list responses

# What does this PR do?


## Test Plan
This commit is contained in:
Eric Huang 2025-05-23 13:00:58 -07:00
parent 558d109ab7
commit f39d1732ea
47 changed files with 704 additions and 77 deletions

View file

@ -0,0 +1,97 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from urllib.parse import urljoin
import pytest
import requests
from openai import OpenAI
from llama_stack.distribution.library_client import LlamaStackAsLibraryClient
@pytest.fixture
def openai_client(client_with_models):
base_url = f"{client_with_models.base_url}/v1/openai/v1"
return OpenAI(base_url=base_url, api_key="bar")
@pytest.mark.parametrize(
"stream",
[
True,
False,
],
)
@pytest.mark.parametrize(
"tools",
[
[],
[
{
"type": "function",
"name": "get_weather",
"description": "Get the weather in a given city",
"parameters": {
"type": "object",
"properties": {
"city": {"type": "string", "description": "The city to get the weather for"},
},
},
}
],
],
)
def test_responses_store(openai_client, client_with_models, text_model_id, stream, tools):
if isinstance(client_with_models, LlamaStackAsLibraryClient):
pytest.skip("OpenAI responses are not supported when testing with library client yet.")
client = openai_client
message = "What's the weather in Tokyo?" + (
" YOU MUST USE THE get_weather function to get the weather." if tools else ""
)
response = client.responses.create(
model=text_model_id,
input=[
{
"role": "user",
"content": message,
}
],
stream=stream,
tools=tools,
)
if stream:
# accumulate the streamed content
content = ""
response_id = None
for chunk in response:
if response_id is None:
response_id = chunk.response.id
if not tools:
if chunk.type == "response.completed":
response_id = chunk.response.id
content = chunk.response.output[0].content[0].text
else:
response_id = response.id
if not tools:
content = response.output[0].content[0].text
# list responses is not available in the SDK
url = urljoin(str(client.base_url), "responses")
response = requests.get(url, headers={"Authorization": f"Bearer {client.api_key}"})
assert response.status_code == 200
data = response.json()["data"]
assert response_id in [r["id"] for r in data]
# test retrieve response
retrieved_response = client.responses.retrieve(response_id)
assert retrieved_response.id == response_id
assert retrieved_response.model == text_model_id
if tools:
assert retrieved_response.output[0].type == "function_call"
else:
assert retrieved_response.output[0].content[0].text == content

View file

@ -43,6 +43,10 @@ def config(tmp_path):
"type": "sqlite",
"db_path": str(tmp_path / "test.db"),
},
responses_store={
"type": "sqlite",
"db_path": str(tmp_path / "test.db"),
},
)

View file

@ -4,7 +4,7 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from unittest.mock import AsyncMock, patch
from unittest.mock import AsyncMock
import pytest
from openai.types.chat.chat_completion_chunk import (
@ -16,12 +16,11 @@ from openai.types.chat.chat_completion_chunk import (
)
from llama_stack.apis.agents.openai_responses import (
OpenAIResponseInputItemList,
OpenAIResponseInputMessageContentText,
OpenAIResponseInputToolFunction,
OpenAIResponseInputToolWebSearch,
OpenAIResponseMessage,
OpenAIResponseObject,
OpenAIResponseObjectWithInput,
OpenAIResponseOutputMessageContentOutputText,
OpenAIResponseOutputMessageWebSearchToolCall,
)
@ -33,19 +32,12 @@ from llama_stack.apis.inference.inference import (
)
from llama_stack.apis.tools.tools import Tool, ToolGroups, ToolInvocationResult, ToolParameter, ToolRuntime
from llama_stack.providers.inline.agents.meta_reference.openai_responses import (
OpenAIResponsePreviousResponseWithInputItems,
OpenAIResponsesImpl,
)
from llama_stack.providers.utils.kvstore import KVStore
from llama_stack.providers.utils.responses.responses_store import ResponsesStore
from tests.unit.providers.agents.meta_reference.fixtures import load_chat_completion_fixture
@pytest.fixture
def mock_kvstore():
kvstore = AsyncMock(spec=KVStore)
return kvstore
@pytest.fixture
def mock_inference_api():
inference_api = AsyncMock()
@ -65,12 +57,18 @@ def mock_tool_runtime_api():
@pytest.fixture
def openai_responses_impl(mock_kvstore, mock_inference_api, mock_tool_groups_api, mock_tool_runtime_api):
def mock_responses_store():
responses_store = AsyncMock(spec=ResponsesStore)
return responses_store
@pytest.fixture
def openai_responses_impl(mock_inference_api, mock_tool_groups_api, mock_tool_runtime_api, mock_responses_store):
return OpenAIResponsesImpl(
persistence_store=mock_kvstore,
inference_api=mock_inference_api,
tool_groups_api=mock_tool_groups_api,
tool_runtime_api=mock_tool_runtime_api,
responses_store=mock_responses_store,
)
@ -100,7 +98,7 @@ async def test_create_openai_response_with_string_input(openai_responses_impl, m
stream=False,
temperature=0.1,
)
openai_responses_impl.persistence_store.set.assert_called_once()
openai_responses_impl.responses_store.store_response_object.assert_called_once()
assert result.model == model
assert len(result.output) == 1
assert isinstance(result.output[0], OpenAIResponseMessage)
@ -167,7 +165,7 @@ async def test_create_openai_response_with_string_input_with_tools(openai_respon
kwargs={"query": "What is the capital of Ireland?"},
)
openai_responses_impl.persistence_store.set.assert_called_once()
openai_responses_impl.responses_store.store_response_object.assert_called_once()
# Check that we got the content from our mocked tool execution result
assert len(result.output) >= 1
@ -292,8 +290,7 @@ async def test_prepend_previous_response_none(openai_responses_impl):
@pytest.mark.asyncio
@patch.object(OpenAIResponsesImpl, "_get_previous_response_with_input")
async def test_prepend_previous_response_basic(get_previous_response_with_input, openai_responses_impl):
async def test_prepend_previous_response_basic(openai_responses_impl, mock_responses_store):
"""Test prepending a basic previous response to a new response."""
input_item_message = OpenAIResponseMessage(
@ -301,25 +298,21 @@ async def test_prepend_previous_response_basic(get_previous_response_with_input,
content=[OpenAIResponseInputMessageContentText(text="fake_previous_input")],
role="user",
)
input_items = OpenAIResponseInputItemList(data=[input_item_message])
response_output_message = OpenAIResponseMessage(
id="123",
content=[OpenAIResponseOutputMessageContentOutputText(text="fake_response")],
status="completed",
role="assistant",
)
response = OpenAIResponseObject(
previous_response = OpenAIResponseObjectWithInput(
created_at=1,
id="resp_123",
model="fake_model",
output=[response_output_message],
status="completed",
input=[input_item_message],
)
previous_response = OpenAIResponsePreviousResponseWithInputItems(
input_items=input_items,
response=response,
)
get_previous_response_with_input.return_value = previous_response
mock_responses_store.get_response_object.return_value = previous_response
input = await openai_responses_impl._prepend_previous_response("fake_input", "resp_123")
@ -336,16 +329,13 @@ async def test_prepend_previous_response_basic(get_previous_response_with_input,
@pytest.mark.asyncio
@patch.object(OpenAIResponsesImpl, "_get_previous_response_with_input")
async def test_prepend_previous_response_web_search(get_previous_response_with_input, openai_responses_impl):
async def test_prepend_previous_response_web_search(openai_responses_impl, mock_responses_store):
"""Test prepending a web search previous response to a new response."""
input_item_message = OpenAIResponseMessage(
id="123",
content=[OpenAIResponseInputMessageContentText(text="fake_previous_input")],
role="user",
)
input_items = OpenAIResponseInputItemList(data=[input_item_message])
output_web_search = OpenAIResponseOutputMessageWebSearchToolCall(
id="ws_123",
status="completed",
@ -356,18 +346,15 @@ async def test_prepend_previous_response_web_search(get_previous_response_with_i
status="completed",
role="assistant",
)
response = OpenAIResponseObject(
response = OpenAIResponseObjectWithInput(
created_at=1,
id="resp_123",
model="fake_model",
output=[output_web_search, output_message],
status="completed",
input=[input_item_message],
)
previous_response = OpenAIResponsePreviousResponseWithInputItems(
input_items=input_items,
response=response,
)
get_previous_response_with_input.return_value = previous_response
mock_responses_store.get_response_object.return_value = response
input_messages = [OpenAIResponseMessage(content="fake_input", role="user")]
input = await openai_responses_impl._prepend_previous_response(input_messages, "resp_123")
@ -464,9 +451,8 @@ async def test_create_openai_response_with_instructions_and_multiple_messages(
@pytest.mark.asyncio
@patch.object(OpenAIResponsesImpl, "_get_previous_response_with_input")
async def test_create_openai_response_with_instructions_and_previous_response(
get_previous_response_with_input, openai_responses_impl, mock_inference_api
openai_responses_impl, mock_responses_store, mock_inference_api
):
"""Test prepending both instructions and previous response."""
@ -475,25 +461,21 @@ async def test_create_openai_response_with_instructions_and_previous_response(
content="Name some towns in Ireland",
role="user",
)
input_items = OpenAIResponseInputItemList(data=[input_item_message])
response_output_message = OpenAIResponseMessage(
id="123",
content="Galway, Longford, Sligo",
status="completed",
role="assistant",
)
response = OpenAIResponseObject(
response = OpenAIResponseObjectWithInput(
created_at=1,
id="resp_123",
model="fake_model",
output=[response_output_message],
status="completed",
input=[input_item_message],
)
previous_response = OpenAIResponsePreviousResponseWithInputItems(
input_items=input_items,
response=response,
)
get_previous_response_with_input.return_value = previous_response
mock_responses_store.get_response_object.return_value = response
model = "meta-llama/Llama-3.1-8B-Instruct"
instructions = "You are a geography expert. Provide concise answers."
@ -511,7 +493,7 @@ async def test_create_openai_response_with_instructions_and_previous_response(
sent_messages = call_args.kwargs["messages"]
# Check that instructions were prepended as a system message
assert len(sent_messages) == 4
assert len(sent_messages) == 4, sent_messages
assert sent_messages[0].role == "system"
assert sent_messages[0].content == instructions

View file

@ -63,6 +63,9 @@ providers:
type: sqlite
namespace: null
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/openai}/agents_store.db
responses_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/openai}/responses_store.db
tool_runtime:
- provider_id: brave-search
provider_type: remote::brave-search