mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-29 07:14:20 +00:00
updates for tonight
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
This commit is contained in:
parent
bc461567f6
commit
f4ea02f084
9 changed files with 72 additions and 49 deletions
|
@ -37,15 +37,15 @@ See [Weaviate's documentation](https://weaviate.io/developers/weaviate) for more
|
|||
|
||||
| Field | Type | Required | Default | Description |
|
||||
|-------|------|----------|---------|-------------|
|
||||
| `weaviate_api_key` | `<class 'str'>` | No | PydanticUndefined | The API key for the Weaviate instance |
|
||||
| `weaviate_cluster_url` | `<class 'str'>` | No | PydanticUndefined | The URL of the Weaviate cluster |
|
||||
| `weaviate_api_key` | `str \| None` | No | | The API key for the Weaviate instance |
|
||||
| `weaviate_cluster_url` | `str \| None` | No | | The URL of the Weaviate cluster |
|
||||
| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig, annotation=NoneType, required=False, default='sqlite', discriminator='type'` | No | | Config for KV store backend (SQLite only for now) |
|
||||
|
||||
## Sample Configuration
|
||||
|
||||
```yaml
|
||||
weaviate_api_key: dummy-api-key-for-testing
|
||||
weaviate_cluster_url: http://localhost:8080
|
||||
weaviate_api_key: null
|
||||
weaviate_cluster_url: null
|
||||
kvstore:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/weaviate_registry.db
|
||||
|
|
|
@ -16,7 +16,7 @@ from pydantic import BaseModel, Field
|
|||
from llama_stack.apis.inference import InterleavedContent
|
||||
from llama_stack.apis.vector_dbs import VectorDB
|
||||
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
|
||||
from llama_stack.providers.utils.vector_io.chunk_utils import generate_chunk_id
|
||||
from llama_stack.providers.utils.vector_io.vector_utils import generate_chunk_id
|
||||
from llama_stack.schema_utils import json_schema_type, webmethod
|
||||
from llama_stack.strong_typing.schema import register_schema
|
||||
|
||||
|
|
|
@ -7,7 +7,6 @@
|
|||
import asyncio
|
||||
import logging
|
||||
import os
|
||||
import re
|
||||
from typing import Any
|
||||
|
||||
from numpy.typing import NDArray
|
||||
|
@ -30,6 +29,7 @@ from llama_stack.providers.utils.memory.vector_store import (
|
|||
EmbeddingIndex,
|
||||
VectorDBWithIndex,
|
||||
)
|
||||
from llama_stack.providers.utils.vector_io.vector_utils import sanitize_collection_name
|
||||
|
||||
from .config import MilvusVectorIOConfig as RemoteMilvusVectorIOConfig
|
||||
|
||||
|
@ -43,14 +43,6 @@ OPENAI_VECTOR_STORES_FILES_PREFIX = f"openai_vector_stores_files:milvus:{VERSION
|
|||
OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX = f"openai_vector_stores_files_contents:milvus:{VERSION}::"
|
||||
|
||||
|
||||
def sanitize_collection_name(name: str) -> str:
|
||||
"""
|
||||
Sanitize collection name to ensure it only contains numbers, letters, and underscores.
|
||||
Any other characters are replaced with underscores.
|
||||
"""
|
||||
return re.sub(r"[^a-zA-Z0-9_]", "_", name)
|
||||
|
||||
|
||||
class MilvusIndex(EmbeddingIndex):
|
||||
def __init__(
|
||||
self, client: MilvusClient, collection_name: str, consistency_level="Strong", kvstore: KVStore | None = None
|
||||
|
|
|
@ -17,15 +17,15 @@ from llama_stack.schema_utils import json_schema_type
|
|||
|
||||
@json_schema_type
|
||||
class WeaviateVectorIOConfig(BaseModel):
|
||||
weaviate_api_key: str = Field(description="The API key for the Weaviate instance")
|
||||
weaviate_cluster_url: str = Field(description="The URL of the Weaviate cluster")
|
||||
weaviate_api_key: str | None = Field(description="The API key for the Weaviate instance", default=None)
|
||||
weaviate_cluster_url: str | None = Field(description="The URL of the Weaviate cluster", default=None)
|
||||
kvstore: KVStoreConfig | None = Field(description="Config for KV store backend (SQLite only for now)", default=None)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> dict[str, Any]:
|
||||
return {
|
||||
"weaviate_api_key": "dummy-api-key-for-testing",
|
||||
"weaviate_cluster_url": "http://localhost:8080",
|
||||
"weaviate_api_key": None,
|
||||
"weaviate_cluster_url": None,
|
||||
"kvstore": SqliteKVStoreConfig.sample_run_config(
|
||||
__distro_dir__=__distro_dir__,
|
||||
db_name="weaviate_registry.db",
|
||||
|
|
|
@ -26,6 +26,7 @@ from llama_stack.providers.utils.memory.vector_store import (
|
|||
EmbeddingIndex,
|
||||
VectorDBWithIndex,
|
||||
)
|
||||
from llama_stack.providers.utils.vector_io.vector_utils import sanitize_collection_name
|
||||
|
||||
from .config import WeaviateVectorIOConfig
|
||||
|
||||
|
@ -42,9 +43,12 @@ OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX = f"openai_vector_stores_files_conten
|
|||
class WeaviateIndex(EmbeddingIndex):
|
||||
def __init__(self, client: weaviate.Client, collection_name: str, kvstore: KVStore | None = None):
|
||||
self.client = client
|
||||
self.collection_name = collection_name
|
||||
self.collection_name = sanitize_collection_name(collection_name, weaviate_format=True)
|
||||
self.kvstore = kvstore
|
||||
|
||||
async def initialize(self):
|
||||
pass
|
||||
|
||||
async def add_chunks(self, chunks: list[Chunk], embeddings: NDArray):
|
||||
assert len(chunks) == len(embeddings), (
|
||||
f"Chunk length {len(chunks)} does not match embedding length {len(embeddings)}"
|
||||
|
@ -68,7 +72,8 @@ class WeaviateIndex(EmbeddingIndex):
|
|||
collection.data.insert_many(data_objects)
|
||||
|
||||
async def query_vector(self, embedding: NDArray, k: int, score_threshold: float) -> QueryChunksResponse:
|
||||
collection = self.client.collections.get(self.collection_name)
|
||||
sanitized_collection_name = sanitize_collection_name(self.collection_name)
|
||||
collection = self.client.collections.get(sanitized_collection_name)
|
||||
|
||||
results = collection.query.near_vector(
|
||||
near_vector=embedding.tolist(),
|
||||
|
@ -93,7 +98,8 @@ class WeaviateIndex(EmbeddingIndex):
|
|||
return QueryChunksResponse(chunks=chunks, scores=scores)
|
||||
|
||||
async def delete(self, chunk_ids: list[str]) -> None:
|
||||
collection = self.client.collections.get(self.collection_name)
|
||||
sanitized_collection_name = sanitize_collection_name(self.collection_name)
|
||||
collection = self.client.collections.get(sanitized_collection_name)
|
||||
collection.data.delete_many(where=Filter.by_property("id").contains_any(chunk_ids))
|
||||
|
||||
async def query_keyword(
|
||||
|
@ -139,8 +145,7 @@ class WeaviateVectorIOAdapter(
|
|||
self.metadata_collection_name = "openai_vector_stores_metadata"
|
||||
|
||||
def _get_client(self) -> weaviate.Client:
|
||||
# if self.config.test_environment:
|
||||
if True:
|
||||
if self.config.weaviate_cluster_url is None:
|
||||
key = "local::test"
|
||||
client = weaviate.connect_to_local(
|
||||
host="localhost",
|
||||
|
@ -160,8 +165,8 @@ class WeaviateVectorIOAdapter(
|
|||
|
||||
async def initialize(self) -> None:
|
||||
"""Set up KV store and load existing vector DBs and OpenAI vector stores."""
|
||||
# Initialize KV store for metadata
|
||||
if self.kvstore is not None:
|
||||
# Initialize KV store for metadata if configured
|
||||
if self.config.kvstore is not None:
|
||||
self.kvstore = await kvstore_impl(self.config.kvstore)
|
||||
else:
|
||||
self.kvstore = None
|
||||
|
@ -194,11 +199,12 @@ class WeaviateVectorIOAdapter(
|
|||
vector_db: VectorDB,
|
||||
) -> None:
|
||||
client = self._get_client()
|
||||
|
||||
sanitized_collection_name = sanitize_collection_name(vector_db.identifier)
|
||||
# Create collection if it doesn't exist
|
||||
if not client.collections.exists(vector_db.identifier):
|
||||
if not client.collections.exists(sanitized_collection_name):
|
||||
print(f"creating collection {vector_db}")
|
||||
client.collections.create(
|
||||
name=vector_db.identifier,
|
||||
name=sanitized_collection_name,
|
||||
vectorizer_config=wvc.config.Configure.Vectorizer.none(),
|
||||
properties=[
|
||||
wvc.config.Property(
|
||||
|
@ -208,37 +214,40 @@ class WeaviateVectorIOAdapter(
|
|||
],
|
||||
)
|
||||
|
||||
self.cache[vector_db.identifier] = VectorDBWithIndex(
|
||||
self.cache[sanitized_collection_name] = VectorDBWithIndex(
|
||||
vector_db,
|
||||
WeaviateIndex(client=client, collection_name=vector_db.identifier),
|
||||
WeaviateIndex(client=client, collection_name=sanitized_collection_name),
|
||||
self.inference_api,
|
||||
)
|
||||
|
||||
async def unregister_vector_db(self, vector_db_id: str) -> None:
|
||||
if vector_db_id not in self.cache:
|
||||
log.warning(f"Vector DB {vector_db_id} not found")
|
||||
sanitized_collection_name = sanitize_collection_name(vector_db_id)
|
||||
|
||||
if sanitized_collection_name not in self.cache:
|
||||
log.warning(f"Vector DB {sanitized_collection_name} not found")
|
||||
return
|
||||
await self.cache[vector_db_id].index.delete()
|
||||
del self.cache[vector_db_id]
|
||||
await self.cache[sanitized_collection_name].index.delete()
|
||||
del self.cache[sanitized_collection_name]
|
||||
|
||||
async def _get_and_cache_vector_db_index(self, vector_db_id: str) -> VectorDBWithIndex | None:
|
||||
if vector_db_id in self.cache:
|
||||
return self.cache[vector_db_id]
|
||||
sanitized_collection_name = sanitize_collection_name(vector_db_id)
|
||||
if sanitized_collection_name in self.cache:
|
||||
return self.cache[sanitized_collection_name]
|
||||
|
||||
vector_db = await self.vector_db_store.get_vector_db(vector_db_id)
|
||||
vector_db = await self.vector_db_store.get_vector_db(sanitized_collection_name)
|
||||
if not vector_db:
|
||||
raise ValueError(f"Vector DB {vector_db_id} not found")
|
||||
raise ValueError(f"Vector DB {sanitized_collection_name} not found")
|
||||
|
||||
client = self._get_client()
|
||||
if not client.collections.exists(vector_db.identifier):
|
||||
raise ValueError(f"Collection with name `{vector_db.identifier}` not found")
|
||||
raise ValueError(f"Collection with name `{sanitized_collection_name}` not found")
|
||||
|
||||
index = VectorDBWithIndex(
|
||||
vector_db=vector_db,
|
||||
index=WeaviateIndex(client=client, collection_name=vector_db.identifier),
|
||||
index=WeaviateIndex(client=client, collection_name=sanitized_collection_name),
|
||||
inference_api=self.inference_api,
|
||||
)
|
||||
self.cache[vector_db_id] = index
|
||||
self.cache[sanitized_collection_name] = index
|
||||
return index
|
||||
|
||||
async def insert_chunks(
|
||||
|
@ -247,9 +256,10 @@ class WeaviateVectorIOAdapter(
|
|||
chunks: list[Chunk],
|
||||
ttl_seconds: int | None = None,
|
||||
) -> None:
|
||||
index = await self._get_and_cache_vector_db_index(vector_db_id)
|
||||
sanitized_collection_name = sanitize_collection_name(vector_db_id)
|
||||
index = await self._get_and_cache_vector_db_index(sanitized_collection_name)
|
||||
if not index:
|
||||
raise ValueError(f"Vector DB {vector_db_id} not found")
|
||||
raise ValueError(f"Vector DB {sanitized_collection_name} not found")
|
||||
|
||||
await index.insert_chunks(chunks)
|
||||
|
||||
|
@ -259,8 +269,9 @@ class WeaviateVectorIOAdapter(
|
|||
query: InterleavedContent,
|
||||
params: dict[str, Any] | None = None,
|
||||
) -> QueryChunksResponse:
|
||||
index = await self._get_and_cache_vector_db_index(vector_db_id)
|
||||
sanitized_collection_name = sanitize_collection_name(vector_db_id)
|
||||
index = await self._get_and_cache_vector_db_index(sanitized_collection_name)
|
||||
if not index:
|
||||
raise ValueError(f"Vector DB {vector_db_id} not found")
|
||||
raise ValueError(f"Vector DB {sanitized_collection_name} not found")
|
||||
|
||||
return await index.query_chunks(query, params)
|
||||
|
|
|
@ -30,7 +30,7 @@ from llama_stack.providers.datatypes import Api
|
|||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
interleaved_content_as_str,
|
||||
)
|
||||
from llama_stack.providers.utils.vector_io.chunk_utils import generate_chunk_id
|
||||
from llama_stack.providers.utils.vector_io.vector_utils import generate_chunk_id
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
|
||||
|
|
|
@ -5,6 +5,7 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
import hashlib
|
||||
import re
|
||||
import uuid
|
||||
|
||||
|
||||
|
@ -19,3 +20,22 @@ def generate_chunk_id(document_id: str, chunk_text: str, chunk_window: str | Non
|
|||
if chunk_window:
|
||||
hash_input += f":{chunk_window}".encode()
|
||||
return str(uuid.UUID(hashlib.md5(hash_input, usedforsecurity=False).hexdigest()))
|
||||
|
||||
|
||||
def proper_case(s: str) -> str:
|
||||
"""Convert a string to proper case (first letter uppercase, rest lowercase)."""
|
||||
return s[0].upper() + s[1:].lower() if s else s
|
||||
|
||||
|
||||
def sanitize_collection_name(name: str, weaviate_format=False) -> str:
|
||||
"""
|
||||
Sanitize collection name to ensure it only contains numbers, letters, and underscores.
|
||||
Any other characters are replaced with underscores.
|
||||
"""
|
||||
print(f"Sanitizing collection name: {name} (Weaviate format: {weaviate_format})")
|
||||
if not weaviate_format:
|
||||
s = re.sub(r"[^a-zA-Z0-9_]", "_", name)
|
||||
else:
|
||||
s = proper_case(re.sub(r"[^a-zA-Z0-9]", "", name))
|
||||
print(f"Sanitized collection name from: {name} to: {s}")
|
||||
return s
|
|
@ -110,11 +110,11 @@ def test_openai_create_vector_store(compat_client_with_empty_stores, client_with
|
|||
|
||||
# Create a vector store
|
||||
vector_store = client.vector_stores.create(
|
||||
name="test_vector_store", metadata={"purpose": "testing", "environment": "integration"}
|
||||
name="Vs_test_vector_store", metadata={"purpose": "testing", "environment": "integration"}
|
||||
)
|
||||
|
||||
assert vector_store is not None
|
||||
assert vector_store.name == "test_vector_store"
|
||||
assert vector_store.name == "Vs_test_vector_store"
|
||||
assert vector_store.object == "vector_store"
|
||||
assert vector_store.status in ["completed", "in_progress"]
|
||||
assert vector_store.metadata["purpose"] == "testing"
|
||||
|
|
|
@ -5,7 +5,7 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.vector_io import Chunk, ChunkMetadata
|
||||
from llama_stack.providers.utils.vector_io.chunk_utils import generate_chunk_id
|
||||
from llama_stack.providers.utils.vector_io.vector_utils import generate_chunk_id
|
||||
|
||||
# This test is a unit test for the chunk_utils.py helpers. This should only contain
|
||||
# tests which are specific to this file. More general (API-level) tests should be placed in
|
Loading…
Add table
Add a link
Reference in a new issue