reformatting

This commit is contained in:
Omar Abdelwahab 2025-10-06 14:35:38 -07:00
parent 6adaca3d96
commit f4104756f6

View file

@ -15,9 +15,17 @@ from typing import Any
from openai import AsyncStream
from openai.types.chat import (
ChatCompletionAssistantMessageParam as OpenAIChatCompletionAssistantMessage,
)
from openai.types.chat import (
ChatCompletionChunk as OpenAIChatCompletionChunk,
)
from openai.types.chat import (
ChatCompletionContentPartImageParam as OpenAIChatCompletionContentPartImageParam,
)
from openai.types.chat import (
ChatCompletionContentPartParam as OpenAIChatCompletionContentPartParam,
)
from openai.types.chat import (
ChatCompletionContentPartTextParam as OpenAIChatCompletionContentPartTextParam,
)
@ -29,15 +37,56 @@ except ImportError:
from openai.types.chat.chat_completion_message_tool_call import (
ChatCompletionMessageToolCall as OpenAIChatCompletionMessageFunctionToolCall,
)
from openai.types.chat import (
ChatCompletionMessageParam as OpenAIChatCompletionMessage,
)
from openai.types.chat import (
ChatCompletionMessageToolCall,
)
from openai.types.chat import (
ChatCompletionSystemMessageParam as OpenAIChatCompletionSystemMessage,
)
from openai.types.chat import (
ChatCompletionToolMessageParam as OpenAIChatCompletionToolMessage,
)
from openai.types.chat import (
ChatCompletionUserMessageParam as OpenAIChatCompletionUserMessage,
)
from openai.types.chat.chat_completion import (
Choice as OpenAIChoice,
)
from openai.types.chat.chat_completion import (
ChoiceLogprobs as OpenAIChoiceLogprobs, # same as chat_completion_chunk ChoiceLogprobs
)
from openai.types.chat.chat_completion_chunk import (
Choice as OpenAIChatCompletionChunkChoice,
)
from openai.types.chat.chat_completion_chunk import (
ChoiceDelta as OpenAIChoiceDelta,
)
from openai.types.chat.chat_completion_chunk import (
ChoiceDeltaToolCall as OpenAIChoiceDeltaToolCall,
)
from openai.types.chat.chat_completion_chunk import (
ChoiceDeltaToolCallFunction as OpenAIChoiceDeltaToolCallFunction,
)
from openai.types.chat.chat_completion_content_part_image_param import (
ImageURL as OpenAIImageURL,
)
from openai.types.chat.chat_completion_message_tool_call import (
Function as OpenAIFunction,
)
from pydantic import BaseModel
from llama_stack.apis.common.content_types import (
_URLOrData,
URL,
ImageContentItem,
InterleavedContent,
TextContentItem,
TextDelta,
ToolCallDelta,
ToolCallParseStatus,
URL,
_URLOrData,
)
from llama_stack.apis.inference import (
ChatCompletionRequest,
@ -50,7 +99,6 @@ from llama_stack.apis.inference import (
JsonSchemaResponseFormat,
Message,
OpenAIChatCompletion,
OpenAIChoice as OpenAIChatCompletionChoice,
OpenAIEmbeddingData,
OpenAIMessageParam,
OpenAIResponseFormatParam,
@ -64,6 +112,9 @@ from llama_stack.apis.inference import (
TopPSamplingStrategy,
UserMessage,
)
from llama_stack.apis.inference import (
OpenAIChoice as OpenAIChatCompletionChoice,
)
from llama_stack.log import get_logger
from llama_stack.models.llama.datatypes import (
BuiltinTool,
@ -75,30 +126,6 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
convert_image_content_to_url,
decode_assistant_message,
)
from openai.types.chat import (
ChatCompletionMessageParam as OpenAIChatCompletionMessage,
ChatCompletionMessageToolCall,
ChatCompletionSystemMessageParam as OpenAIChatCompletionSystemMessage,
ChatCompletionToolMessageParam as OpenAIChatCompletionToolMessage,
ChatCompletionUserMessageParam as OpenAIChatCompletionUserMessage,
)
from openai.types.chat.chat_completion import (
Choice as OpenAIChoice,
ChoiceLogprobs as OpenAIChoiceLogprobs, # same as chat_completion_chunk ChoiceLogprobs
)
from openai.types.chat.chat_completion_chunk import (
Choice as OpenAIChatCompletionChunkChoice,
ChoiceDelta as OpenAIChoiceDelta,
ChoiceDeltaToolCall as OpenAIChoiceDeltaToolCall,
ChoiceDeltaToolCallFunction as OpenAIChoiceDeltaToolCallFunction,
)
from openai.types.chat.chat_completion_content_part_image_param import (
ImageURL as OpenAIImageURL,
)
from openai.types.chat.chat_completion_message_tool_call import (
Function as OpenAIFunction,
)
from pydantic import BaseModel
logger = get_logger(name=__name__, category="providers::utils")
@ -197,16 +224,12 @@ def convert_openai_completion_logprobs(
if logprobs.tokens and logprobs.token_logprobs:
return [
TokenLogProbs(logprobs_by_token={token: token_lp})
for token, token_lp in zip(
logprobs.tokens, logprobs.token_logprobs, strict=False
)
for token, token_lp in zip(logprobs.tokens, logprobs.token_logprobs, strict=False)
]
return None
def convert_openai_completion_logprobs_stream(
text: str, logprobs: float | OpenAICompatLogprobs | None
):
def convert_openai_completion_logprobs_stream(text: str, logprobs: float | OpenAICompatLogprobs | None):
if logprobs is None:
return None
if isinstance(logprobs, float):
@ -226,9 +249,7 @@ def process_chat_completion_response(
if not choice.message or not choice.message.tool_calls:
raise ValueError("Tool calls are not present in the response")
tool_calls = [
convert_tool_call(tool_call) for tool_call in choice.message.tool_calls
]
tool_calls = [convert_tool_call(tool_call) for tool_call in choice.message.tool_calls]
if any(isinstance(tool_call, UnparseableToolCall) for tool_call in tool_calls):
# If we couldn't parse a tool call, jsonify the tool calls and return them
return ChatCompletionResponse(
@ -252,9 +273,7 @@ def process_chat_completion_response(
# TODO: This does not work well with tool calls for vLLM remote provider
# Ref: https://github.com/meta-llama/llama-stack/issues/1058
raw_message = decode_assistant_message(
text_from_choice(choice), get_stop_reason(choice.finish_reason)
)
raw_message = decode_assistant_message(text_from_choice(choice), get_stop_reason(choice.finish_reason))
# NOTE: If we do not set tools in chat-completion request, we should not
# expect the ToolCall in the response. Instead, we should return the raw
@ -455,17 +474,13 @@ async def process_chat_completion_stream_response(
)
async def convert_message_to_openai_dict(
message: Message, download: bool = False
) -> dict:
async def convert_message_to_openai_dict(message: Message, download: bool = False) -> dict:
async def _convert_content(content) -> dict:
if isinstance(content, ImageContentItem):
return {
"type": "image_url",
"image_url": {
"url": await convert_image_content_to_url(
content, download=download
),
"url": await convert_image_content_to_url(content, download=download),
},
}
else:
@ -550,11 +565,7 @@ async def convert_message_to_openai_dict_new(
) -> str | Iterable[OpenAIChatCompletionContentPartParam]:
async def impl(
content_: InterleavedContent,
) -> (
str
| OpenAIChatCompletionContentPartParam
| list[OpenAIChatCompletionContentPartParam]
):
) -> str | OpenAIChatCompletionContentPartParam | list[OpenAIChatCompletionContentPartParam]:
# Llama Stack and OpenAI spec match for str and text input
if isinstance(content_, str):
return content_
@ -567,9 +578,7 @@ async def convert_message_to_openai_dict_new(
return OpenAIChatCompletionContentPartImageParam(
type="image_url",
image_url=OpenAIImageURL(
url=await convert_image_content_to_url(
content_, download=download_images
)
url=await convert_image_content_to_url(content_, download=download_images)
),
)
elif isinstance(content_, list):
@ -596,11 +605,7 @@ async def convert_message_to_openai_dict_new(
OpenAIChatCompletionMessageFunctionToolCall(
id=tool.call_id,
function=OpenAIFunction(
name=(
tool.tool_name
if not isinstance(tool.tool_name, BuiltinTool)
else tool.tool_name.value
),
name=(tool.tool_name if not isinstance(tool.tool_name, BuiltinTool) else tool.tool_name.value),
arguments=tool.arguments, # Already a JSON string, don't double-encode
),
type="function",
@ -780,9 +785,7 @@ def _convert_openai_finish_reason(finish_reason: str) -> StopReason:
}.get(finish_reason, StopReason.end_of_turn)
def _convert_openai_request_tool_config(
tool_choice: str | dict[str, Any] | None = None
) -> ToolConfig:
def _convert_openai_request_tool_config(tool_choice: str | dict[str, Any] | None = None) -> ToolConfig:
tool_config = ToolConfig()
if tool_choice:
try:
@ -793,9 +796,7 @@ def _convert_openai_request_tool_config(
return tool_config
def _convert_openai_request_tools(
tools: list[dict[str, Any]] | None = None
) -> list[ToolDefinition]:
def _convert_openai_request_tools(tools: list[dict[str, Any]] | None = None) -> list[ToolDefinition]:
lls_tools = []
if not tools:
return lls_tools
@ -894,11 +895,7 @@ def _convert_openai_logprobs(
return None
return [
TokenLogProbs(
logprobs_by_token={
logprobs.token: logprobs.logprob for logprobs in content.top_logprobs
}
)
TokenLogProbs(logprobs_by_token={logprobs.token: logprobs.logprob for logprobs in content.top_logprobs})
for content in logprobs.content
]
@ -937,13 +934,9 @@ def openai_messages_to_messages(
converted_messages = []
for message in messages:
if message.role == "system":
converted_message = SystemMessage(
content=openai_content_to_content(message.content)
)
converted_message = SystemMessage(content=openai_content_to_content(message.content))
elif message.role == "user":
converted_message = UserMessage(
content=openai_content_to_content(message.content)
)
converted_message = UserMessage(content=openai_content_to_content(message.content))
elif message.role == "assistant":
converted_message = CompletionMessage(
content=openai_content_to_content(message.content),
@ -975,9 +968,7 @@ def openai_content_to_content(
if content.type == "text":
return TextContentItem(type="text", text=content.text)
elif content.type == "image_url":
return ImageContentItem(
type="image", image=_URLOrData(url=URL(uri=content.image_url.url))
)
return ImageContentItem(type="image", image=_URLOrData(url=URL(uri=content.image_url.url)))
else:
raise ValueError(f"Unknown content type: {content.type}")
else:
@ -1017,17 +1008,14 @@ def convert_openai_chat_completion_choice(
end_of_message = "end_of_message"
out_of_tokens = "out_of_tokens"
"""
assert (
hasattr(choice, "message") and choice.message
), "error in server response: message not found"
assert (
hasattr(choice, "finish_reason") and choice.finish_reason
), "error in server response: finish_reason not found"
assert hasattr(choice, "message") and choice.message, "error in server response: message not found"
assert hasattr(choice, "finish_reason") and choice.finish_reason, (
"error in server response: finish_reason not found"
)
return ChatCompletionResponse(
completion_message=CompletionMessage(
content=choice.message.content
or "", # CompletionMessage content is not optional
content=choice.message.content or "", # CompletionMessage content is not optional
stop_reason=_convert_openai_finish_reason(choice.finish_reason),
tool_calls=_convert_openai_tool_calls(choice.message.tool_calls),
),
@ -1267,9 +1255,7 @@ class OpenAIChatCompletionToLlamaStackMixin:
outstanding_responses.append(response)
if stream:
return OpenAIChatCompletionToLlamaStackMixin._process_stream_response(
self, model, outstanding_responses
)
return OpenAIChatCompletionToLlamaStackMixin._process_stream_response(self, model, outstanding_responses)
return await OpenAIChatCompletionToLlamaStackMixin._process_non_stream_response(
self, model, outstanding_responses
@ -1278,29 +1264,21 @@ class OpenAIChatCompletionToLlamaStackMixin:
async def _process_stream_response(
self,
model: str,
outstanding_responses: list[
Awaitable[AsyncIterator[ChatCompletionResponseStreamChunk]]
],
outstanding_responses: list[Awaitable[AsyncIterator[ChatCompletionResponseStreamChunk]]],
):
id = f"chatcmpl-{uuid.uuid4()}"
for i, outstanding_response in enumerate(outstanding_responses):
response = await outstanding_response
async for chunk in response:
event = chunk.event
finish_reason = _convert_stop_reason_to_openai_finish_reason(
event.stop_reason
)
finish_reason = _convert_stop_reason_to_openai_finish_reason(event.stop_reason)
if isinstance(event.delta, TextDelta):
text_delta = event.delta.text
delta = OpenAIChoiceDelta(content=text_delta)
yield OpenAIChatCompletionChunk(
id=id,
choices=[
OpenAIChatCompletionChunkChoice(
index=i, finish_reason=finish_reason, delta=delta
)
],
choices=[OpenAIChatCompletionChunkChoice(index=i, finish_reason=finish_reason, delta=delta)],
created=int(time.time()),
model=model,
object="chat.completion.chunk",
@ -1322,9 +1300,7 @@ class OpenAIChatCompletionToLlamaStackMixin:
yield OpenAIChatCompletionChunk(
id=id,
choices=[
OpenAIChatCompletionChunkChoice(
index=i, finish_reason=finish_reason, delta=delta
)
OpenAIChatCompletionChunkChoice(index=i, finish_reason=finish_reason, delta=delta)
],
created=int(time.time()),
model=model,
@ -1341,9 +1317,7 @@ class OpenAIChatCompletionToLlamaStackMixin:
yield OpenAIChatCompletionChunk(
id=id,
choices=[
OpenAIChatCompletionChunkChoice(
index=i, finish_reason=finish_reason, delta=delta
)
OpenAIChatCompletionChunkChoice(index=i, finish_reason=finish_reason, delta=delta)
],
created=int(time.time()),
model=model,
@ -1358,9 +1332,7 @@ class OpenAIChatCompletionToLlamaStackMixin:
response = await outstanding_response
completion_message = response.completion_message
message = await convert_message_to_openai_dict_new(completion_message)
finish_reason = _convert_stop_reason_to_openai_finish_reason(
completion_message.stop_reason
)
finish_reason = _convert_stop_reason_to_openai_finish_reason(completion_message.stop_reason)
choice = OpenAIChatCompletionChoice(
index=len(choices),