feat(tests): make inference_recorder into api_recorder (include tool_invoke) (#3403)

Renames `inference_recorder.py` to `api_recorder.py` and extends it to
support recording/replaying tool invocations in addition to inference
calls.

This allows us to record web-search, etc. tool calls and thereafter
apply recordings for `tests/integration/responses`

## Test Plan

```
export OPENAI_API_KEY=...
export TAVILY_SEARCH_API_KEY=...

./scripts/integration-tests.sh --stack-config ci-tests \
   --suite responses --inference-mode record-if-missing
```
This commit is contained in:
Ashwin Bharambe 2025-10-09 14:27:51 -07:00 committed by GitHub
parent 26fd5dbd34
commit f50ce11a3b
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
284 changed files with 296191 additions and 631 deletions

View file

@ -108,7 +108,7 @@ class OpenAIResponsesImpl:
# Use stored messages directly and convert only new input
message_adapter = TypeAdapter(list[OpenAIMessageParam])
messages = message_adapter.validate_python(previous_response.messages)
new_messages = await convert_response_input_to_chat_messages(input)
new_messages = await convert_response_input_to_chat_messages(input, previous_messages=messages)
messages.extend(new_messages)
else:
# Backward compatibility: reconstruct from inputs

View file

@ -103,9 +103,13 @@ async def convert_response_content_to_chat_content(
async def convert_response_input_to_chat_messages(
input: str | list[OpenAIResponseInput],
previous_messages: list[OpenAIMessageParam] | None = None,
) -> list[OpenAIMessageParam]:
"""
Convert the input from an OpenAI Response API request into OpenAI Chat Completion messages.
:param input: The input to convert
:param previous_messages: Optional previous messages to check for function_call references
"""
messages: list[OpenAIMessageParam] = []
if isinstance(input, list):
@ -169,16 +173,53 @@ async def convert_response_input_to_chat_messages(
raise ValueError(
f"Llama Stack OpenAI Responses does not yet support message role '{input_item.role}' in this context"
)
# Skip user messages that duplicate the last user message in previous_messages
# This handles cases where input includes context for function_call_outputs
if previous_messages and input_item.role == "user":
last_user_msg = None
for msg in reversed(previous_messages):
if isinstance(msg, OpenAIUserMessageParam):
last_user_msg = msg
break
if last_user_msg:
last_user_content = getattr(last_user_msg, "content", None)
if last_user_content == content:
continue # Skip duplicate user message
messages.append(message_type(content=content))
if len(tool_call_results):
raise ValueError(
f"Received function_call_output(s) with call_id(s) {tool_call_results.keys()}, but no corresponding function_call"
)
# Check if unpaired function_call_outputs reference function_calls from previous messages
if previous_messages:
previous_call_ids = _extract_tool_call_ids(previous_messages)
for call_id in list(tool_call_results.keys()):
if call_id in previous_call_ids:
# Valid: this output references a call from previous messages
# Add the tool message
messages.append(tool_call_results[call_id])
del tool_call_results[call_id]
# If still have unpaired outputs, error
if len(tool_call_results):
raise ValueError(
f"Received function_call_output(s) with call_id(s) {tool_call_results.keys()}, but no corresponding function_call"
)
else:
messages.append(OpenAIUserMessageParam(content=input))
return messages
def _extract_tool_call_ids(messages: list[OpenAIMessageParam]) -> set[str]:
"""Extract all tool_call IDs from messages."""
call_ids = set()
for msg in messages:
if isinstance(msg, OpenAIAssistantMessageParam):
tool_calls = getattr(msg, "tool_calls", None)
if tool_calls:
for tool_call in tool_calls:
# tool_call is a Pydantic model, use attribute access
call_ids.add(tool_call.id)
return call_ids
async def convert_response_text_to_chat_response_format(
text: OpenAIResponseText,
) -> OpenAIResponseFormatParam:

View file

@ -22,6 +22,7 @@ from llama_stack.apis.files import (
OpenAIFilePurpose,
)
from llama_stack.core.datatypes import AccessRule
from llama_stack.core.id_generation import generate_object_id
from llama_stack.log import get_logger
from llama_stack.providers.utils.files.form_data import parse_expires_after
from llama_stack.providers.utils.sqlstore.api import ColumnDefinition, ColumnType
@ -65,7 +66,7 @@ class LocalfsFilesImpl(Files):
def _generate_file_id(self) -> str:
"""Generate a unique file ID for OpenAI API."""
return f"file-{uuid.uuid4().hex}"
return generate_object_id("file", lambda: f"file-{uuid.uuid4().hex}")
def _get_file_path(self, file_id: str) -> Path:
"""Get the filesystem path for a file ID."""
@ -95,7 +96,9 @@ class LocalfsFilesImpl(Files):
raise RuntimeError("Files provider not initialized")
if expires_after is not None:
raise NotImplementedError("File expiration is not supported by this provider")
logger.warning(
f"File expiration is not supported by this provider, ignoring expires_after: {expires_after}"
)
file_id = self._generate_file_id()
file_path = self._get_file_path(file_id)