Move to utils

Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
This commit is contained in:
Yuan Tang 2024-10-07 17:20:49 -04:00
parent d8c4e7da4b
commit f3a8a3a5e8
No known key found for this signature in database
6 changed files with 220 additions and 323 deletions

View file

@ -1,10 +0,0 @@
name: local-openai
distribution_spec:
description: Running OpenAI API compatible LLM inference
providers:
inference: remote::openai
memory: meta-reference
safety: meta-reference
agents: meta-reference
telemetry: meta-reference
image_type: docker

View file

@ -1,22 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .config import OpenAIImplConfig
from .openai import OpenAIInferenceAdapter
async def get_adapter_impl(config: OpenAIImplConfig, _deps):
assert isinstance(config, OpenAIImplConfig), f"Unexpected config type: {type(config)}"
if config.url is not None:
impl = OpenAIInferenceAdapter(config)
else:
raise ValueError(
"Invalid configuration. Specify either an URL or HF Inference Endpoint details (namespace and endpoint name)."
)
await impl.initialize()
return impl

View file

@ -1,22 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Optional
from llama_models.schema_utils import json_schema_type
from pydantic import BaseModel, Field
@json_schema_type
class OpenAIImplConfig(BaseModel):
url: Optional[str] = Field(
default=None,
description="The URL for the OpenAI API compatible model serving endpoint",
)
api_token: Optional[str] = Field(
default=None,
description="The API token",
)

View file

@ -1,260 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import AsyncGenerator
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.datatypes import Message, StopReason
from llama_models.llama3.api.tokenizer import Tokenizer
from llama_models.sku_list import resolve_model
from openai import OpenAI
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.providers.utils.inference.augment_messages import augment_messages_for_tools
from .config import OpenAIImplConfig
class OpenAIInferenceAdapter(Inference):
max_tokens: int
model_id: str
def __init__(self, config: OpenAIImplConfig) -> None:
self.config = config
tokenizer = Tokenizer.get_instance()
self.formatter = ChatFormat(tokenizer)
@property
def client(self) -> OpenAI:
return OpenAI(
api_key=self.config.api_token,
base_url=self.config.url
)
async def initialize(self) -> None:
return
async def validate_routing_keys(self, routing_keys: list[str]) -> None:
# these are the model names the Llama Stack will use to route requests to this provider
# perform validation here if necessary
pass
async def shutdown(self) -> None:
pass
async def completion(self, request: CompletionRequest) -> AsyncGenerator:
raise NotImplementedError()
def _messages_to_openai_messages(self, messages: list[Message]) -> list:
openai_messages = []
for message in messages:
if message.role == "ipython":
role = "tool"
else:
role = message.role
openai_messages.append({"role": role, "content": message.content})
return openai_messages
def resolve_openai_model(self, model_name: str) -> str:
# TODO: This should be overriden by other classes
return model_name
def get_openai_chat_options(self, request: ChatCompletionRequest) -> dict:
options = {}
if request.sampling_params is not None:
for attr in {"temperature", "top_p", "top_k", "max_tokens"}:
if getattr(request.sampling_params, attr):
options[attr] = getattr(request.sampling_params, attr)
return options
async def chat_completion(
self,
model: str,
messages: List[Message],
sampling_params: Optional[SamplingParams] = SamplingParams(),
tools: Optional[List[ToolDefinition]] = None,
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> AsyncGenerator:
# wrapper request to make it easier to pass around (internal only, not exposed to API)
request = ChatCompletionRequest(
model=model,
messages=messages,
sampling_params=sampling_params,
tools=tools or [],
tool_choice=tool_choice,
tool_prompt_format=tool_prompt_format,
stream=stream,
logprobs=logprobs,
)
# accumulate sampling params and other options to pass to OpenAI
options = self.get_openai_chat_options(request)
openai_model = self.resolve_openai_model(request.model)
messages = augment_messages_for_tools(request)
model_input = self.formatter.encode_dialog_prompt(messages)
input_tokens = len(model_input.tokens)
# TODO: There is a potential bug here to be investigated
# max_new_tokens = min(
# request.sampling_params.max_tokens or (self.max_tokens - input_tokens),
# self.max_tokens - input_tokens - 1,
# )
#
# print(f"Calculated max_new_tokens: {max_new_tokens}")
max_new_tokens = self.max_tokens - input_tokens - 1
if not request.stream:
r = self.client.chat.completions.create(
model=openai_model,
messages=self._messages_to_openai_messages(messages),
max_tokens=max_new_tokens,
stream=False,
**options,
)
stop_reason = None
if r.choices[0].finish_reason:
if (
r.choices[0].finish_reason == "stop"
or r.choices[0].finish_reason == "eos"
):
stop_reason = StopReason.end_of_turn
elif r.choices[0].finish_reason == "length":
stop_reason = StopReason.out_of_tokens
completion_message = self.formatter.decode_assistant_message_from_content(
r.choices[0].message.content, stop_reason
)
yield ChatCompletionResponse(
completion_message=completion_message,
logprobs=None,
)
else:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.start,
delta="",
)
)
buffer = ""
ipython = False
stop_reason = None
for chunk in self.client.chat.completions.create(
model=openai_model,
messages=self._messages_to_openai_messages(messages),
max_tokens=max_new_tokens,
stream=True,
**options,
):
if chunk.choices[0].finish_reason:
if (
stop_reason is None and chunk.choices[0].finish_reason == "stop"
) or (
stop_reason is None and chunk.choices[0].finish_reason == "eos"
):
stop_reason = StopReason.end_of_turn
elif (
stop_reason is None
and chunk.choices[0].finish_reason == "length"
):
stop_reason = StopReason.out_of_tokens
break
text = chunk.choices[0].delta.content
if text is None:
continue
# check if it's a tool call ( aka starts with <|python_tag|> )
if not ipython and text.startswith("<|python_tag|>"):
ipython = True
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content="",
parse_status=ToolCallParseStatus.started,
),
)
)
buffer += text
continue
if ipython:
if text == "<|eot_id|>":
stop_reason = StopReason.end_of_turn
text = ""
continue
elif text == "<|eom_id|>":
stop_reason = StopReason.end_of_message
text = ""
continue
buffer += text
delta = ToolCallDelta(
content=text,
parse_status=ToolCallParseStatus.in_progress,
)
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=delta,
stop_reason=stop_reason,
)
)
else:
buffer += text
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=text,
stop_reason=stop_reason,
)
)
# parse tool calls and report errors
message = self.formatter.decode_assistant_message_from_content(
buffer, stop_reason
)
parsed_tool_calls = len(message.tool_calls) > 0
if ipython and not parsed_tool_calls:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content="",
parse_status=ToolCallParseStatus.failure,
),
stop_reason=stop_reason,
)
)
for tool_call in message.tool_calls:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content=tool_call,
parse_status=ToolCallParseStatus.success,
),
stop_reason=stop_reason,
)
)
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.complete,
delta="",
stop_reason=stop_reason,
)
)

View file

@ -45,15 +45,6 @@ def available_providers() -> List[ProviderSpec]:
module="llama_stack.providers.adapters.inference.ollama", module="llama_stack.providers.adapters.inference.ollama",
), ),
), ),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(
adapter_type="openai",
pip_packages=["openai"],
module="llama_stack.providers.adapters.inference.openai",
config_class="llama_stack.providers.adapters.inference.openai.OpenAIImplConfig",
),
),
remote_provider_spec( remote_provider_spec(
api=Api.inference, api=Api.inference,
adapter=AdapterSpec( adapter=AdapterSpec(

View file

@ -0,0 +1,220 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import AsyncGenerator
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.datatypes import Message, StopReason
from llama_models.llama3.api.tokenizer import Tokenizer
from llama_models.sku_list import resolve_model
from openai import OpenAI
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.providers.utils.inference.augment_messages import augment_messages_for_tools
@json_schema_type
class OpenAIImplConfig(BaseModel):
url: Optional[str] = Field(
default=None,
description="The URL for the OpenAI API compatible model serving endpoint",
)
api_token: Optional[str] = Field(
default=None,
description="The API token",
)
async def openai_compatible_chat_completion(
client: OpenAI,
options: dict,
model: str,
messages: List[Message],
formatter: ChatFormat,
max_tokens: int,
sampling_params: Optional[SamplingParams] = SamplingParams(),
tools: Optional[List[ToolDefinition]] = None,
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> AsyncGenerator:
request = ChatCompletionRequest(
model=model,
messages=messages,
sampling_params=sampling_params,
tools=tools or [],
tool_choice=tool_choice,
tool_prompt_format=tool_prompt_format,
stream=stream,
logprobs=logprobs,
)
messages = augment_messages_for_tools(request)
model_input = formatter.encode_dialog_prompt(messages)
input_tokens = len(model_input.tokens)
max_new_tokens = max_tokens - input_tokens - 1
if not request.stream:
r = client.chat.completions.create(
model=model,
messages=_messages_to_openai_messages(messages),
max_tokens=max_new_tokens,
stream=False,
**options,
)
stop_reason = None
if r.choices[0].finish_reason:
if (
r.choices[0].finish_reason == "stop"
or r.choices[0].finish_reason == "eos"
):
stop_reason = StopReason.end_of_turn
elif r.choices[0].finish_reason == "length":
stop_reason = StopReason.out_of_tokens
completion_message = formatter.decode_assistant_message_from_content(
r.choices[0].message.content, stop_reason
)
yield ChatCompletionResponse(
completion_message=completion_message,
logprobs=None,
)
else:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.start,
delta="",
)
)
buffer = ""
ipython = False
stop_reason = None
for chunk in client.chat.completions.create(
model=model,
messages=_messages_to_openai_messages(messages),
max_tokens=max_new_tokens,
stream=True,
**options,
):
if chunk.choices[0].finish_reason:
if (
stop_reason is None and chunk.choices[0].finish_reason == "stop"
) or (
stop_reason is None and chunk.choices[0].finish_reason == "eos"
):
stop_reason = StopReason.end_of_turn
elif (
stop_reason is None
and chunk.choices[0].finish_reason == "length"
):
stop_reason = StopReason.out_of_tokens
break
text = chunk.choices[0].delta.content
if text is None:
continue
# check if it's a tool call ( aka starts with <|python_tag|> )
if not ipython and text.startswith("<|python_tag|>"):
ipython = True
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content="",
parse_status=ToolCallParseStatus.started,
),
)
)
buffer += text
continue
if ipython:
if text == "<|eot_id|>":
stop_reason = StopReason.end_of_turn
text = ""
continue
elif text == "<|eom_id|>":
stop_reason = StopReason.end_of_message
text = ""
continue
buffer += text
delta = ToolCallDelta(
content=text,
parse_status=ToolCallParseStatus.in_progress,
)
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=delta,
stop_reason=stop_reason,
)
)
else:
buffer += text
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=text,
stop_reason=stop_reason,
)
)
# parse tool calls and report errors
message = formatter.decode_assistant_message_from_content(
buffer, stop_reason
)
parsed_tool_calls = len(message.tool_calls) > 0
if ipython and not parsed_tool_calls:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content="",
parse_status=ToolCallParseStatus.failure,
),
stop_reason=stop_reason,
)
)
for tool_call in message.tool_calls:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content=tool_call,
parse_status=ToolCallParseStatus.success,
),
stop_reason=stop_reason,
)
)
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.complete,
delta="",
stop_reason=stop_reason,
)
)
def _messages_to_openai_messages(messages: list[Message]) -> list:
openai_messages = []
for message in messages:
if message.role == "ipython":
role = "tool"
else:
role = message.role
openai_messages.append({"role": role, "content": message.content})
return openai_messages