routers wip

This commit is contained in:
Xi Yan 2024-09-19 08:32:47 -07:00
parent ef0e717bd0
commit f3ff3a3001
4 changed files with 246 additions and 155 deletions

View file

@ -17,6 +17,7 @@ from ollama import AsyncClient
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.providers.utils.inference.prepare_messages import prepare_messages
from termcolor import cprint
# TODO: Eventually this will move to the llama cli model list command
# mapping of Model SKUs to ollama models
@ -38,12 +39,13 @@ class OllamaInferenceAdapter(Inference):
return AsyncClient(host=self.url)
async def initialize(self) -> None:
try:
await self.client.ps()
except httpx.ConnectError as e:
raise RuntimeError(
"Ollama Server is not running, start it using `ollama serve` in a separate terminal"
) from e
pass
# try:
# await self.client.ps()
# except httpx.ConnectError as e:
# raise RuntimeError(
# "Ollama Server is not running, start it using `ollama serve` in a separate terminal"
# ) from e
async def shutdown(self) -> None:
pass
@ -96,166 +98,167 @@ class OllamaInferenceAdapter(Inference):
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> AsyncGenerator:
request = ChatCompletionRequest(
model=model,
messages=messages,
sampling_params=sampling_params,
tools=tools or [],
tool_choice=tool_choice,
tool_prompt_format=tool_prompt_format,
stream=stream,
logprobs=logprobs,
)
cprint("!! calling remote ollama !!", "red")
# request = ChatCompletionRequest(
# model=model,
# messages=messages,
# sampling_params=sampling_params,
# tools=tools or [],
# tool_choice=tool_choice,
# tool_prompt_format=tool_prompt_format,
# stream=stream,
# logprobs=logprobs,
# )
messages = prepare_messages(request)
# accumulate sampling params and other options to pass to ollama
options = self.get_ollama_chat_options(request)
ollama_model = self.resolve_ollama_model(request.model)
# messages = prepare_messages(request)
# # accumulate sampling params and other options to pass to ollama
# options = self.get_ollama_chat_options(request)
# ollama_model = self.resolve_ollama_model(request.model)
res = await self.client.ps()
need_model_pull = True
for r in res["models"]:
if ollama_model == r["model"]:
need_model_pull = False
break
# res = await self.client.ps()
# need_model_pull = True
# for r in res["models"]:
# if ollama_model == r["model"]:
# need_model_pull = False
# break
if need_model_pull:
print(f"Pulling model: {ollama_model}")
status = await self.client.pull(ollama_model)
assert (
status["status"] == "success"
), f"Failed to pull model {self.model} in ollama"
# if need_model_pull:
# print(f"Pulling model: {ollama_model}")
# status = await self.client.pull(ollama_model)
# assert (
# status["status"] == "success"
# ), f"Failed to pull model {self.model} in ollama"
if not request.stream:
r = await self.client.chat(
model=ollama_model,
messages=self._messages_to_ollama_messages(messages),
stream=False,
options=options,
)
stop_reason = None
if r["done"]:
if r["done_reason"] == "stop":
stop_reason = StopReason.end_of_turn
elif r["done_reason"] == "length":
stop_reason = StopReason.out_of_tokens
# if not request.stream:
# r = await self.client.chat(
# model=ollama_model,
# messages=self._messages_to_ollama_messages(messages),
# stream=False,
# options=options,
# )
# stop_reason = None
# if r["done"]:
# if r["done_reason"] == "stop":
# stop_reason = StopReason.end_of_turn
# elif r["done_reason"] == "length":
# stop_reason = StopReason.out_of_tokens
completion_message = self.formatter.decode_assistant_message_from_content(
r["message"]["content"], stop_reason
)
yield ChatCompletionResponse(
completion_message=completion_message,
logprobs=None,
)
else:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.start,
delta="",
)
)
stream = await self.client.chat(
model=ollama_model,
messages=self._messages_to_ollama_messages(messages),
stream=True,
options=options,
)
# completion_message = self.formatter.decode_assistant_message_from_content(
# r["message"]["content"], stop_reason
# )
# yield ChatCompletionResponse(
# completion_message=completion_message,
# logprobs=None,
# )
# else:
# yield ChatCompletionResponseStreamChunk(
# event=ChatCompletionResponseEvent(
# event_type=ChatCompletionResponseEventType.start,
# delta="",
# )
# )
# stream = await self.client.chat(
# model=ollama_model,
# messages=self._messages_to_ollama_messages(messages),
# stream=True,
# options=options,
# )
buffer = ""
ipython = False
stop_reason = None
# buffer = ""
# ipython = False
# stop_reason = None
async for chunk in stream:
if chunk["done"]:
if stop_reason is None and chunk["done_reason"] == "stop":
stop_reason = StopReason.end_of_turn
elif stop_reason is None and chunk["done_reason"] == "length":
stop_reason = StopReason.out_of_tokens
break
# async for chunk in stream:
# if chunk["done"]:
# if stop_reason is None and chunk["done_reason"] == "stop":
# stop_reason = StopReason.end_of_turn
# elif stop_reason is None and chunk["done_reason"] == "length":
# stop_reason = StopReason.out_of_tokens
# break
text = chunk["message"]["content"]
# text = chunk["message"]["content"]
# check if its a tool call ( aka starts with <|python_tag|> )
if not ipython and text.startswith("<|python_tag|>"):
ipython = True
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content="",
parse_status=ToolCallParseStatus.started,
),
)
)
buffer += text
continue
# # check if its a tool call ( aka starts with <|python_tag|> )
# if not ipython and text.startswith("<|python_tag|>"):
# ipython = True
# yield ChatCompletionResponseStreamChunk(
# event=ChatCompletionResponseEvent(
# event_type=ChatCompletionResponseEventType.progress,
# delta=ToolCallDelta(
# content="",
# parse_status=ToolCallParseStatus.started,
# ),
# )
# )
# buffer += text
# continue
if ipython:
if text == "<|eot_id|>":
stop_reason = StopReason.end_of_turn
text = ""
continue
elif text == "<|eom_id|>":
stop_reason = StopReason.end_of_message
text = ""
continue
# if ipython:
# if text == "<|eot_id|>":
# stop_reason = StopReason.end_of_turn
# text = ""
# continue
# elif text == "<|eom_id|>":
# stop_reason = StopReason.end_of_message
# text = ""
# continue
buffer += text
delta = ToolCallDelta(
content=text,
parse_status=ToolCallParseStatus.in_progress,
)
# buffer += text
# delta = ToolCallDelta(
# content=text,
# parse_status=ToolCallParseStatus.in_progress,
# )
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=delta,
stop_reason=stop_reason,
)
)
else:
buffer += text
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=text,
stop_reason=stop_reason,
)
)
# yield ChatCompletionResponseStreamChunk(
# event=ChatCompletionResponseEvent(
# event_type=ChatCompletionResponseEventType.progress,
# delta=delta,
# stop_reason=stop_reason,
# )
# )
# else:
# buffer += text
# yield ChatCompletionResponseStreamChunk(
# event=ChatCompletionResponseEvent(
# event_type=ChatCompletionResponseEventType.progress,
# delta=text,
# stop_reason=stop_reason,
# )
# )
# parse tool calls and report errors
message = self.formatter.decode_assistant_message_from_content(
buffer, stop_reason
)
parsed_tool_calls = len(message.tool_calls) > 0
if ipython and not parsed_tool_calls:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content="",
parse_status=ToolCallParseStatus.failure,
),
stop_reason=stop_reason,
)
)
# # parse tool calls and report errors
# message = self.formatter.decode_assistant_message_from_content(
# buffer, stop_reason
# )
# parsed_tool_calls = len(message.tool_calls) > 0
# if ipython and not parsed_tool_calls:
# yield ChatCompletionResponseStreamChunk(
# event=ChatCompletionResponseEvent(
# event_type=ChatCompletionResponseEventType.progress,
# delta=ToolCallDelta(
# content="",
# parse_status=ToolCallParseStatus.failure,
# ),
# stop_reason=stop_reason,
# )
# )
for tool_call in message.tool_calls:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content=tool_call,
parse_status=ToolCallParseStatus.success,
),
stop_reason=stop_reason,
)
)
# for tool_call in message.tool_calls:
# yield ChatCompletionResponseStreamChunk(
# event=ChatCompletionResponseEvent(
# event_type=ChatCompletionResponseEventType.progress,
# delta=ToolCallDelta(
# content=tool_call,
# parse_status=ToolCallParseStatus.success,
# ),
# stop_reason=stop_reason,
# )
# )
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.complete,
delta="",
stop_reason=stop_reason,
)
)
# yield ChatCompletionResponseStreamChunk(
# event=ChatCompletionResponseEvent(
# event_type=ChatCompletionResponseEventType.complete,
# delta="",
# stop_reason=stop_reason,
# )
# )

View file

@ -16,6 +16,9 @@ from llama_models.datatypes import CoreModelId, Model
from llama_models.sku_list import resolve_model
from llama_stack.apis.inference import Inference
from llama_stack.apis.safety import Safety
from llama_stack.providers.adapters.inference.ollama.ollama import (
OllamaInferenceAdapter,
)
from llama_stack.providers.impls.meta_reference.inference.inference import (
MetaReferenceInferenceImpl,
@ -23,6 +26,7 @@ from llama_stack.providers.impls.meta_reference.inference.inference import (
from llama_stack.providers.impls.meta_reference.safety.safety import (
MetaReferenceSafetyImpl,
)
from llama_stack.providers.routers.inference.inference import InferenceRouterImpl
from .config import MetaReferenceImplConfig
@ -39,7 +43,7 @@ class MetaReferenceModelsImpl(Models):
self.safety_api = safety_api
self.models_list = []
model = get_model_id_from_api(self.inference_api)
# model = get_model_id_from_api(self.inference_api)
# TODO, make the inference route provider and use router provider to do the lookup dynamically
if isinstance(
@ -56,6 +60,25 @@ class MetaReferenceModelsImpl(Models):
)
)
if isinstance(
self.inference_api,
OllamaInferenceAdapter,
):
self.models_list.append(
ModelSpec(
providers_spec={
"inference": [{"provider_type": "remote::ollama"}],
},
)
)
if isinstance(
self.inference_api,
InferenceRouterImpl,
):
print("Found router")
print(self.inference_api.providers)
if isinstance(
self.safety_api,
MetaReferenceSafetyImpl,

View file

@ -0,0 +1,17 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, List, Tuple
from llama_stack.distribution.datatypes import Api
async def get_router_impl(inner_impls: List[Tuple[str, Any]], deps: List[Api]):
from .inference import InferenceRouterImpl
impl = InferenceRouterImpl(inner_impls, deps)
await impl.initialize()
return impl

View file

@ -0,0 +1,48 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict, List, Tuple
from llama_stack.distribution.datatypes import Api
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.providers.registry.inference import available_providers
class InferenceRouterImpl(Inference):
"""Routes to an provider based on the memory bank type"""
def __init__(
self,
inner_impls: List[Tuple[str, Any]],
deps: List[Api],
) -> None:
self.inner_impls = inner_impls
self.deps = deps
self.providers = {}
for routing_key, provider_impl in inner_impls:
self.providers[routing_key] = provider_impl
async def initialize(self) -> None:
pass
async def shutdown(self) -> None:
for p in self.providers.values():
await p.shutdown()
async def chat_completion(
self,
model: str,
messages: List[Message],
sampling_params: Optional[SamplingParams] = SamplingParams(),
# zero-shot tool definitions as input to the model
tools: Optional[List[ToolDefinition]] = list,
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> AsyncGenerator:
print("router chat_completion")