectorStoreFileObject:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")

View file

@ -26,7 +26,12 @@ from llama_stack.apis.vector_io import (
VectorStoreObject, VectorStoreObject,
VectorStoreSearchResponsePage, VectorStoreSearchResponsePage,
) )
from llama_stack.apis.vector_io.vector_io import VectorStoreChunkingStrategy, VectorStoreFileObject from llama_stack.apis.vector_io.vector_io import (
VectorStoreChunkingStrategy,
VectorStoreFileContentsResponse,
VectorStoreFileObject,
VectorStoreListFilesResponse,
)
from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate
from llama_stack.providers.inline.vector_io.milvus import MilvusVectorIOConfig as InlineMilvusVectorIOConfig from llama_stack.providers.inline.vector_io.milvus import MilvusVectorIOConfig as InlineMilvusVectorIOConfig
from llama_stack.providers.utils.memory.vector_store import ( from llama_stack.providers.utils.memory.vector_store import (
@ -262,6 +267,41 @@ class MilvusVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
) -> VectorStoreFileObject: ) -> VectorStoreFileObject:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Milvus") raise NotImplementedError("OpenAI Vector Stores API is not supported in Milvus")
async def openai_list_files_in_vector_store(
self,
vector_store_id: str,
) -> VectorStoreListFilesResponse:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Milvus")
async def openai_retrieve_vector_store_file(
self,
vector_store_id: str,
file_id: str,
) -> VectorStoreFileObject:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Milvus")
async def openai_retrieve_vector_store_file_contents(
self,
vector_store_id: str,
file_id: str,
) -> VectorStoreFileContentsResponse:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Milvus")
async def openai_update_vector_store_file(
self,
vector_store_id: str,
file_id: str,
attributes: dict[str, Any] | None = None,
) -> VectorStoreFileObject:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Milvus")
async def openai_delete_vector_store_file(
self,
vector_store_id: str,
file_id: str,
) -> VectorStoreFileObject:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Milvus")
def generate_chunk_id(document_id: str, chunk_text: str) -> str: def generate_chunk_id(document_id: str, chunk_text: str) -> str:
"""Generate a unique chunk ID using a hash of document ID and chunk text.""" """Generate a unique chunk ID using a hash of document ID and chunk text."""

View file

@ -24,7 +24,12 @@ from llama_stack.apis.vector_io import (
VectorStoreObject, VectorStoreObject,
VectorStoreSearchResponsePage, VectorStoreSearchResponsePage,
) )
from llama_stack.apis.vector_io.vector_io import VectorStoreChunkingStrategy, VectorStoreFileObject from llama_stack.apis.vector_io.vector_io import (
VectorStoreChunkingStrategy,
VectorStoreFileContentsResponse,
VectorStoreFileObject,
VectorStoreListFilesResponse,
)
from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate
from llama_stack.providers.inline.vector_io.qdrant import QdrantVectorIOConfig as InlineQdrantVectorIOConfig from llama_stack.providers.inline.vector_io.qdrant import QdrantVectorIOConfig as InlineQdrantVectorIOConfig
from llama_stack.providers.utils.memory.vector_store import ( from llama_stack.providers.utils.memory.vector_store import (
@ -263,3 +268,38 @@ class QdrantVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
chunking_strategy: VectorStoreChunkingStrategy | None = None, chunking_strategy: VectorStoreChunkingStrategy | None = None,
) -> VectorStoreFileObject: ) -> VectorStoreFileObject:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant") raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
async def openai_list_files_in_vector_store(
self,
vector_store_id: str,
) -> VectorStoreListFilesResponse:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
async def openai_retrieve_vector_store_file(
self,
vector_store_id: str,
file_id: str,
) -> VectorStoreFileObject:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
async def openai_retrieve_vector_store_file_contents(
self,
vector_store_id: str,
file_id: str,
) -> VectorStoreFileContentsResponse:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
async def openai_update_vector_store_file(
self,
vector_store_id: str,
file_id: str,
attributes: dict[str, Any] | None = None,
) -> VectorStoreFileObject:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
async def openai_delete_vector_store_file(
self,
vector_store_id: str,
file_id: str,
) -> VectorStoreFileObject:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")

View file

@ -4,6 +4,7 @@
# This source code is licensed under the terms described in the LICENSE file in # This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree. # the root directory of this source tree.
import asyncio
import logging import logging
import mimetypes import mimetypes
import time import time
@ -12,6 +13,7 @@ from abc import ABC, abstractmethod
from typing import Any from typing import Any
from llama_stack.apis.files import Files from llama_stack.apis.files import Files
from llama_stack.apis.files.files import OpenAIFileObject
from llama_stack.apis.vector_dbs import VectorDB from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.vector_io import ( from llama_stack.apis.vector_io import (
QueryChunksResponse, QueryChunksResponse,
@ -28,8 +30,13 @@ from llama_stack.apis.vector_io.vector_io import (
VectorStoreChunkingStrategy, VectorStoreChunkingStrategy,
VectorStoreChunkingStrategyAuto, VectorStoreChunkingStrategyAuto,
VectorStoreChunkingStrategyStatic, VectorStoreChunkingStrategyStatic,
VectorStoreFileContentsResponse,
VectorStoreFileCounts,
VectorStoreFileDeleteResponse,
VectorStoreFileLastError, VectorStoreFileLastError,
VectorStoreFileObject, VectorStoreFileObject,
VectorStoreFileStatus,
VectorStoreListFilesResponse,
) )
from llama_stack.providers.utils.memory.vector_store import content_from_data_and_mime_type, make_overlapped_chunks from llama_stack.providers.utils.memory.vector_store import content_from_data_and_mime_type, make_overlapped_chunks
@ -70,6 +77,33 @@ class OpenAIVectorStoreMixin(ABC):
"""Delete vector store metadata from persistent storage.""" """Delete vector store metadata from persistent storage."""
pass pass
@abstractmethod
async def _save_openai_vector_store_file(
self, store_id: str, file_id: str, file_info: dict[str, Any], file_contents: list[dict[str, Any]]
) -> None:
"""Save vector store file metadata to persistent storage."""
pass
@abstractmethod
async def _load_openai_vector_store_file(self, store_id: str, file_id: str) -> dict[str, Any]:
"""Load vector store file metadata from persistent storage."""
pass
@abstractmethod
async def _load_openai_vector_store_file_contents(self, store_id: str, file_id: str) -> list[dict[str, Any]]:
"""Load vector store file contents from persistent storage."""
pass
@abstractmethod
async def _update_openai_vector_store_file(self, store_id: str, file_id: str, file_info: dict[str, Any]) -> None:
"""Update vector store file metadata in persistent storage."""
pass
@abstractmethod
async def _delete_openai_vector_store_file_from_storage(self, store_id: str, file_id: str) -> None:
"""Delete vector store file metadata from persistent storage."""
pass
@abstractmethod @abstractmethod
async def register_vector_db(self, vector_db: VectorDB) -> None: async def register_vector_db(self, vector_db: VectorDB) -> None:
"""Register a vector database (provider-specific implementation).""" """Register a vector database (provider-specific implementation)."""
@ -136,18 +170,28 @@ class OpenAIVectorStoreMixin(ABC):
await self.register_vector_db(vector_db) await self.register_vector_db(vector_db)
# Create OpenAI vector store metadata # Create OpenAI vector store metadata
status = "completed"
# Start with no files attached and update later
file_counts = VectorStoreFileCounts(
cancelled=0,
completed=0,
failed=0,
in_progress=0,
total=0,
)
store_info = { store_info = {
"id": store_id, "id": store_id,
"object": "vector_store", "object": "vector_store",
"created_at": created_at, "created_at": created_at,
"name": store_id, "name": store_id,
"usage_bytes": 0, "usage_bytes": 0,
"file_counts": {}, "file_counts": file_counts.model_dump(),
"status": "completed", "status": status,
"expires_after": expires_after, "expires_after": expires_after,
"expires_at": None, "expires_at": None,
"last_active_at": created_at, "last_active_at": created_at,
"file_ids": file_ids or [], "file_ids": [],
"chunking_strategy": chunking_strategy, "chunking_strategy": chunking_strategy,
} }
@ -165,18 +209,14 @@ class OpenAIVectorStoreMixin(ABC):
# Store in memory cache # Store in memory cache
self.openai_vector_stores[store_id] = store_info self.openai_vector_stores[store_id] = store_info
return VectorStoreObject( # Now that our vector store is created, attach any files that were provided
id=store_id, file_ids = file_ids or []
created_at=created_at, tasks = [self.openai_attach_file_to_vector_store(store_id, file_id) for file_id in file_ids]
name=store_id, await asyncio.gather(*tasks)
usage_bytes=0,
file_counts={}, # Get the updated store info and return it
status="completed", store_info = self.openai_vector_stores[store_id]
expires_after=expires_after, return VectorStoreObject.model_validate(store_info)
expires_at=None,
last_active_at=created_at,
metadata=metadata,
)
async def openai_list_vector_stores( async def openai_list_vector_stores(
self, self,
@ -346,33 +386,7 @@ class OpenAIVectorStoreMixin(ABC):
if not self._matches_filters(chunk.metadata, filters): if not self._matches_filters(chunk.metadata, filters):
continue continue
# content is InterleavedContent content = self._chunk_to_vector_store_content(chunk)
if isinstance(chunk.content, str):
content = [
VectorStoreContent(
type="text",
text=chunk.content,
)
]
elif isinstance(chunk.content, list):
# TODO: Add support for other types of content
content = [
VectorStoreContent(
type="text",
text=item.text,
)
for item in chunk.content
if item.type == "text"
]
else:
if chunk.content.type != "text":
raise ValueError(f"Unsupported content type: {chunk.content.type}")
content = [
VectorStoreContent(
type="text",
text=chunk.content.text,
)
]
response_data_item = VectorStoreSearchResponse( response_data_item = VectorStoreSearchResponse(
file_id=chunk.metadata.get("file_id", ""), file_id=chunk.metadata.get("file_id", ""),
@ -448,6 +462,36 @@ class OpenAIVectorStoreMixin(ABC):
# Unknown filter type, default to no match # Unknown filter type, default to no match
raise ValueError(f"Unsupported filter type: {filter_type}") raise ValueError(f"Unsupported filter type: {filter_type}")
def _chunk_to_vector_store_content(self, chunk: Chunk) -> list[VectorStoreContent]:
# content is InterleavedContent
if isinstance(chunk.content, str):
content = [
VectorStoreContent(
type="text",
text=chunk.content,
)
]
elif isinstance(chunk.content, list):
# TODO: Add support for other types of content
content = [
VectorStoreContent(
type="text",
text=item.text,
)
for item in chunk.content
if item.type == "text"
]
else:
if chunk.content.type != "text":
raise ValueError(f"Unsupported content type: {chunk.content.type}")
content = [
VectorStoreContent(
type="text",
text=chunk.content.text,
)
]
return content
async def openai_attach_file_to_vector_store( async def openai_attach_file_to_vector_store(
self, self,
vector_store_id: str, vector_store_id: str,
@ -455,14 +499,20 @@ class OpenAIVectorStoreMixin(ABC):
attributes: dict[str, Any] | None = None, attributes: dict[str, Any] | None = None,
chunking_strategy: VectorStoreChunkingStrategy | None = None, chunking_strategy: VectorStoreChunkingStrategy | None = None,
) -> VectorStoreFileObject: ) -> VectorStoreFileObject:
if vector_store_id not in self.openai_vector_stores:
raise ValueError(f"Vector store {vector_store_id} not found")
attributes = attributes or {} attributes = attributes or {}
chunking_strategy = chunking_strategy or VectorStoreChunkingStrategyAuto() chunking_strategy = chunking_strategy or VectorStoreChunkingStrategyAuto()
created_at = int(time.time())
chunks: list[Chunk] = []
file_response: OpenAIFileObject | None = None
vector_store_file_object = VectorStoreFileObject( vector_store_file_object = VectorStoreFileObject(
id=file_id, id=file_id,
attributes=attributes, attributes=attributes,
chunking_strategy=chunking_strategy, chunking_strategy=chunking_strategy,
created_at=int(time.time()), created_at=created_at,
status="in_progress", status="in_progress",
vector_store_id=vector_store_id, vector_store_id=vector_store_id,
) )
@ -504,12 +554,12 @@ class OpenAIVectorStoreMixin(ABC):
code="server_error", code="server_error",
message="No chunks were generated from the file", message="No chunks were generated from the file",
) )
return vector_store_file_object else:
await self.insert_chunks(
await self.insert_chunks( vector_db_id=vector_store_id,
vector_db_id=vector_store_id, chunks=chunks,
chunks=chunks, )
) vector_store_file_object.status = "completed"
except Exception as e: except Exception as e:
logger.error(f"Error attaching file to vector store: {e}") logger.error(f"Error attaching file to vector store: {e}")
vector_store_file_object.status = "failed" vector_store_file_object.status = "failed"
@ -517,8 +567,171 @@ class OpenAIVectorStoreMixin(ABC):
code="server_error", code="server_error",
message=str(e), message=str(e),
) )
return vector_store_file_object
vector_store_file_object.status = "completed" # Create OpenAI vector store file metadata
file_info = vector_store_file_object.model_dump(exclude={"last_error"})
file_info["filename"] = file_response.filename if file_response else ""
# Save vector store file to persistent storage (provider-specific)
dict_chunks = [c.model_dump() for c in chunks]
await self._save_openai_vector_store_file(vector_store_id, file_id, file_info, dict_chunks)
# Update file_ids and file_counts in vector store metadata
store_info = self.openai_vector_stores[vector_store_id].copy()
store_info["file_ids"].append(file_id)
store_info["file_counts"]["total"] += 1
store_info["file_counts"][vector_store_file_object.status] += 1
# Save updated vector store to persistent storage
await self._save_openai_vector_store(vector_store_id, store_info)
# Update vector store in-memory cache
self.openai_vector_stores[vector_store_id] = store_info
return vector_store_file_object return vector_store_file_object
async def openai_list_files_in_vector_store(
self,
vector_store_id: str,
limit: int | None = 20,
order: str | None = "desc",
after: str | None = None,
before: str | None = None,
filter: VectorStoreFileStatus | None = None,
) -> VectorStoreListFilesResponse:
"""List files in a vector store."""
limit = limit or 20
order = order or "desc"
if vector_store_id not in self.openai_vector_stores:
raise ValueError(f"Vector store {vector_store_id} not found")
store_info = self.openai_vector_stores[vector_store_id]
file_objects: list[VectorStoreFileObject] = []
for file_id in store_info["file_ids"]:
file_info = await self._load_openai_vector_store_file(vector_store_id, file_id)
file_object = VectorStoreFileObject(**file_info)
if filter and file_object.status != filter:
continue
file_objects.append(file_object)
# Sort by created_at
reverse_order = order == "desc"
file_objects.sort(key=lambda x: x.created_at, reverse=reverse_order)
# Apply cursor-based pagination
if after:
after_index = next((i for i, file in enumerate(file_objects) if file.id == after), -1)
if after_index >= 0:
file_objects = file_objects[after_index + 1 :]
if before:
before_index = next((i for i, file in enumerate(file_objects) if file.id == before), len(file_objects))
file_objects = file_objects[:before_index]
# Apply limit
limited_files = file_objects[:limit]
# Determine pagination info
has_more = len(file_objects) > limit
first_id = file_objects[0].id if file_objects else None
last_id = file_objects[-1].id if file_objects else None
return VectorStoreListFilesResponse(
data=limited_files,
has_more=has_more,
first_id=first_id,
last_id=last_id,
)
async def openai_retrieve_vector_store_file(
self,
vector_store_id: str,
file_id: str,
) -> VectorStoreFileObject:
"""Retrieves a vector store file."""
if vector_store_id not in self.openai_vector_stores:
raise ValueError(f"Vector store {vector_store_id} not found")
store_info = self.openai_vector_stores[vector_store_id]
if file_id not in store_info["file_ids"]:
raise ValueError(f"File {file_id} not found in vector store {vector_store_id}")
file_info = await self._load_openai_vector_store_file(vector_store_id, file_id)
return VectorStoreFileObject(**file_info)
async def openai_retrieve_vector_store_file_contents(
self,
vector_store_id: str,
file_id: str,
) -> VectorStoreFileContentsResponse:
"""Retrieves the contents of a vector store file."""
if vector_store_id not in self.openai_vector_stores:
raise ValueError(f"Vector store {vector_store_id} not found")
file_info = await self._load_openai_vector_store_file(vector_store_id, file_id)
dict_chunks = await self._load_openai_vector_store_file_contents(vector_store_id, file_id)
chunks = [Chunk.model_validate(c) for c in dict_chunks]
content = []
for chunk in chunks:
content.extend(self._chunk_to_vector_store_content(chunk))
return VectorStoreFileContentsResponse(
file_id=file_id,
filename=file_info.get("filename", ""),
attributes=file_info.get("attributes", {}),
content=content,
)
async def openai_update_vector_store_file(
self,
vector_store_id: str,
file_id: str,
attributes: dict[str, Any],
) -> VectorStoreFileObject:
"""Updates a vector store file."""
if vector_store_id not in self.openai_vector_stores:
raise ValueError(f"Vector store {vector_store_id} not found")
store_info = self.openai_vector_stores[vector_store_id]
if file_id not in store_info["file_ids"]:
raise ValueError(f"File {file_id} not found in vector store {vector_store_id}")
file_info = await self._load_openai_vector_store_file(vector_store_id, file_id)
file_info["attributes"] = attributes
await self._update_openai_vector_store_file(vector_store_id, file_id, file_info)
return VectorStoreFileObject(**file_info)
async def openai_delete_vector_store_file(
self,
vector_store_id: str,
file_id: str,
) -> VectorStoreFileDeleteResponse:
"""Deletes a vector store file."""
if vector_store_id not in self.openai_vector_stores:
raise ValueError(f"Vector store {vector_store_id} not found")
store_info = self.openai_vector_stores[vector_store_id].copy()
file = await self.openai_retrieve_vector_store_file(vector_store_id, file_id)
await self._delete_openai_vector_store_file_from_storage(vector_store_id, file_id)
# TODO: We need to actually delete the embeddings from the underlying vector store...
# Also uncomment the corresponding integration test marked as xfail
#
# test_openai_vector_store_delete_file_removes_from_vector_store in
# tests/integration/vector_io/test_openai_vector_stores.py
# Update in-memory cache
store_info["file_ids"].remove(file_id)
store_info["file_counts"][file.status] -= 1
store_info["file_counts"]["total"] -= 1
self.openai_vector_stores[vector_store_id] = store_info
# Save updated vector store to persistent storage
await self._save_openai_vector_store(vector_store_id, store_info)
return VectorStoreFileDeleteResponse(
id=file_id,
deleted=True,
)

View file

@ -6,8 +6,11 @@
import logging import logging
import time import time
from io import BytesIO
import pytest import pytest
from llama_stack_client import BadRequestError, LlamaStackClient
from openai import BadRequestError as OpenAIBadRequestError
from openai import OpenAI from openai import OpenAI
from llama_stack.apis.vector_io import Chunk from llama_stack.apis.vector_io import Chunk
@ -73,11 +76,23 @@ def compat_client_with_empty_stores(compat_client):
logger.warning("Failed to clear vector stores") logger.warning("Failed to clear vector stores")
pass pass
def clear_files():
try:
response = compat_client.files.list()
for file in response.data:
compat_client.files.delete(file_id=file.id)
except Exception:
# If the API is not available or fails, just continue
logger.warning("Failed to clear files")
pass
clear_vector_stores() clear_vector_stores()
clear_files()
yield compat_client yield compat_client
# Clean up after the test # Clean up after the test
clear_vector_stores() clear_vector_stores()
clear_files()
def test_openai_create_vector_store(compat_client_with_empty_stores, client_with_models): def test_openai_create_vector_store(compat_client_with_empty_stores, client_with_models):
@ -423,3 +438,369 @@ def test_openai_vector_store_search_with_max_num_results(
assert search_response is not None assert search_response is not None
assert len(search_response.data) == 2 assert len(search_response.data) == 2
def test_openai_vector_store_attach_file(compat_client_with_empty_stores, client_with_models):
"""Test OpenAI vector store attach file."""
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
if isinstance(compat_client_with_empty_stores, LlamaStackClient):
pytest.skip("Vector Store Files attach is not yet supported with LlamaStackClient")
compat_client = compat_client_with_empty_stores
# Create a vector store
vector_store = compat_client.vector_stores.create(name="test_store")
# Create a file
test_content = b"The secret string is foobazbar."
with BytesIO(test_content) as file_buffer:
file_buffer.name = "openai_test.txt"
file = compat_client.files.create(file=file_buffer, purpose="assistants")
# Attach the file to the vector store
file_attach_response = compat_client.vector_stores.files.create(
vector_store_id=vector_store.id,
file_id=file.id,
)
assert file_attach_response
assert file_attach_response.object == "vector_store.file"
assert file_attach_response.id == file.id
assert file_attach_response.vector_store_id == vector_store.id
assert file_attach_response.status == "completed"
assert file_attach_response.chunking_strategy.type == "auto"
assert file_attach_response.created_at > 0
assert not file_attach_response.last_error
updated_vector_store = compat_client.vector_stores.retrieve(vector_store_id=vector_store.id)
assert updated_vector_store.file_counts.completed == 1
assert updated_vector_store.file_counts.total == 1
assert updated_vector_store.file_counts.cancelled == 0
assert updated_vector_store.file_counts.failed == 0
assert updated_vector_store.file_counts.in_progress == 0
# Search using OpenAI API to confirm our file attached
search_response = compat_client.vector_stores.search(
vector_store_id=vector_store.id, query="What is the secret string?", max_num_results=1
)
assert search_response is not None
assert len(search_response.data) > 0
top_result = search_response.data[0]
top_content = top_result.content[0].text
assert "foobazbar" in top_content.lower()
def test_openai_vector_store_attach_files_on_creation(compat_client_with_empty_stores, client_with_models):
"""Test OpenAI vector store attach files on creation."""
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
if isinstance(compat_client_with_empty_stores, LlamaStackClient):
pytest.skip("Vector Store Files attach is not yet supported with LlamaStackClient")
compat_client = compat_client_with_empty_stores
# Create some files and attach them to the vector store
valid_file_ids = []
for i in range(3):
with BytesIO(f"This is a test file {i}".encode()) as file_buffer:
file_buffer.name = f"openai_test_{i}.txt"
file = compat_client.files.create(file=file_buffer, purpose="assistants")
valid_file_ids.append(file.id)
# include an invalid file ID so we can test failed status
failed_file_id = "invalid_file_id"
file_ids = valid_file_ids + [failed_file_id]
num_failed = len(file_ids) - len(valid_file_ids)
# Create a vector store
vector_store = compat_client.vector_stores.create(
name="test_store",
file_ids=file_ids,
)
assert vector_store.file_counts.completed == len(valid_file_ids)
assert vector_store.file_counts.total == len(file_ids)
assert vector_store.file_counts.cancelled == 0
assert vector_store.file_counts.failed == num_failed
assert vector_store.file_counts.in_progress == 0
files_list = compat_client.vector_stores.files.list(vector_store_id=vector_store.id)
assert len(files_list.data) == len(file_ids)
assert set(file_ids) == {file.id for file in files_list.data}
for file in files_list.data:
if file.id in valid_file_ids:
assert file.status == "completed"
else:
assert file.status == "failed"
failed_list = compat_client.vector_stores.files.list(vector_store_id=vector_store.id, filter="failed")
assert len(failed_list.data) == num_failed
assert failed_file_id == failed_list.data[0].id
# Delete the invalid file
delete_response = compat_client.vector_stores.files.delete(vector_store_id=vector_store.id, file_id=failed_file_id)
assert delete_response.id == failed_file_id
updated_vector_store = compat_client.vector_stores.retrieve(vector_store_id=vector_store.id)
assert updated_vector_store.file_counts.completed == len(valid_file_ids)
assert updated_vector_store.file_counts.total == len(valid_file_ids)
assert updated_vector_store.file_counts.failed == 0
def test_openai_vector_store_list_files(compat_client_with_empty_stores, client_with_models):
"""Test OpenAI vector store list files."""
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
if isinstance(compat_client_with_empty_stores, LlamaStackClient):
pytest.skip("Vector Store Files list is not yet supported with LlamaStackClient")
compat_client = compat_client_with_empty_stores
# Create a vector store
vector_store = compat_client.vector_stores.create(name="test_store")
# Create some files and attach them to the vector store
file_ids = []
for i in range(3):
with BytesIO(f"This is a test file {i}".encode()) as file_buffer:
file_buffer.name = f"openai_test_{i}.txt"
file = compat_client.files.create(file=file_buffer, purpose="assistants")
compat_client.vector_stores.files.create(
vector_store_id=vector_store.id,
file_id=file.id,
)
file_ids.append(file.id)
files_list = compat_client.vector_stores.files.list(vector_store_id=vector_store.id)
assert files_list
assert files_list.object == "list"
assert files_list.data
assert not files_list.has_more
assert len(files_list.data) == 3
assert set(file_ids) == {file.id for file in files_list.data}
assert files_list.data[0].object == "vector_store.file"
assert files_list.data[0].vector_store_id == vector_store.id
assert files_list.data[0].status == "completed"
assert files_list.data[0].chunking_strategy.type == "auto"
assert files_list.data[0].created_at > 0
assert files_list.first_id == files_list.data[0].id
assert not files_list.data[0].last_error
first_page = compat_client.vector_stores.files.list(vector_store_id=vector_store.id, limit=2)
assert first_page.has_more
assert len(first_page.data) == 2
assert first_page.first_id == first_page.data[0].id
assert first_page.last_id != first_page.data[-1].id
next_page = compat_client.vector_stores.files.list(
vector_store_id=vector_store.id, limit=2, after=first_page.data[-1].id
)
assert not next_page.has_more
assert len(next_page.data) == 1
updated_vector_store = compat_client.vector_stores.retrieve(vector_store_id=vector_store.id)
assert updated_vector_store.file_counts.completed == 3
assert updated_vector_store.file_counts.total == 3
assert updated_vector_store.file_counts.cancelled == 0
assert updated_vector_store.file_counts.failed == 0
assert updated_vector_store.file_counts.in_progress == 0
def test_openai_vector_store_list_files_invalid_vector_store(compat_client_with_empty_stores, client_with_models):
"""Test OpenAI vector store list files with invalid vector store ID."""
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
if isinstance(compat_client_with_empty_stores, LlamaStackClient):
pytest.skip("Vector Store Files list is not yet supported with LlamaStackClient")
compat_client = compat_client_with_empty_stores
with pytest.raises((BadRequestError, OpenAIBadRequestError)):
compat_client.vector_stores.files.list(vector_store_id="abc123")
def test_openai_vector_store_retrieve_file_contents(compat_client_with_empty_stores, client_with_models):
"""Test OpenAI vector store retrieve file contents."""
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
if isinstance(compat_client_with_empty_stores, LlamaStackClient):
pytest.skip("Vector Store Files retrieve contents is not yet supported with LlamaStackClient")
compat_client = compat_client_with_empty_stores
# Create a vector store
vector_store = compat_client.vector_stores.create(name="test_store")
# Create a file
test_content = b"This is a test file"
file_name = "openai_test.txt"
attributes = {"foo": "bar"}
with BytesIO(test_content) as file_buffer:
file_buffer.name = file_name
file = compat_client.files.create(file=file_buffer, purpose="assistants")
# Attach the file to the vector store
file_attach_response = compat_client.vector_stores.files.create(
vector_store_id=vector_store.id,
file_id=file.id,
attributes=attributes,
)
assert file_attach_response.status == "completed"
file_contents = compat_client.vector_stores.files.content(
vector_store_id=vector_store.id,
file_id=file.id,
)
assert file_contents
assert file_contents.content[0]["type"] == "text"
assert file_contents.content[0]["text"] == test_content.decode("utf-8")
assert file_contents.filename == file_name
assert file_contents.attributes == attributes
def test_openai_vector_store_delete_file(compat_client_with_empty_stores, client_with_models):
"""Test OpenAI vector store delete file."""
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
if isinstance(compat_client_with_empty_stores, LlamaStackClient):
pytest.skip("Vector Store Files list is not yet supported with LlamaStackClient")
compat_client = compat_client_with_empty_stores
# Create a vector store
vector_store = compat_client.vector_stores.create(name="test_store")
# Create some files and attach them to the vector store
file_ids = []
for i in range(3):
with BytesIO(f"This is a test file {i}".encode()) as file_buffer:
file_buffer.name = f"openai_test_{i}.txt"
file = compat_client.files.create(file=file_buffer, purpose="assistants")
compat_client.vector_stores.files.create(
vector_store_id=vector_store.id,
file_id=file.id,
)
file_ids.append(file.id)
files_list = compat_client.vector_stores.files.list(vector_store_id=vector_store.id)
assert len(files_list.data) == 3
# Delete the first file
delete_response = compat_client.vector_stores.files.delete(vector_store_id=vector_store.id, file_id=file_ids[0])
assert delete_response
assert delete_response.id == file_ids[0]
assert delete_response.deleted is True
assert delete_response.object == "vector_store.file.deleted"
updated_vector_store = compat_client.vector_stores.retrieve(vector_store_id=vector_store.id)
assert updated_vector_store.file_counts.completed == 2
assert updated_vector_store.file_counts.total == 2
assert updated_vector_store.file_counts.cancelled == 0
assert updated_vector_store.file_counts.failed == 0
assert updated_vector_store.file_counts.in_progress == 0
# Delete the second file
delete_response = compat_client.vector_stores.files.delete(vector_store_id=vector_store.id, file_id=file_ids[1])
assert delete_response
assert delete_response.id == file_ids[1]
updated_vector_store = compat_client.vector_stores.retrieve(vector_store_id=vector_store.id)
assert updated_vector_store.file_counts.completed == 1
assert updated_vector_store.file_counts.total == 1
assert updated_vector_store.file_counts.cancelled == 0
assert updated_vector_store.file_counts.failed == 0
assert updated_vector_store.file_counts.in_progress == 0
# TODO: Remove this xfail once we have a way to remove embeddings from vector store
@pytest.mark.xfail(reason="Vector Store Files delete doesn't remove embeddings from vecntor store", strict=True)
def test_openai_vector_store_delete_file_removes_from_vector_store(compat_client_with_empty_stores, client_with_models):
"""Test OpenAI vector store delete file removes from vector store."""
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
if isinstance(compat_client_with_empty_stores, LlamaStackClient):
pytest.skip("Vector Store Files attach is not yet supported with LlamaStackClient")
compat_client = compat_client_with_empty_stores
# Create a vector store
vector_store = compat_client.vector_stores.create(name="test_store")
# Create a file
test_content = b"The secret string is foobazbar."
with BytesIO(test_content) as file_buffer:
file_buffer.name = "openai_test.txt"
file = compat_client.files.create(file=file_buffer, purpose="assistants")
# Attach the file to the vector store
file_attach_response = compat_client.vector_stores.files.create(
vector_store_id=vector_store.id,
file_id=file.id,
)
assert file_attach_response.status == "completed"
# Search using OpenAI API to confirm our file attached
search_response = compat_client.vector_stores.search(
vector_store_id=vector_store.id, query="What is the secret string?", max_num_results=1
)
assert "foobazbar" in search_response.data[0].content[0].text.lower()
# Delete the file
compat_client.vector_stores.files.delete(vector_store_id=vector_store.id, file_id=file.id)
# Search using OpenAI API to confirm our file deleted
search_response = compat_client.vector_stores.search(
vector_store_id=vector_store.id, query="What is the secret string?", max_num_results=1
)
assert not search_response.data
def test_openai_vector_store_update_file(compat_client_with_empty_stores, client_with_models):
"""Test OpenAI vector store update file."""
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
if isinstance(compat_client_with_empty_stores, LlamaStackClient):
pytest.skip("Vector Store Files update is not yet supported with LlamaStackClient")
compat_client = compat_client_with_empty_stores
# Create a vector store
vector_store = compat_client.vector_stores.create(name="test_store")
# Create a file
test_content = b"This is a test file"
with BytesIO(test_content) as file_buffer:
file_buffer.name = "openai_test.txt"
file = compat_client.files.create(file=file_buffer, purpose="assistants")
# Attach the file to the vector store
file_attach_response = compat_client.vector_stores.files.create(
vector_store_id=vector_store.id,
file_id=file.id,
attributes={"foo": "bar"},
)
assert file_attach_response.status == "completed"
assert file_attach_response.attributes["foo"] == "bar"
# Update the file's attributes
updated_response = compat_client.vector_stores.files.update(
vector_store_id=vector_store.id,
file_id=file.id,
attributes={"foo": "baz"},
)
assert updated_response.status == "completed"
assert updated_response.attributes["foo"] == "baz"
# Ensure we can retrieve the file and see the updated attributes
retrieved_file = compat_client.vector_stores.files.retrieve(
vector_store_id=vector_store.id,
file_id=file.id,
)
assert retrieved_file.attributes["foo"] == "baz"