mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-10 21:34:36 +00:00
feat(tests): make inference_recorder into api_recorder (include tool_invoke) (#3403)
Renames `inference_recorder.py` to `api_recorder.py` and extends it to support recording/replaying tool invocations in addition to inference calls. This allows us to record web-search, etc. tool calls and thereafter apply recordings for `tests/integration/responses` ## Test Plan ``` export OPENAI_API_KEY=... export TAVILY_SEARCH_API_KEY=... ./scripts/integration-tests.sh --stack-config ci-tests \ --suite responses --inference-mode record-if-missing ```
This commit is contained in:
parent
26fd5dbd34
commit
f50ce11a3b
284 changed files with 296191 additions and 631 deletions
|
@ -1,742 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from __future__ import annotations # for forward references
|
||||
|
||||
import hashlib
|
||||
import json
|
||||
import os
|
||||
from collections.abc import Generator
|
||||
from contextlib import contextmanager
|
||||
from enum import StrEnum
|
||||
from pathlib import Path
|
||||
from typing import Any, Literal, cast
|
||||
|
||||
from openai import NOT_GIVEN, OpenAI
|
||||
|
||||
from llama_stack.log import get_logger
|
||||
|
||||
logger = get_logger(__name__, category="testing")
|
||||
|
||||
# Global state for the recording system
|
||||
# Note: Using module globals instead of ContextVars because the session-scoped
|
||||
# client initialization happens in one async context, but tests run in different
|
||||
# contexts, and we need the mode/storage to persist across all contexts.
|
||||
_current_mode: str | None = None
|
||||
_current_storage: ResponseStorage | None = None
|
||||
_original_methods: dict[str, Any] = {}
|
||||
|
||||
# Test context uses ContextVar since it changes per-test and needs async isolation
|
||||
from contextvars import ContextVar
|
||||
|
||||
_test_context: ContextVar[str | None] = ContextVar("_test_context", default=None)
|
||||
|
||||
from openai.types.completion_choice import CompletionChoice
|
||||
|
||||
# update the "finish_reason" field, since its type definition is wrong (no None is accepted)
|
||||
CompletionChoice.model_fields["finish_reason"].annotation = Literal["stop", "length", "content_filter"] | None
|
||||
CompletionChoice.model_rebuild()
|
||||
|
||||
REPO_ROOT = Path(__file__).parent.parent.parent
|
||||
DEFAULT_STORAGE_DIR = REPO_ROOT / "tests/integration/common"
|
||||
|
||||
|
||||
class InferenceMode(StrEnum):
|
||||
LIVE = "live"
|
||||
RECORD = "record"
|
||||
REPLAY = "replay"
|
||||
RECORD_IF_MISSING = "record-if-missing"
|
||||
|
||||
|
||||
def normalize_request(method: str, url: str, headers: dict[str, Any], body: dict[str, Any]) -> str:
|
||||
"""Create a normalized hash of the request for consistent matching.
|
||||
|
||||
Includes test_id from context to ensure test isolation - identical requests
|
||||
from different tests will have different hashes.
|
||||
|
||||
Exception: Model list endpoints (/v1/models, /api/tags) exclude test_id since
|
||||
they are infrastructure/shared and need to work across session setup and tests.
|
||||
"""
|
||||
# Extract just the endpoint path
|
||||
from urllib.parse import urlparse
|
||||
|
||||
parsed = urlparse(url)
|
||||
normalized: dict[str, Any] = {
|
||||
"method": method.upper(),
|
||||
"endpoint": parsed.path,
|
||||
"body": body,
|
||||
}
|
||||
|
||||
# Include test_id for isolation, except for shared infrastructure endpoints
|
||||
if parsed.path not in ("/api/tags", "/v1/models"):
|
||||
normalized["test_id"] = _test_context.get()
|
||||
|
||||
# Create hash - sort_keys=True ensures deterministic ordering
|
||||
normalized_json = json.dumps(normalized, sort_keys=True)
|
||||
return hashlib.sha256(normalized_json.encode()).hexdigest()
|
||||
|
||||
|
||||
def _sync_test_context_from_provider_data():
|
||||
"""In server mode, sync test ID from provider_data to _test_context.
|
||||
|
||||
This ensures that storage operations (which read from _test_context) work correctly
|
||||
in server mode where the test ID arrives via HTTP header → provider_data.
|
||||
|
||||
Returns a token to reset _test_context, or None if no sync was needed.
|
||||
"""
|
||||
stack_config_type = os.environ.get("LLAMA_STACK_TEST_STACK_CONFIG_TYPE", "library_client")
|
||||
|
||||
if stack_config_type != "server":
|
||||
return None
|
||||
|
||||
try:
|
||||
from llama_stack.core.request_headers import PROVIDER_DATA_VAR
|
||||
|
||||
provider_data = PROVIDER_DATA_VAR.get()
|
||||
|
||||
if provider_data and "__test_id" in provider_data:
|
||||
test_id = provider_data["__test_id"]
|
||||
return _test_context.set(test_id)
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def patch_httpx_for_test_id():
|
||||
"""Patch client _prepare_request methods to inject test ID into provider data header.
|
||||
|
||||
This is needed for server mode where the test ID must be transported from
|
||||
client to server via HTTP headers. In library_client mode, this patch is a no-op
|
||||
since everything runs in the same process.
|
||||
|
||||
We use the _prepare_request hook that Stainless clients provide for mutating
|
||||
requests after construction but before sending.
|
||||
"""
|
||||
from llama_stack_client import LlamaStackClient
|
||||
|
||||
if "llama_stack_client_prepare_request" in _original_methods:
|
||||
return
|
||||
|
||||
_original_methods["llama_stack_client_prepare_request"] = LlamaStackClient._prepare_request
|
||||
_original_methods["openai_prepare_request"] = OpenAI._prepare_request
|
||||
|
||||
def patched_prepare_request(self, request):
|
||||
# Call original first (it's a sync method that returns None)
|
||||
# Determine which original to call based on client type
|
||||
if "llama_stack_client" in self.__class__.__module__:
|
||||
_original_methods["llama_stack_client_prepare_request"](self, request)
|
||||
_original_methods["openai_prepare_request"](self, request)
|
||||
|
||||
# Only inject test ID in server mode
|
||||
stack_config_type = os.environ.get("LLAMA_STACK_TEST_STACK_CONFIG_TYPE", "library_client")
|
||||
test_id = _test_context.get()
|
||||
|
||||
if stack_config_type == "server" and test_id:
|
||||
provider_data_header = request.headers.get("X-LlamaStack-Provider-Data")
|
||||
|
||||
if provider_data_header:
|
||||
provider_data = json.loads(provider_data_header)
|
||||
else:
|
||||
provider_data = {}
|
||||
|
||||
provider_data["__test_id"] = test_id
|
||||
request.headers["X-LlamaStack-Provider-Data"] = json.dumps(provider_data)
|
||||
|
||||
return None
|
||||
|
||||
LlamaStackClient._prepare_request = patched_prepare_request
|
||||
OpenAI._prepare_request = patched_prepare_request
|
||||
|
||||
|
||||
# currently, unpatch is never called
|
||||
def unpatch_httpx_for_test_id():
|
||||
"""Remove client _prepare_request patches for test ID injection."""
|
||||
if "llama_stack_client_prepare_request" not in _original_methods:
|
||||
return
|
||||
|
||||
from llama_stack_client import LlamaStackClient
|
||||
|
||||
LlamaStackClient._prepare_request = _original_methods["llama_stack_client_prepare_request"]
|
||||
del _original_methods["llama_stack_client_prepare_request"]
|
||||
|
||||
# Also restore OpenAI client if it was patched
|
||||
if "openai_prepare_request" in _original_methods:
|
||||
OpenAI._prepare_request = _original_methods["openai_prepare_request"]
|
||||
del _original_methods["openai_prepare_request"]
|
||||
|
||||
|
||||
def get_inference_mode() -> InferenceMode:
|
||||
return InferenceMode(os.environ.get("LLAMA_STACK_TEST_INFERENCE_MODE", "replay").lower())
|
||||
|
||||
|
||||
def setup_inference_recording():
|
||||
"""
|
||||
Returns a context manager that can be used to record or replay inference requests. This is to be used in tests
|
||||
to increase their reliability and reduce reliance on expensive, external services.
|
||||
|
||||
Currently, this is only supported for OpenAI and Ollama clients. These should cover the vast majority of use cases.
|
||||
|
||||
Two environment variables are supported:
|
||||
- LLAMA_STACK_TEST_INFERENCE_MODE: The mode to run in. Must be 'live', 'record', 'replay', or 'record-if-missing'. Default is 'replay'.
|
||||
- 'live': Make all requests live without recording
|
||||
- 'record': Record all requests (overwrites existing recordings)
|
||||
- 'replay': Use only recorded responses (fails if recording not found)
|
||||
- 'record-if-missing': Use recorded responses when available, record new ones when not found
|
||||
- LLAMA_STACK_TEST_RECORDING_DIR: The directory to store the recordings in. Default is 'tests/integration/recordings'.
|
||||
|
||||
The recordings are stored as JSON files.
|
||||
"""
|
||||
mode = get_inference_mode()
|
||||
if mode == InferenceMode.LIVE:
|
||||
return None
|
||||
|
||||
storage_dir = os.environ.get("LLAMA_STACK_TEST_RECORDING_DIR", DEFAULT_STORAGE_DIR)
|
||||
return inference_recording(mode=mode, storage_dir=storage_dir)
|
||||
|
||||
|
||||
def _normalize_response_data(data: dict[str, Any], request_hash: str) -> dict[str, Any]:
|
||||
"""Normalize fields that change between recordings but don't affect functionality.
|
||||
|
||||
This reduces noise in git diffs by making IDs deterministic and timestamps constant.
|
||||
"""
|
||||
# Only normalize ID for completion/chat responses, not for model objects
|
||||
# Model objects have "object": "model" and the ID is the actual model identifier
|
||||
if "id" in data and data.get("object") != "model":
|
||||
data["id"] = f"rec-{request_hash[:12]}"
|
||||
|
||||
# Normalize timestamp to epoch (0) (for OpenAI-style responses)
|
||||
# But not for model objects where created timestamp might be meaningful
|
||||
if "created" in data and data.get("object") != "model":
|
||||
data["created"] = 0
|
||||
|
||||
# Normalize Ollama-specific timestamp fields
|
||||
if "created_at" in data:
|
||||
data["created_at"] = "1970-01-01T00:00:00.000000Z"
|
||||
|
||||
# Normalize Ollama-specific duration fields (these vary based on system load)
|
||||
if "total_duration" in data and data["total_duration"] is not None:
|
||||
data["total_duration"] = 0
|
||||
if "load_duration" in data and data["load_duration"] is not None:
|
||||
data["load_duration"] = 0
|
||||
if "prompt_eval_duration" in data and data["prompt_eval_duration"] is not None:
|
||||
data["prompt_eval_duration"] = 0
|
||||
if "eval_duration" in data and data["eval_duration"] is not None:
|
||||
data["eval_duration"] = 0
|
||||
|
||||
return data
|
||||
|
||||
|
||||
def _serialize_response(response: Any, request_hash: str = "") -> Any:
|
||||
if hasattr(response, "model_dump"):
|
||||
data = response.model_dump(mode="json")
|
||||
# Normalize fields to reduce noise
|
||||
data = _normalize_response_data(data, request_hash)
|
||||
return {
|
||||
"__type__": f"{response.__class__.__module__}.{response.__class__.__qualname__}",
|
||||
"__data__": data,
|
||||
}
|
||||
elif hasattr(response, "__dict__"):
|
||||
return dict(response.__dict__)
|
||||
else:
|
||||
return response
|
||||
|
||||
|
||||
def _deserialize_response(data: dict[str, Any]) -> Any:
|
||||
# Check if this is a serialized Pydantic model with type information
|
||||
if isinstance(data, dict) and "__type__" in data and "__data__" in data:
|
||||
try:
|
||||
# Import the original class and reconstruct the object
|
||||
module_path, class_name = data["__type__"].rsplit(".", 1)
|
||||
module = __import__(module_path, fromlist=[class_name])
|
||||
cls = getattr(module, class_name)
|
||||
|
||||
if not hasattr(cls, "model_validate"):
|
||||
raise ValueError(f"Pydantic class {cls} does not support model_validate?")
|
||||
|
||||
return cls.model_validate(data["__data__"])
|
||||
except (ImportError, AttributeError, TypeError, ValueError) as e:
|
||||
logger.warning(f"Failed to deserialize object of type {data['__type__']} with model_validate: {e}")
|
||||
try:
|
||||
return cls.model_construct(**data["__data__"])
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to deserialize object of type {data['__type__']} with model_construct: {e}")
|
||||
return data["__data__"]
|
||||
|
||||
return data
|
||||
|
||||
|
||||
class ResponseStorage:
|
||||
"""Handles SQLite index + JSON file storage/retrieval for inference recordings."""
|
||||
|
||||
def __init__(self, base_dir: Path):
|
||||
self.base_dir = base_dir
|
||||
# Don't create responses_dir here - determine it per-test at runtime
|
||||
|
||||
def _get_test_dir(self) -> Path:
|
||||
"""Get the recordings directory in the test file's parent directory.
|
||||
|
||||
For test at "tests/integration/inference/test_foo.py::test_bar",
|
||||
returns "tests/integration/inference/recordings/".
|
||||
"""
|
||||
test_id = _test_context.get()
|
||||
if test_id:
|
||||
# Extract the directory path from the test nodeid
|
||||
# e.g., "tests/integration/inference/test_basic.py::test_foo[params]"
|
||||
# -> get "tests/integration/inference"
|
||||
test_file = test_id.split("::")[0] # Remove test function part
|
||||
test_dir = Path(test_file).parent # Get parent directory
|
||||
|
||||
# Put recordings in a "recordings" subdirectory of the test's parent dir
|
||||
# e.g., "tests/integration/inference" -> "tests/integration/inference/recordings"
|
||||
return test_dir / "recordings"
|
||||
else:
|
||||
# Fallback for non-test contexts
|
||||
return self.base_dir / "recordings"
|
||||
|
||||
def _ensure_directories(self):
|
||||
"""Ensure test-specific directories exist."""
|
||||
test_dir = self._get_test_dir()
|
||||
test_dir.mkdir(parents=True, exist_ok=True)
|
||||
return test_dir
|
||||
|
||||
def store_recording(self, request_hash: str, request: dict[str, Any], response: dict[str, Any]):
|
||||
"""Store a request/response pair."""
|
||||
responses_dir = self._ensure_directories()
|
||||
|
||||
# Use FULL hash (not truncated)
|
||||
response_file = f"{request_hash}.json"
|
||||
|
||||
# Serialize response body if needed
|
||||
serialized_response = dict(response)
|
||||
if "body" in serialized_response:
|
||||
if isinstance(serialized_response["body"], list):
|
||||
# Handle streaming responses (list of chunks)
|
||||
serialized_response["body"] = [
|
||||
_serialize_response(chunk, request_hash) for chunk in serialized_response["body"]
|
||||
]
|
||||
else:
|
||||
# Handle single response
|
||||
serialized_response["body"] = _serialize_response(serialized_response["body"], request_hash)
|
||||
|
||||
# For model-list endpoints, include digest in filename to distinguish different model sets
|
||||
endpoint = request.get("endpoint")
|
||||
if endpoint in ("/api/tags", "/v1/models"):
|
||||
digest = _model_identifiers_digest(endpoint, response)
|
||||
response_file = f"models-{request_hash}-{digest}.json"
|
||||
|
||||
response_path = responses_dir / response_file
|
||||
|
||||
# Save response to JSON file with metadata
|
||||
with open(response_path, "w") as f:
|
||||
json.dump(
|
||||
{
|
||||
"test_id": _test_context.get(),
|
||||
"request": request,
|
||||
"response": serialized_response,
|
||||
},
|
||||
f,
|
||||
indent=2,
|
||||
)
|
||||
f.write("\n")
|
||||
f.flush()
|
||||
|
||||
def find_recording(self, request_hash: str) -> dict[str, Any] | None:
|
||||
"""Find a recorded response by request hash.
|
||||
|
||||
Uses fallback: first checks test-specific dir, then falls back to base recordings dir.
|
||||
This handles cases where recordings happen during session setup (no test context) but
|
||||
are requested during tests (with test context).
|
||||
"""
|
||||
response_file = f"{request_hash}.json"
|
||||
|
||||
# Try test-specific directory first
|
||||
test_dir = self._get_test_dir()
|
||||
response_path = test_dir / response_file
|
||||
|
||||
if response_path.exists():
|
||||
return _recording_from_file(response_path)
|
||||
|
||||
# Fallback to base recordings directory (for session-level recordings)
|
||||
fallback_dir = self.base_dir / "recordings"
|
||||
fallback_path = fallback_dir / response_file
|
||||
|
||||
if fallback_path.exists():
|
||||
return _recording_from_file(fallback_path)
|
||||
|
||||
return None
|
||||
|
||||
def _model_list_responses(self, request_hash: str) -> list[dict[str, Any]]:
|
||||
"""Find all model-list recordings with the given hash (different digests)."""
|
||||
results: list[dict[str, Any]] = []
|
||||
|
||||
# Check test-specific directory first
|
||||
test_dir = self._get_test_dir()
|
||||
if test_dir.exists():
|
||||
for path in test_dir.glob(f"models-{request_hash}-*.json"):
|
||||
data = _recording_from_file(path)
|
||||
results.append(data)
|
||||
|
||||
# Also check fallback directory
|
||||
fallback_dir = self.base_dir / "recordings"
|
||||
if fallback_dir.exists():
|
||||
for path in fallback_dir.glob(f"models-{request_hash}-*.json"):
|
||||
data = _recording_from_file(path)
|
||||
results.append(data)
|
||||
|
||||
return results
|
||||
|
||||
|
||||
def _recording_from_file(response_path) -> dict[str, Any]:
|
||||
with open(response_path) as f:
|
||||
data = json.load(f)
|
||||
|
||||
# Deserialize response body if needed
|
||||
if "response" in data and "body" in data["response"]:
|
||||
if isinstance(data["response"]["body"], list):
|
||||
# Handle streaming responses
|
||||
data["response"]["body"] = [_deserialize_response(chunk) for chunk in data["response"]["body"]]
|
||||
else:
|
||||
# Handle single response
|
||||
data["response"]["body"] = _deserialize_response(data["response"]["body"])
|
||||
|
||||
return cast(dict[str, Any], data)
|
||||
|
||||
|
||||
def _model_identifiers_digest(endpoint: str, response: dict[str, Any]) -> str:
|
||||
"""Generate a digest from model identifiers for distinguishing different model sets."""
|
||||
|
||||
def _extract_model_identifiers():
|
||||
"""Extract a stable set of identifiers for model-list endpoints.
|
||||
|
||||
Supported endpoints:
|
||||
- '/api/tags' (Ollama): response body has 'models': [ { name/model/digest/id/... }, ... ]
|
||||
- '/v1/models' (OpenAI): response body is: [ { id: ... }, ... ]
|
||||
Returns a list of unique identifiers or None if structure doesn't match.
|
||||
"""
|
||||
if "models" in response["body"]:
|
||||
# ollama
|
||||
items = response["body"]["models"]
|
||||
else:
|
||||
# openai
|
||||
items = response["body"]
|
||||
idents = [m.model if endpoint == "/api/tags" else m.id for m in items]
|
||||
return sorted(set(idents))
|
||||
|
||||
identifiers = _extract_model_identifiers()
|
||||
return hashlib.sha256(("|".join(identifiers)).encode("utf-8")).hexdigest()[:8]
|
||||
|
||||
|
||||
def _combine_model_list_responses(endpoint: str, records: list[dict[str, Any]]) -> dict[str, Any] | None:
|
||||
"""Return a single, unioned recording for supported model-list endpoints.
|
||||
|
||||
Merges multiple recordings with different model sets (from different servers) into
|
||||
a single response containing all models.
|
||||
"""
|
||||
if not records:
|
||||
return None
|
||||
|
||||
seen: dict[str, dict[str, Any]] = {}
|
||||
for rec in records:
|
||||
body = rec["response"]["body"]
|
||||
if endpoint == "/v1/models":
|
||||
for m in body:
|
||||
key = m.id
|
||||
seen[key] = m
|
||||
elif endpoint == "/api/tags":
|
||||
for m in body.models:
|
||||
key = m.model
|
||||
seen[key] = m
|
||||
|
||||
ordered = [seen[k] for k in sorted(seen.keys())]
|
||||
canonical = records[0]
|
||||
canonical_req = canonical.get("request", {})
|
||||
if isinstance(canonical_req, dict):
|
||||
canonical_req["endpoint"] = endpoint
|
||||
body = ordered
|
||||
if endpoint == "/api/tags":
|
||||
from ollama import ListResponse
|
||||
|
||||
body = ListResponse(models=ordered)
|
||||
return {"request": canonical_req, "response": {"body": body, "is_streaming": False}}
|
||||
|
||||
|
||||
async def _patched_inference_method(original_method, self, client_type, endpoint, *args, **kwargs):
|
||||
global _current_mode, _current_storage
|
||||
|
||||
mode = _current_mode
|
||||
storage = _current_storage
|
||||
|
||||
if mode == InferenceMode.LIVE or storage is None:
|
||||
if endpoint == "/v1/models":
|
||||
return original_method(self, *args, **kwargs)
|
||||
else:
|
||||
return await original_method(self, *args, **kwargs)
|
||||
|
||||
# In server mode, sync test ID from provider_data to _test_context for storage operations
|
||||
test_context_token = _sync_test_context_from_provider_data()
|
||||
|
||||
try:
|
||||
# Get base URL based on client type
|
||||
if client_type == "openai":
|
||||
base_url = str(self._client.base_url)
|
||||
|
||||
# the OpenAI client methods may pass NOT_GIVEN for unset parameters; filter these out
|
||||
kwargs = {k: v for k, v in kwargs.items() if v is not NOT_GIVEN}
|
||||
elif client_type == "ollama":
|
||||
# Get base URL from the client (Ollama client uses host attribute)
|
||||
base_url = getattr(self, "host", "http://localhost:11434")
|
||||
if not base_url.startswith("http"):
|
||||
base_url = f"http://{base_url}"
|
||||
else:
|
||||
raise ValueError(f"Unknown client type: {client_type}")
|
||||
|
||||
url = base_url.rstrip("/") + endpoint
|
||||
# Special handling for Databricks URLs to avoid leaking workspace info
|
||||
# e.g. https://adb-1234567890123456.7.cloud.databricks.com -> https://...cloud.databricks.com
|
||||
if "cloud.databricks.com" in url:
|
||||
url = "__databricks__" + url.split("cloud.databricks.com")[-1]
|
||||
method = "POST"
|
||||
headers = {}
|
||||
body = kwargs
|
||||
|
||||
request_hash = normalize_request(method, url, headers, body)
|
||||
|
||||
# Try to find existing recording for REPLAY or RECORD_IF_MISSING modes
|
||||
recording = None
|
||||
if mode == InferenceMode.REPLAY or mode == InferenceMode.RECORD_IF_MISSING:
|
||||
# Special handling for model-list endpoints: merge all recordings with this hash
|
||||
if endpoint in ("/api/tags", "/v1/models"):
|
||||
records = storage._model_list_responses(request_hash)
|
||||
recording = _combine_model_list_responses(endpoint, records)
|
||||
else:
|
||||
recording = storage.find_recording(request_hash)
|
||||
|
||||
if recording:
|
||||
response_body = recording["response"]["body"]
|
||||
|
||||
if recording["response"].get("is_streaming", False):
|
||||
|
||||
async def replay_stream():
|
||||
for chunk in response_body:
|
||||
yield chunk
|
||||
|
||||
return replay_stream()
|
||||
else:
|
||||
return response_body
|
||||
elif mode == InferenceMode.REPLAY:
|
||||
# REPLAY mode requires recording to exist
|
||||
raise RuntimeError(
|
||||
f"No recorded response found for request hash: {request_hash}\n"
|
||||
f"Request: {method} {url} {body}\n"
|
||||
f"Model: {body.get('model', 'unknown')}\n"
|
||||
f"To record this response, run with LLAMA_STACK_TEST_INFERENCE_MODE=record"
|
||||
)
|
||||
|
||||
if mode == InferenceMode.RECORD or (mode == InferenceMode.RECORD_IF_MISSING and not recording):
|
||||
if endpoint == "/v1/models":
|
||||
response = original_method(self, *args, **kwargs)
|
||||
else:
|
||||
response = await original_method(self, *args, **kwargs)
|
||||
|
||||
# we want to store the result of the iterator, not the iterator itself
|
||||
if endpoint == "/v1/models":
|
||||
response = [m async for m in response]
|
||||
|
||||
request_data = {
|
||||
"method": method,
|
||||
"url": url,
|
||||
"headers": headers,
|
||||
"body": body,
|
||||
"endpoint": endpoint,
|
||||
"model": body.get("model", ""),
|
||||
}
|
||||
|
||||
# Determine if this is a streaming request based on request parameters
|
||||
is_streaming = body.get("stream", False)
|
||||
|
||||
if is_streaming:
|
||||
# For streaming responses, we need to collect all chunks immediately before yielding
|
||||
# This ensures the recording is saved even if the generator isn't fully consumed
|
||||
chunks = []
|
||||
async for chunk in response:
|
||||
chunks.append(chunk)
|
||||
|
||||
# Store the recording immediately
|
||||
response_data = {"body": chunks, "is_streaming": True}
|
||||
storage.store_recording(request_hash, request_data, response_data)
|
||||
|
||||
# Return a generator that replays the stored chunks
|
||||
async def replay_recorded_stream():
|
||||
for chunk in chunks:
|
||||
yield chunk
|
||||
|
||||
return replay_recorded_stream()
|
||||
else:
|
||||
response_data = {"body": response, "is_streaming": False}
|
||||
storage.store_recording(request_hash, request_data, response_data)
|
||||
return response
|
||||
|
||||
else:
|
||||
raise AssertionError(f"Invalid mode: {mode}")
|
||||
finally:
|
||||
if test_context_token:
|
||||
_test_context.reset(test_context_token)
|
||||
|
||||
|
||||
def patch_inference_clients():
|
||||
"""Install monkey patches for OpenAI client methods and Ollama AsyncClient methods."""
|
||||
global _original_methods
|
||||
|
||||
from ollama import AsyncClient as OllamaAsyncClient
|
||||
from openai.resources.chat.completions import AsyncCompletions as AsyncChatCompletions
|
||||
from openai.resources.completions import AsyncCompletions
|
||||
from openai.resources.embeddings import AsyncEmbeddings
|
||||
from openai.resources.models import AsyncModels
|
||||
|
||||
# Store original methods for both OpenAI and Ollama clients
|
||||
_original_methods = {
|
||||
"chat_completions_create": AsyncChatCompletions.create,
|
||||
"completions_create": AsyncCompletions.create,
|
||||
"embeddings_create": AsyncEmbeddings.create,
|
||||
"models_list": AsyncModels.list,
|
||||
"ollama_generate": OllamaAsyncClient.generate,
|
||||
"ollama_chat": OllamaAsyncClient.chat,
|
||||
"ollama_embed": OllamaAsyncClient.embed,
|
||||
"ollama_ps": OllamaAsyncClient.ps,
|
||||
"ollama_pull": OllamaAsyncClient.pull,
|
||||
"ollama_list": OllamaAsyncClient.list,
|
||||
}
|
||||
|
||||
# Create patched methods for OpenAI client
|
||||
async def patched_chat_completions_create(self, *args, **kwargs):
|
||||
return await _patched_inference_method(
|
||||
_original_methods["chat_completions_create"], self, "openai", "/v1/chat/completions", *args, **kwargs
|
||||
)
|
||||
|
||||
async def patched_completions_create(self, *args, **kwargs):
|
||||
return await _patched_inference_method(
|
||||
_original_methods["completions_create"], self, "openai", "/v1/completions", *args, **kwargs
|
||||
)
|
||||
|
||||
async def patched_embeddings_create(self, *args, **kwargs):
|
||||
return await _patched_inference_method(
|
||||
_original_methods["embeddings_create"], self, "openai", "/v1/embeddings", *args, **kwargs
|
||||
)
|
||||
|
||||
def patched_models_list(self, *args, **kwargs):
|
||||
async def _iter():
|
||||
for item in await _patched_inference_method(
|
||||
_original_methods["models_list"], self, "openai", "/v1/models", *args, **kwargs
|
||||
):
|
||||
yield item
|
||||
|
||||
return _iter()
|
||||
|
||||
# Apply OpenAI patches
|
||||
AsyncChatCompletions.create = patched_chat_completions_create
|
||||
AsyncCompletions.create = patched_completions_create
|
||||
AsyncEmbeddings.create = patched_embeddings_create
|
||||
AsyncModels.list = patched_models_list
|
||||
|
||||
# Create patched methods for Ollama client
|
||||
async def patched_ollama_generate(self, *args, **kwargs):
|
||||
return await _patched_inference_method(
|
||||
_original_methods["ollama_generate"], self, "ollama", "/api/generate", *args, **kwargs
|
||||
)
|
||||
|
||||
async def patched_ollama_chat(self, *args, **kwargs):
|
||||
return await _patched_inference_method(
|
||||
_original_methods["ollama_chat"], self, "ollama", "/api/chat", *args, **kwargs
|
||||
)
|
||||
|
||||
async def patched_ollama_embed(self, *args, **kwargs):
|
||||
return await _patched_inference_method(
|
||||
_original_methods["ollama_embed"], self, "ollama", "/api/embeddings", *args, **kwargs
|
||||
)
|
||||
|
||||
async def patched_ollama_ps(self, *args, **kwargs):
|
||||
return await _patched_inference_method(
|
||||
_original_methods["ollama_ps"], self, "ollama", "/api/ps", *args, **kwargs
|
||||
)
|
||||
|
||||
async def patched_ollama_pull(self, *args, **kwargs):
|
||||
return await _patched_inference_method(
|
||||
_original_methods["ollama_pull"], self, "ollama", "/api/pull", *args, **kwargs
|
||||
)
|
||||
|
||||
async def patched_ollama_list(self, *args, **kwargs):
|
||||
return await _patched_inference_method(
|
||||
_original_methods["ollama_list"], self, "ollama", "/api/tags", *args, **kwargs
|
||||
)
|
||||
|
||||
# Apply Ollama patches
|
||||
OllamaAsyncClient.generate = patched_ollama_generate
|
||||
OllamaAsyncClient.chat = patched_ollama_chat
|
||||
OllamaAsyncClient.embed = patched_ollama_embed
|
||||
OllamaAsyncClient.ps = patched_ollama_ps
|
||||
OllamaAsyncClient.pull = patched_ollama_pull
|
||||
OllamaAsyncClient.list = patched_ollama_list
|
||||
|
||||
|
||||
def unpatch_inference_clients():
|
||||
"""Remove monkey patches and restore original OpenAI and Ollama client methods."""
|
||||
global _original_methods
|
||||
|
||||
if not _original_methods:
|
||||
return
|
||||
|
||||
# Import here to avoid circular imports
|
||||
from ollama import AsyncClient as OllamaAsyncClient
|
||||
from openai.resources.chat.completions import AsyncCompletions as AsyncChatCompletions
|
||||
from openai.resources.completions import AsyncCompletions
|
||||
from openai.resources.embeddings import AsyncEmbeddings
|
||||
from openai.resources.models import AsyncModels
|
||||
|
||||
# Restore OpenAI client methods
|
||||
AsyncChatCompletions.create = _original_methods["chat_completions_create"]
|
||||
AsyncCompletions.create = _original_methods["completions_create"]
|
||||
AsyncEmbeddings.create = _original_methods["embeddings_create"]
|
||||
AsyncModels.list = _original_methods["models_list"]
|
||||
|
||||
# Restore Ollama client methods if they were patched
|
||||
OllamaAsyncClient.generate = _original_methods["ollama_generate"]
|
||||
OllamaAsyncClient.chat = _original_methods["ollama_chat"]
|
||||
OllamaAsyncClient.embed = _original_methods["ollama_embed"]
|
||||
OllamaAsyncClient.ps = _original_methods["ollama_ps"]
|
||||
OllamaAsyncClient.pull = _original_methods["ollama_pull"]
|
||||
OllamaAsyncClient.list = _original_methods["ollama_list"]
|
||||
|
||||
_original_methods.clear()
|
||||
|
||||
|
||||
@contextmanager
|
||||
def inference_recording(mode: str, storage_dir: str | Path | None = None) -> Generator[None, None, None]:
|
||||
"""Context manager for inference recording/replaying."""
|
||||
global _current_mode, _current_storage
|
||||
|
||||
# Store previous state
|
||||
prev_mode = _current_mode
|
||||
prev_storage = _current_storage
|
||||
|
||||
try:
|
||||
_current_mode = mode
|
||||
|
||||
if mode in ["record", "replay", "record-if-missing"]:
|
||||
if storage_dir is None:
|
||||
raise ValueError("storage_dir is required for record, replay, and record-if-missing modes")
|
||||
_current_storage = ResponseStorage(Path(storage_dir))
|
||||
patch_inference_clients()
|
||||
|
||||
yield
|
||||
|
||||
finally:
|
||||
# Restore previous state
|
||||
if mode in ["record", "replay", "record-if-missing"]:
|
||||
unpatch_inference_clients()
|
||||
|
||||
_current_mode = prev_mode
|
||||
_current_storage = prev_storage
|
Loading…
Add table
Add a link
Reference in a new issue