mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-31 08:40:05 +00:00
Merge branch 'main' of https://github.com/meta-llama/llama-stack into add_nemo_customizer
This commit is contained in:
commit
f534b4c2ea
571 changed files with 229651 additions and 12956 deletions
|
|
@ -4,6 +4,37 @@
|
|||
This guide will walk you through the steps to get started with building a Llama Stack distribution from scratch with your choice of API providers.
|
||||
|
||||
|
||||
### Setting your log level
|
||||
|
||||
In order to specify the proper logging level users can apply the following environment variable `LLAMA_STACK_LOGGING` with the following format:
|
||||
|
||||
`LLAMA_STACK_LOGGING=server=debug;core=info`
|
||||
|
||||
Where each category in the following list:
|
||||
|
||||
- all
|
||||
- core
|
||||
- server
|
||||
- router
|
||||
- inference
|
||||
- agents
|
||||
- safety
|
||||
- eval
|
||||
- tools
|
||||
- client
|
||||
|
||||
Can be set to any of the following log levels:
|
||||
|
||||
- debug
|
||||
- info
|
||||
- warning
|
||||
- error
|
||||
- critical
|
||||
|
||||
The default global log level is `info`. `all` sets the log level for all components.
|
||||
|
||||
A user can also set `LLAMA_STACK_LOG_FILE` which will pipe the logs to the specified path as well as to the terminal. An example would be: `export LLAMA_STACK_LOG_FILE=server.log`
|
||||
|
||||
### Llama Stack Build
|
||||
|
||||
In order to build your own distribution, we recommend you clone the `llama-stack` repository.
|
||||
|
|
@ -22,25 +53,25 @@ The main points to consider are:
|
|||
|
||||
```
|
||||
llama stack build -h
|
||||
|
||||
usage: llama stack build [-h] [--config CONFIG] [--template TEMPLATE] [--list-templates]
|
||||
[--image-type {conda,container,venv}] [--image-name IMAGE_NAME] [--print-deps-only]
|
||||
usage: llama stack build [-h] [--config CONFIG] [--template TEMPLATE] [--list-templates] [--image-type {conda,container,venv}] [--image-name IMAGE_NAME] [--print-deps-only] [--run]
|
||||
|
||||
Build a Llama stack container
|
||||
|
||||
options:
|
||||
-h, --help show this help message and exit
|
||||
--config CONFIG Path to a config file to use for the build. You can find example configs in llama_stack/distribution/**/build.yaml.
|
||||
If this argument is not provided, you will be prompted to enter information interactively
|
||||
--template TEMPLATE Name of the example template config to use for build. You may use `llama stack build --list-templates` to check out the available templates
|
||||
--list-templates Show the available templates for building a Llama Stack distribution
|
||||
--config CONFIG Path to a config file to use for the build. You can find example configs in llama_stack/distributions/**/build.yaml. If this argument is not provided, you will
|
||||
be prompted to enter information interactively (default: None)
|
||||
--template TEMPLATE Name of the example template config to use for build. You may use `llama stack build --list-templates` to check out the available templates (default: None)
|
||||
--list-templates Show the available templates for building a Llama Stack distribution (default: False)
|
||||
--image-type {conda,container,venv}
|
||||
Image Type to use for the build. This can be either conda or container or venv. If not specified, will use the image type from the template config.
|
||||
Image Type to use for the build. This can be either conda or container or venv. If not specified, will use the image type from the template config. (default:
|
||||
conda)
|
||||
--image-name IMAGE_NAME
|
||||
[for image-type=conda] Name of the conda environment to use for the build. If
|
||||
not specified, currently active Conda environment will be used. If no Conda
|
||||
environment is active, you must specify a name.
|
||||
--print-deps-only Print the dependencies for the stack only, without building the stack
|
||||
[for image-type=conda|venv] Name of the conda or virtual environment to use for the build. If not specified, currently active Conda environment will be used if
|
||||
found. (default: None)
|
||||
--print-deps-only Print the dependencies for the stack only, without building the stack (default: False)
|
||||
--run Run the stack after building using the same image type, name, and other applicable arguments (default: False)
|
||||
|
||||
```
|
||||
|
||||
After this step is complete, a file named `<name>-build.yaml` and template file `<name>-run.yaml` will be generated and saved at the output file path specified at the end of the command.
|
||||
|
|
@ -106,7 +137,7 @@ It would be best to start with a template and understand the structure of the co
|
|||
llama stack build
|
||||
|
||||
> Enter a name for your Llama Stack (e.g. my-local-stack): my-stack
|
||||
> Enter the image type you want your Llama Stack to be built as (container or conda): conda
|
||||
> Enter the image type you want your Llama Stack to be built as (container or conda or venv): conda
|
||||
|
||||
Llama Stack is composed of several APIs working together. Let's select
|
||||
the provider types (implementations) you want to use for these APIs.
|
||||
|
|
@ -154,8 +185,12 @@ llama stack build --config llama_stack/templates/ollama/build.yaml
|
|||
:::
|
||||
|
||||
:::{tab-item} Building Container
|
||||
> [!TIP]
|
||||
> Podman is supported as an alternative to Docker. Set `CONTAINER_BINARY` to `podman` in your environment to use Podman.
|
||||
|
||||
```{admonition} Podman Alternative
|
||||
:class: tip
|
||||
|
||||
Podman is supported as an alternative to Docker. Set `CONTAINER_BINARY` to `podman` in your environment to use Podman.
|
||||
```
|
||||
|
||||
To build a container image, you may start off from a template and use the `--image-type container` flag to specify `container` as the build image type.
|
||||
|
||||
|
|
@ -183,28 +218,28 @@ Now, let's start the Llama Stack Distribution Server. You will need the YAML con
|
|||
|
||||
```
|
||||
llama stack run -h
|
||||
usage: llama stack run [-h] [--port PORT] [--image-name IMAGE_NAME] [--disable-ipv6] [--env KEY=VALUE] [--tls-keyfile TLS_KEYFILE]
|
||||
[--tls-certfile TLS_CERTFILE] [--image-type {conda,container,venv}]
|
||||
usage: llama stack run [-h] [--port PORT] [--image-name IMAGE_NAME] [--disable-ipv6] [--env KEY=VALUE] [--tls-keyfile TLS_KEYFILE] [--tls-certfile TLS_CERTFILE]
|
||||
[--image-type {conda,container,venv}]
|
||||
config
|
||||
|
||||
start the server for a Llama Stack Distribution. You should have already built (or downloaded) and configured the distribution.
|
||||
Start the server for a Llama Stack Distribution. You should have already built (or downloaded) and configured the distribution.
|
||||
|
||||
positional arguments:
|
||||
config Path to config file to use for the run
|
||||
|
||||
options:
|
||||
-h, --help show this help message and exit
|
||||
--port PORT Port to run the server on. Defaults to 8321
|
||||
--port PORT Port to run the server on. It can also be passed via the env var LLAMA_STACK_PORT. (default: 8321)
|
||||
--image-name IMAGE_NAME
|
||||
Name of the image to run. Defaults to the current conda environment
|
||||
--disable-ipv6 Disable IPv6 support
|
||||
--env KEY=VALUE Environment variables to pass to the server in KEY=VALUE format. Can be specified multiple times.
|
||||
Name of the image to run. Defaults to the current conda environment (default: None)
|
||||
--disable-ipv6 Disable IPv6 support (default: False)
|
||||
--env KEY=VALUE Environment variables to pass to the server in KEY=VALUE format. Can be specified multiple times. (default: [])
|
||||
--tls-keyfile TLS_KEYFILE
|
||||
Path to TLS key file for HTTPS
|
||||
Path to TLS key file for HTTPS (default: None)
|
||||
--tls-certfile TLS_CERTFILE
|
||||
Path to TLS certificate file for HTTPS
|
||||
Path to TLS certificate file for HTTPS (default: None)
|
||||
--image-type {conda,container,venv}
|
||||
Image Type used during the build. This can be either conda or container or venv.
|
||||
Image Type used during the build. This can be either conda or container or venv. (default: conda)
|
||||
|
||||
```
|
||||
|
||||
|
|
|
|||
|
|
@ -8,12 +8,12 @@ Features:
|
|||
- Remote Inferencing: Perform inferencing tasks remotely with Llama models hosted on a remote connection (or serverless localhost).
|
||||
- Simple Integration: With easy-to-use APIs, a developer can quickly integrate Llama Stack in their Android app. The difference with local vs remote inferencing is also minimal.
|
||||
|
||||
Latest Release Notes: [v0.0.58](https://github.com/meta-llama/llama-stack-client-kotlin/releases/tag/v0.0.58)
|
||||
Latest Release Notes: [link](https://github.com/meta-llama/llama-stack-client-kotlin/tree/latest-release)
|
||||
|
||||
*Tagged releases are stable versions of the project. While we strive to maintain a stable main branch, it's not guaranteed to be free of bugs or issues.*
|
||||
|
||||
## Android Demo App
|
||||
Check out our demo app to see how to integrate Llama Stack into your Android app: [Android Demo App](https://github.com/meta-llama/llama-stack-apps/tree/android-kotlin-app-latest/examples/android_app)
|
||||
Check out our demo app to see how to integrate Llama Stack into your Android app: [Android Demo App](https://github.com/meta-llama/llama-stack-client-kotlin/tree/examples/android_app)
|
||||
|
||||
The key files in the app are `ExampleLlamaStackLocalInference.kt`, `ExampleLlamaStackRemoteInference.kts`, and `MainActivity.java`. With encompassed business logic, the app shows how to use Llama Stack for both the environments.
|
||||
|
||||
|
|
@ -24,7 +24,7 @@ The key files in the app are `ExampleLlamaStackLocalInference.kt`, `ExampleLlama
|
|||
Add the following dependency in your `build.gradle.kts` file:
|
||||
```
|
||||
dependencies {
|
||||
implementation("com.llama.llamastack:llama-stack-client-kotlin:0.0.58")
|
||||
implementation("com.llama.llamastack:llama-stack-client-kotlin:0.1.4.2")
|
||||
}
|
||||
```
|
||||
This will download jar files in your gradle cache in a directory like `~/.gradle/caches/modules-2/files-2.1/com.llama.llamastack/`
|
||||
|
|
@ -36,13 +36,13 @@ If you plan on doing remote inferencing this is sufficient to get started.
|
|||
For local inferencing, it is required to include the ExecuTorch library into your app.
|
||||
|
||||
Include the ExecuTorch library by:
|
||||
1. Download the `download-prebuilt-et-lib.sh` script file from the [llama-stack-client-kotlin-client-local](https://github.com/meta-llama/llama-stack-client-kotlin/blob/release/0.0.58/llama-stack-client-kotlin-client-local/download-prebuilt-et-lib.sh) directory to your local machine.
|
||||
1. Download the `download-prebuilt-et-lib.sh` script file from the [llama-stack-client-kotlin-client-local](https://github.com/meta-llama/llama-stack-client-kotlin/tree/latest-release/llama-stack-client-kotlin-client-local/download-prebuilt-et-lib.sh) directory to your local machine.
|
||||
2. Move the script to the top level of your Android app where the app directory resides:
|
||||
<p align="center">
|
||||
<img src="https://raw.githubusercontent.com/meta-llama/llama-stack-client-kotlin/refs/heads/release/0.0.58/doc/img/example_android_app_directory.png" style="width:300px">
|
||||
<img src="https://github.com/meta-llama/llama-stack-client-kotlin/blob/latest-release/doc/img/example_android_app_directory.png" style="width:300px">
|
||||
</p>
|
||||
|
||||
3. Run `sh download-prebuilt-et-lib.sh` to create an `app/libs` directory and download the `executorch.aar` in that path. This generates an ExecuTorch library for the XNNPACK delegate with commit: [0a12e33](https://github.com/pytorch/executorch/commit/0a12e33d22a3d44d1aa2af5f0d0673d45b962553).
|
||||
3. Run `sh download-prebuilt-et-lib.sh` to create an `app/libs` directory and download the `executorch.aar` in that path. This generates an ExecuTorch library for the XNNPACK delegate.
|
||||
4. Add the `executorch.aar` dependency in your `build.gradle.kts` file:
|
||||
```
|
||||
dependencies {
|
||||
|
|
@ -60,10 +60,10 @@ Start a Llama Stack server on localhost. Here is an example of how you can do th
|
|||
```
|
||||
conda create -n stack-fireworks python=3.10
|
||||
conda activate stack-fireworks
|
||||
pip install llama-stack=0.0.58
|
||||
pip install --no-cache llama-stack==0.1.4
|
||||
llama stack build --template fireworks --image-type conda
|
||||
export FIREWORKS_API_KEY=<SOME_KEY>
|
||||
llama stack run /Users/<your_username>/.llama/distributions/llamastack-fireworks/fireworks-run.yaml --port=5050
|
||||
llama stack run fireworks --port 5050
|
||||
```
|
||||
|
||||
Ensure the Llama Stack server version is the same as the Kotlin SDK Library for maximum compatibility.
|
||||
|
|
@ -146,7 +146,7 @@ The purpose of this section is to share more details with users that would like
|
|||
### Prerequisite
|
||||
|
||||
You must complete the following steps:
|
||||
1. Clone the repo (`git clone https://github.com/meta-llama/llama-stack-client-kotlin.git -b release/0.0.58`)
|
||||
1. Clone the repo (`git clone https://github.com/meta-llama/llama-stack-client-kotlin.git -b latest-release`)
|
||||
2. Port the appropriate ExecuTorch libraries over into your Llama Stack Kotlin library environment.
|
||||
```
|
||||
cd llama-stack-client-kotlin-client-local
|
||||
|
|
|
|||
|
|
@ -1,9 +1,8 @@
|
|||
# iOS SDK
|
||||
|
||||
We offer both remote and on-device use of Llama Stack in Swift via two components:
|
||||
|
||||
1. [llama-stack-client-swift](https://github.com/meta-llama/llama-stack-client-swift/)
|
||||
2. [LocalInferenceImpl](https://github.com/meta-llama/llama-stack/tree/main/llama_stack/providers/inline/ios/inference)
|
||||
We offer both remote and on-device use of Llama Stack in Swift via a single SDK [llama-stack-client-swift](https://github.com/meta-llama/llama-stack-client-swift/) that contains two components:
|
||||
1. LlamaStackClient for remote
|
||||
2. Local Inference for on-device
|
||||
|
||||
```{image} ../../../_static/remote_or_local.gif
|
||||
:alt: Seamlessly switching between local, on-device inference and remote hosted inference
|
||||
|
|
@ -42,7 +41,7 @@ let request = Components.Schemas.CreateAgentTurnRequest(
|
|||
// ...
|
||||
```
|
||||
|
||||
Check out [iOSCalendarAssistant](https://github.com/meta-llama/llama-stack-apps/tree/main/examples/ios_calendar_assistant) for a complete app demo.
|
||||
Check out [iOSCalendarAssistant](https://github.com/meta-llama/llama-stack-client-swift/tree/main/examples/ios_calendar_assistant) for a complete app demo.
|
||||
|
||||
## LocalInference
|
||||
|
||||
|
|
@ -58,7 +57,7 @@ let inference = LocalInference(queue: runnerQueue)
|
|||
let agents = LocalAgents(inference: self.inference)
|
||||
```
|
||||
|
||||
Check out [iOSCalendarAssistantWithLocalInf](https://github.com/meta-llama/llama-stack-apps/tree/main/examples/ios_calendar_assistant) for a complete app demo.
|
||||
Check out [iOSCalendarAssistantWithLocalInf](https://github.com/meta-llama/llama-stack-client-swift/tree/main/examples/ios_calendar_assistant) for a complete app demo.
|
||||
|
||||
### Installation
|
||||
|
||||
|
|
@ -68,47 +67,6 @@ We're working on making LocalInference easier to set up. For now, you'll need t
|
|||
1. Install [Cmake](https://cmake.org/) for the executorch build`
|
||||
1. Drag `LocalInference.xcodeproj` into your project
|
||||
1. Add `LocalInference` as a framework in your app target
|
||||
1. Add a package dependency on https://github.com/pytorch/executorch (branch latest)
|
||||
1. Add all the kernels / backends from executorch (but not exectuorch itself!) as frameworks in your app target:
|
||||
- backend_coreml
|
||||
- backend_mps
|
||||
- backend_xnnpack
|
||||
- kernels_custom
|
||||
- kernels_optimized
|
||||
- kernels_portable
|
||||
- kernels_quantized
|
||||
1. In "Build Settings" > "Other Linker Flags" > "Any iOS Simulator SDK", add:
|
||||
```
|
||||
-force_load
|
||||
$(BUILT_PRODUCTS_DIR)/libkernels_optimized-simulator-release.a
|
||||
-force_load
|
||||
$(BUILT_PRODUCTS_DIR)/libkernels_custom-simulator-release.a
|
||||
-force_load
|
||||
$(BUILT_PRODUCTS_DIR)/libkernels_quantized-simulator-release.a
|
||||
-force_load
|
||||
$(BUILT_PRODUCTS_DIR)/libbackend_xnnpack-simulator-release.a
|
||||
-force_load
|
||||
$(BUILT_PRODUCTS_DIR)/libbackend_coreml-simulator-release.a
|
||||
-force_load
|
||||
$(BUILT_PRODUCTS_DIR)/libbackend_mps-simulator-release.a
|
||||
```
|
||||
|
||||
1. In "Build Settings" > "Other Linker Flags" > "Any iOS SDK", add:
|
||||
|
||||
```
|
||||
-force_load
|
||||
$(BUILT_PRODUCTS_DIR)/libkernels_optimized-simulator-release.a
|
||||
-force_load
|
||||
$(BUILT_PRODUCTS_DIR)/libkernels_custom-simulator-release.a
|
||||
-force_load
|
||||
$(BUILT_PRODUCTS_DIR)/libkernels_quantized-simulator-release.a
|
||||
-force_load
|
||||
$(BUILT_PRODUCTS_DIR)/libbackend_xnnpack-simulator-release.a
|
||||
-force_load
|
||||
$(BUILT_PRODUCTS_DIR)/libbackend_coreml-simulator-release.a
|
||||
-force_load
|
||||
$(BUILT_PRODUCTS_DIR)/libbackend_mps-simulator-release.a
|
||||
```
|
||||
|
||||
### Preparing a model
|
||||
|
||||
|
|
|
|||
|
|
@ -17,26 +17,4 @@ $ llama-stack-client configure --endpoint https://llamastack-preview.fireworks.a
|
|||
$ llama-stack-client models list
|
||||
```
|
||||
|
||||
You will see outputs:
|
||||
```
|
||||
$ llama-stack-client models list
|
||||
+------------------------------+------------------------------+---------------+------------+
|
||||
| identifier | llama_model | provider_id | metadata |
|
||||
+==============================+==============================+===============+============+
|
||||
| Llama3.1-8B-Instruct | Llama3.1-8B-Instruct | fireworks0 | {} |
|
||||
+------------------------------+------------------------------+---------------+------------+
|
||||
| Llama3.1-70B-Instruct | Llama3.1-70B-Instruct | fireworks0 | {} |
|
||||
+------------------------------+------------------------------+---------------+------------+
|
||||
| Llama3.1-405B-Instruct | Llama3.1-405B-Instruct | fireworks0 | {} |
|
||||
+------------------------------+------------------------------+---------------+------------+
|
||||
| Llama3.2-1B-Instruct | Llama3.2-1B-Instruct | fireworks0 | {} |
|
||||
+------------------------------+------------------------------+---------------+------------+
|
||||
| Llama3.2-3B-Instruct | Llama3.2-3B-Instruct | fireworks0 | {} |
|
||||
+------------------------------+------------------------------+---------------+------------+
|
||||
| Llama3.2-11B-Vision-Instruct | Llama3.2-11B-Vision-Instruct | fireworks0 | {} |
|
||||
+------------------------------+------------------------------+---------------+------------+
|
||||
| Llama3.2-90B-Vision-Instruct | Llama3.2-90B-Vision-Instruct | fireworks0 | {} |
|
||||
+------------------------------+------------------------------+---------------+------------+
|
||||
```
|
||||
|
||||
Checkout the [llama-stack-client-python](https://github.com/meta-llama/llama-stack-client-python/blob/main/docs/cli_reference.md) repo for more details on how to use the `llama-stack-client` CLI. Checkout [llama-stack-app](https://github.com/meta-llama/llama-stack-apps/tree/main) for examples applications built on top of Llama Stack.
|
||||
|
|
|
|||
|
|
@ -6,14 +6,14 @@ The `llamastack/distribution-nvidia` distribution consists of the following prov
|
|||
| API | Provider(s) |
|
||||
|-----|-------------|
|
||||
| agents | `inline::meta-reference` |
|
||||
| datasetio | `remote::huggingface`, `inline::localfs` |
|
||||
| datasetio | `inline::localfs` |
|
||||
| eval | `inline::meta-reference` |
|
||||
| inference | `remote::nvidia` |
|
||||
| post_training | `remote::nvidia` |
|
||||
| safety | `inline::llama-guard` |
|
||||
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
|
||||
| safety | `remote::nvidia` |
|
||||
| scoring | `inline::basic` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::rag-runtime`, `remote::model-context-protocol` |
|
||||
| tool_runtime | `inline::rag-runtime` |
|
||||
| vector_io | `inline::faiss` |
|
||||
|
||||
|
||||
|
|
@ -21,30 +21,34 @@ The `llamastack/distribution-nvidia` distribution consists of the following prov
|
|||
|
||||
The following environment variables can be configured:
|
||||
|
||||
- `LLAMASTACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
|
||||
- `NVIDIA_API_KEY`: NVIDIA API Key (default: ``)
|
||||
- `NVIDIA_CUSTOMIZER_URL`: NVIDIA Customizer URL (default: `http://nemo.test`)
|
||||
- `NVIDIA_USER_ID`: NVIDIA user ID (default: `llama-stack-user`)
|
||||
- `NVIDIA_DATASET_NAMESPACE`: NVIDIA dataset namespace (default: `default`)
|
||||
- `NVIDIA_ACCESS_POLICIES`: NVIDIA access policies (default: `{}`)
|
||||
- `NVIDIA_PROJECT_ID`: NVIDIA project ID (default: `test-project`)
|
||||
- `NVIDIA_OUTPUT_MODEL_DIR`: Directory to save the output model (default: `test-example-model@v1`)
|
||||
|
||||
- `NVIDIA_USER_ID`: NVIDIA User ID (default: `llama-stack-user`)
|
||||
- `NVIDIA_DATASET_NAMESPACE`: NVIDIA Dataset Namespace (default: `default`)
|
||||
- `NVIDIA_ACCESS_POLICIES`: NVIDIA Access Policies (default: `{}`)
|
||||
- `NVIDIA_PROJECT_ID`: NVIDIA Project ID (default: `test-project`)
|
||||
- `NVIDIA_CUSTOMIZER_URL`: NVIDIA Customizer URL (default: `https://customizer.api.nvidia.com`)
|
||||
- `NVIDIA_OUTPUT_MODEL_DIR`: NVIDIA Output Model Directory (default: `test-example-model@v1`)
|
||||
- `GUARDRAILS_SERVICE_URL`: URL for the NeMo Guardrails Service (default: `http://0.0.0.0:7331`)
|
||||
- `INFERENCE_MODEL`: Inference model (default: `Llama3.1-8B-Instruct`)
|
||||
- `SAFETY_MODEL`: Name of the model to use for safety (default: `meta/llama-3.1-8b-instruct`)
|
||||
|
||||
### Models
|
||||
|
||||
The following models are available by default:
|
||||
|
||||
- `meta-llama/Llama-3-8B-Instruct (meta/llama3-8b-instruct)`
|
||||
- `meta-llama/Llama-3-70B-Instruct (meta/llama3-70b-instruct)`
|
||||
- `meta-llama/Llama-3.1-8B-Instruct (meta/llama-3.1-8b-instruct)`
|
||||
- `meta-llama/Llama-3.1-70B-Instruct (meta/llama-3.1-70b-instruct)`
|
||||
- `meta-llama/Llama-3.1-405B-Instruct-FP8 (meta/llama-3.1-405b-instruct)`
|
||||
- `meta-llama/Llama-3.2-1B-Instruct (meta/llama-3.2-1b-instruct)`
|
||||
- `meta-llama/Llama-3.2-3B-Instruct (meta/llama-3.2-3b-instruct)`
|
||||
- `meta-llama/Llama-3.2-11B-Vision-Instruct (meta/llama-3.2-11b-vision-instruct)`
|
||||
- `meta-llama/Llama-3.2-90B-Vision-Instruct (meta/llama-3.2-90b-vision-instruct)`
|
||||
- `baai/bge-m3 (baai/bge-m3)`
|
||||
- `meta/llama3-8b-instruct (aliases: meta-llama/Llama-3-8B-Instruct)`
|
||||
- `meta/llama3-70b-instruct (aliases: meta-llama/Llama-3-70B-Instruct)`
|
||||
- `meta/llama-3.1-8b-instruct (aliases: meta-llama/Llama-3.1-8B-Instruct)`
|
||||
- `meta/llama-3.1-70b-instruct (aliases: meta-llama/Llama-3.1-70B-Instruct)`
|
||||
- `meta/llama-3.1-405b-instruct (aliases: meta-llama/Llama-3.1-405B-Instruct-FP8)`
|
||||
- `meta/llama-3.2-1b-instruct (aliases: meta-llama/Llama-3.2-1B-Instruct)`
|
||||
- `meta/llama-3.2-3b-instruct (aliases: meta-llama/Llama-3.2-3B-Instruct)`
|
||||
- `meta/llama-3.2-11b-vision-instruct (aliases: meta-llama/Llama-3.2-11B-Vision-Instruct)`
|
||||
- `meta/llama-3.2-90b-vision-instruct (aliases: meta-llama/Llama-3.2-90B-Vision-Instruct)`
|
||||
- `nvidia/llama-3.2-nv-embedqa-1b-v2 `
|
||||
- `nvidia/nv-embedqa-e5-v5 `
|
||||
- `nvidia/nv-embedqa-mistral-7b-v2 `
|
||||
- `snowflake/arctic-embed-l `
|
||||
|
||||
|
||||
### Prerequisite: API Keys
|
||||
|
|
|
|||
|
|
@ -34,9 +34,9 @@ The following environment variables can be configured:
|
|||
|
||||
The following models are available by default:
|
||||
|
||||
- `meta-llama/Llama-3.1-8B-Instruct (meta.llama3-1-8b-instruct-v1:0)`
|
||||
- `meta-llama/Llama-3.1-70B-Instruct (meta.llama3-1-70b-instruct-v1:0)`
|
||||
- `meta-llama/Llama-3.1-405B-Instruct-FP8 (meta.llama3-1-405b-instruct-v1:0)`
|
||||
- `meta.llama3-1-8b-instruct-v1:0 (aliases: meta-llama/Llama-3.1-8B-Instruct)`
|
||||
- `meta.llama3-1-70b-instruct-v1:0 (aliases: meta-llama/Llama-3.1-70B-Instruct)`
|
||||
- `meta.llama3-1-405b-instruct-v1:0 (aliases: meta-llama/Llama-3.1-405B-Instruct-FP8)`
|
||||
|
||||
|
||||
### Prerequisite: API Keys
|
||||
|
|
|
|||
|
|
@ -27,8 +27,8 @@ The following environment variables can be configured:
|
|||
|
||||
The following models are available by default:
|
||||
|
||||
- `meta-llama/Llama-3.1-8B-Instruct (llama3.1-8b)`
|
||||
- `meta-llama/Llama-3.3-70B-Instruct (llama-3.3-70b)`
|
||||
- `llama3.1-8b (aliases: meta-llama/Llama-3.1-8B-Instruct)`
|
||||
- `llama-3.3-70b (aliases: meta-llama/Llama-3.3-70B-Instruct)`
|
||||
|
||||
|
||||
### Prerequisite: API Keys
|
||||
|
|
|
|||
|
|
@ -22,7 +22,7 @@ The `llamastack/distribution-fireworks` distribution consists of the following p
|
|||
| safety | `inline::llama-guard` |
|
||||
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::rag-runtime`, `remote::model-context-protocol` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `remote::wolfram-alpha`, `inline::code-interpreter`, `inline::rag-runtime`, `remote::model-context-protocol` |
|
||||
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
|
||||
|
||||
|
|
@ -37,17 +37,16 @@ The following environment variables can be configured:
|
|||
|
||||
The following models are available by default:
|
||||
|
||||
- `meta-llama/Llama-3.1-8B-Instruct (accounts/fireworks/models/llama-v3p1-8b-instruct)`
|
||||
- `meta-llama/Llama-3.1-70B-Instruct (accounts/fireworks/models/llama-v3p1-70b-instruct)`
|
||||
- `meta-llama/Llama-3.1-405B-Instruct-FP8 (accounts/fireworks/models/llama-v3p1-405b-instruct)`
|
||||
- `meta-llama/Llama-3.2-1B-Instruct (accounts/fireworks/models/llama-v3p2-1b-instruct)`
|
||||
- `meta-llama/Llama-3.2-3B-Instruct (accounts/fireworks/models/llama-v3p2-3b-instruct)`
|
||||
- `meta-llama/Llama-3.2-11B-Vision-Instruct (accounts/fireworks/models/llama-v3p2-11b-vision-instruct)`
|
||||
- `meta-llama/Llama-3.2-90B-Vision-Instruct (accounts/fireworks/models/llama-v3p2-90b-vision-instruct)`
|
||||
- `meta-llama/Llama-3.3-70B-Instruct (accounts/fireworks/models/llama-v3p3-70b-instruct)`
|
||||
- `meta-llama/Llama-Guard-3-8B (accounts/fireworks/models/llama-guard-3-8b)`
|
||||
- `meta-llama/Llama-Guard-3-11B-Vision (accounts/fireworks/models/llama-guard-3-11b-vision)`
|
||||
- `nomic-ai/nomic-embed-text-v1.5 (nomic-ai/nomic-embed-text-v1.5)`
|
||||
- `accounts/fireworks/models/llama-v3p1-8b-instruct (aliases: meta-llama/Llama-3.1-8B-Instruct)`
|
||||
- `accounts/fireworks/models/llama-v3p1-70b-instruct (aliases: meta-llama/Llama-3.1-70B-Instruct)`
|
||||
- `accounts/fireworks/models/llama-v3p1-405b-instruct (aliases: meta-llama/Llama-3.1-405B-Instruct-FP8)`
|
||||
- `accounts/fireworks/models/llama-v3p2-3b-instruct (aliases: meta-llama/Llama-3.2-3B-Instruct)`
|
||||
- `accounts/fireworks/models/llama-v3p2-11b-vision-instruct (aliases: meta-llama/Llama-3.2-11B-Vision-Instruct)`
|
||||
- `accounts/fireworks/models/llama-v3p2-90b-vision-instruct (aliases: meta-llama/Llama-3.2-90B-Vision-Instruct)`
|
||||
- `accounts/fireworks/models/llama-v3p3-70b-instruct (aliases: meta-llama/Llama-3.3-70B-Instruct)`
|
||||
- `accounts/fireworks/models/llama-guard-3-8b (aliases: meta-llama/Llama-Guard-3-8B)`
|
||||
- `accounts/fireworks/models/llama-guard-3-11b-vision (aliases: meta-llama/Llama-Guard-3-11B-Vision)`
|
||||
- `nomic-ai/nomic-embed-text-v1.5 `
|
||||
|
||||
|
||||
### Prerequisite: API Keys
|
||||
|
|
|
|||
77
docs/source/distributions/self_hosted_distro/groq.md
Normal file
77
docs/source/distributions/self_hosted_distro/groq.md
Normal file
|
|
@ -0,0 +1,77 @@
|
|||
---
|
||||
orphan: true
|
||||
---
|
||||
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
|
||||
# Groq Distribution
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 2
|
||||
:hidden:
|
||||
|
||||
self
|
||||
```
|
||||
|
||||
The `llamastack/distribution-groq` distribution consists of the following provider configurations.
|
||||
|
||||
| API | Provider(s) |
|
||||
|-----|-------------|
|
||||
| agents | `inline::meta-reference` |
|
||||
| datasetio | `remote::huggingface`, `inline::localfs` |
|
||||
| eval | `inline::meta-reference` |
|
||||
| inference | `remote::groq` |
|
||||
| safety | `inline::llama-guard` |
|
||||
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::rag-runtime` |
|
||||
| vector_io | `inline::faiss` |
|
||||
|
||||
|
||||
### Environment Variables
|
||||
|
||||
The following environment variables can be configured:
|
||||
|
||||
- `LLAMASTACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
|
||||
- `GROQ_API_KEY`: Groq API Key (default: ``)
|
||||
|
||||
### Models
|
||||
|
||||
The following models are available by default:
|
||||
|
||||
- `groq/llama3-8b-8192 (aliases: meta-llama/Llama-3.1-8B-Instruct)`
|
||||
- `groq/llama-3.1-8b-instant `
|
||||
- `groq/llama3-70b-8192 (aliases: meta-llama/Llama-3-70B-Instruct)`
|
||||
- `groq/llama-3.3-70b-versatile (aliases: meta-llama/Llama-3.3-70B-Instruct)`
|
||||
- `groq/llama-3.2-3b-preview (aliases: meta-llama/Llama-3.2-3B-Instruct)`
|
||||
|
||||
|
||||
### Prerequisite: API Keys
|
||||
|
||||
Make sure you have access to a Groq API Key. You can get one by visiting [Groq](https://api.groq.com/).
|
||||
|
||||
|
||||
## Running Llama Stack with Groq
|
||||
|
||||
You can do this via Conda (build code) or Docker which has a pre-built image.
|
||||
|
||||
### Via Docker
|
||||
|
||||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
LLAMA_STACK_PORT=5001
|
||||
docker run \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
llamastack/distribution-groq \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env GROQ_API_KEY=$GROQ_API_KEY
|
||||
```
|
||||
|
||||
### Via Conda
|
||||
|
||||
```bash
|
||||
llama stack build --template groq --image-type conda
|
||||
llama stack run ./run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env GROQ_API_KEY=$GROQ_API_KEY
|
||||
```
|
||||
|
|
@ -41,12 +41,31 @@ The following environment variables can be configured:
|
|||
|
||||
## Prerequisite: Downloading Models
|
||||
|
||||
Please make sure you have llama model checkpoints downloaded in `~/.llama` before proceeding. See [installation guide](https://llama-stack.readthedocs.io/en/latest/references/llama_cli_reference/download_models.html) here to download the models. Run `llama model list` to see the available models to download, and `llama model download` to download the checkpoints.
|
||||
Please use `llama model list --downloaded` to check that you have llama model checkpoints downloaded in `~/.llama` before proceeding. See [installation guide](https://llama-stack.readthedocs.io/en/latest/references/llama_cli_reference/download_models.html) here to download the models. Run `llama model list` to see the available models to download, and `llama model download` to download the checkpoints.
|
||||
|
||||
```
|
||||
$ ls ~/.llama/checkpoints
|
||||
Llama3.1-8B Llama3.2-11B-Vision-Instruct Llama3.2-1B-Instruct Llama3.2-90B-Vision-Instruct Llama-Guard-3-8B
|
||||
Llama3.1-8B-Instruct Llama3.2-1B Llama3.2-3B-Instruct Llama-Guard-3-1B Prompt-Guard-86M
|
||||
$ llama model list --downloaded
|
||||
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━┓
|
||||
┃ Model ┃ Size ┃ Modified Time ┃
|
||||
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━┩
|
||||
│ Llama3.2-1B-Instruct:int4-qlora-eo8 │ 1.53 GB │ 2025-02-26 11:22:28 │
|
||||
├─────────────────────────────────────────┼──────────┼─────────────────────┤
|
||||
│ Llama3.2-1B │ 2.31 GB │ 2025-02-18 21:48:52 │
|
||||
├─────────────────────────────────────────┼──────────┼─────────────────────┤
|
||||
│ Prompt-Guard-86M │ 0.02 GB │ 2025-02-26 11:29:28 │
|
||||
├─────────────────────────────────────────┼──────────┼─────────────────────┤
|
||||
│ Llama3.2-3B-Instruct:int4-spinquant-eo8 │ 3.69 GB │ 2025-02-26 11:37:41 │
|
||||
├─────────────────────────────────────────┼──────────┼─────────────────────┤
|
||||
│ Llama3.2-3B │ 5.99 GB │ 2025-02-18 21:51:26 │
|
||||
├─────────────────────────────────────────┼──────────┼─────────────────────┤
|
||||
│ Llama3.1-8B │ 14.97 GB │ 2025-02-16 10:36:37 │
|
||||
├─────────────────────────────────────────┼──────────┼─────────────────────┤
|
||||
│ Llama3.2-1B-Instruct:int4-spinquant-eo8 │ 1.51 GB │ 2025-02-26 11:35:02 │
|
||||
├─────────────────────────────────────────┼──────────┼─────────────────────┤
|
||||
│ Llama-Guard-3-1B │ 2.80 GB │ 2025-02-26 11:20:46 │
|
||||
├─────────────────────────────────────────┼──────────┼─────────────────────┤
|
||||
│ Llama-Guard-3-1B:int4 │ 0.43 GB │ 2025-02-26 11:33:33 │
|
||||
└─────────────────────────────────────────┴──────────┴─────────────────────┘
|
||||
```
|
||||
|
||||
## Running the Distribution
|
||||
|
|
|
|||
|
|
@ -41,12 +41,31 @@ The following environment variables can be configured:
|
|||
|
||||
## Prerequisite: Downloading Models
|
||||
|
||||
Please make sure you have llama model checkpoints downloaded in `~/.llama` before proceeding. See [installation guide](https://llama-stack.readthedocs.io/en/latest/references/llama_cli_reference/download_models.html) here to download the models. Run `llama model list` to see the available models to download, and `llama model download` to download the checkpoints.
|
||||
Please use `llama model list --downloaded` to check that you have llama model checkpoints downloaded in `~/.llama` before proceeding. See [installation guide](https://llama-stack.readthedocs.io/en/latest/references/llama_cli_reference/download_models.html) here to download the models. Run `llama model list` to see the available models to download, and `llama model download` to download the checkpoints.
|
||||
|
||||
```
|
||||
$ ls ~/.llama/checkpoints
|
||||
Llama3.1-8B Llama3.2-11B-Vision-Instruct Llama3.2-1B-Instruct Llama3.2-90B-Vision-Instruct Llama-Guard-3-8B
|
||||
Llama3.1-8B-Instruct Llama3.2-1B Llama3.2-3B-Instruct Llama-Guard-3-1B Prompt-Guard-86M
|
||||
$ llama model list --downloaded
|
||||
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━┓
|
||||
┃ Model ┃ Size ┃ Modified Time ┃
|
||||
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━┩
|
||||
│ Llama3.2-1B-Instruct:int4-qlora-eo8 │ 1.53 GB │ 2025-02-26 11:22:28 │
|
||||
├─────────────────────────────────────────┼──────────┼─────────────────────┤
|
||||
│ Llama3.2-1B │ 2.31 GB │ 2025-02-18 21:48:52 │
|
||||
├─────────────────────────────────────────┼──────────┼─────────────────────┤
|
||||
│ Prompt-Guard-86M │ 0.02 GB │ 2025-02-26 11:29:28 │
|
||||
├─────────────────────────────────────────┼──────────┼─────────────────────┤
|
||||
│ Llama3.2-3B-Instruct:int4-spinquant-eo8 │ 3.69 GB │ 2025-02-26 11:37:41 │
|
||||
├─────────────────────────────────────────┼──────────┼─────────────────────┤
|
||||
│ Llama3.2-3B │ 5.99 GB │ 2025-02-18 21:51:26 │
|
||||
├─────────────────────────────────────────┼──────────┼─────────────────────┤
|
||||
│ Llama3.1-8B │ 14.97 GB │ 2025-02-16 10:36:37 │
|
||||
├─────────────────────────────────────────┼──────────┼─────────────────────┤
|
||||
│ Llama3.2-1B-Instruct:int4-spinquant-eo8 │ 1.51 GB │ 2025-02-26 11:35:02 │
|
||||
├─────────────────────────────────────────┼──────────┼─────────────────────┤
|
||||
│ Llama-Guard-3-1B │ 2.80 GB │ 2025-02-26 11:20:46 │
|
||||
├─────────────────────────────────────────┼──────────┼─────────────────────┤
|
||||
│ Llama-Guard-3-1B:int4 │ 0.43 GB │ 2025-02-26 11:33:33 │
|
||||
└─────────────────────────────────────────┴──────────┴─────────────────────┘
|
||||
```
|
||||
|
||||
## Running the Distribution
|
||||
|
|
|
|||
|
|
@ -22,8 +22,8 @@ The `llamastack/distribution-ollama` distribution consists of the following prov
|
|||
| safety | `inline::llama-guard` |
|
||||
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::rag-runtime` |
|
||||
| vector_io | `inline::sqlite-vec`, `remote::chromadb`, `remote::pgvector` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::rag-runtime`, `remote::model-context-protocol`, `remote::wolfram-alpha` |
|
||||
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
|
||||
|
||||
You should use this distribution if you have a regular desktop machine without very powerful GPUs. Of course, if you have powerful GPUs, you can still continue using this distribution since Ollama supports GPU acceleration.
|
||||
|
|
@ -130,7 +130,7 @@ llama stack run ./run-with-safety.yaml \
|
|||
### (Optional) Update Model Serving Configuration
|
||||
|
||||
```{note}
|
||||
Please check the [model_entries](https://github.com/meta-llama/llama-stack/blob/main/llama_stack/providers/remote/inference/ollama/ollama.py#L45) for the supported Ollama models.
|
||||
Please check the [model_entries](https://github.com/meta-llama/llama-stack/blob/main/llama_stack/providers/remote/inference/ollama/models.py) for the supported Ollama models.
|
||||
```
|
||||
|
||||
To serve a new model with `ollama`
|
||||
|
|
@ -141,17 +141,21 @@ ollama run <model_name>
|
|||
To make sure that the model is being served correctly, run `ollama ps` to get a list of models being served by ollama.
|
||||
```
|
||||
$ ollama ps
|
||||
|
||||
NAME ID SIZE PROCESSOR UNTIL
|
||||
llama3.1:8b-instruct-fp16 4aacac419454 17 GB 100% GPU 4 minutes from now
|
||||
NAME ID SIZE PROCESSOR UNTIL
|
||||
llama3.2:3b-instruct-fp16 195a8c01d91e 8.6 GB 100% GPU 9 minutes from now
|
||||
```
|
||||
|
||||
To verify that the model served by ollama is correctly connected to Llama Stack server
|
||||
```bash
|
||||
$ llama-stack-client models list
|
||||
+----------------------+----------------------+---------------+-----------------------------------------------+
|
||||
| identifier | llama_model | provider_id | metadata |
|
||||
+======================+======================+===============+===============================================+
|
||||
| Llama3.1-8B-Instruct | Llama3.1-8B-Instruct | ollama0 | {'ollama_model': 'llama3.1:8b-instruct-fp16'} |
|
||||
+----------------------+----------------------+---------------+-----------------------------------------------+
|
||||
|
||||
Available Models
|
||||
|
||||
┏━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━━━━━━━┓
|
||||
┃ model_type ┃ identifier ┃ provider_resource_id ┃ metadata ┃ provider_id ┃
|
||||
┡━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━━━━━━━┩
|
||||
│ llm │ meta-llama/Llama-3.2-3B-Instruct │ llama3.2:3b-instruct-fp16 │ │ ollama │
|
||||
└──────────────┴──────────────────────────────────────┴──────────────────────────────┴───────────┴─────────────┘
|
||||
|
||||
Total models: 1
|
||||
```
|
||||
|
|
|
|||
42
docs/source/distributions/self_hosted_distro/passthrough.md
Normal file
42
docs/source/distributions/self_hosted_distro/passthrough.md
Normal file
|
|
@ -0,0 +1,42 @@
|
|||
---
|
||||
orphan: true
|
||||
---
|
||||
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
|
||||
# Passthrough Distribution
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 2
|
||||
:hidden:
|
||||
|
||||
self
|
||||
```
|
||||
|
||||
The `llamastack/distribution-passthrough` distribution consists of the following provider configurations.
|
||||
|
||||
| API | Provider(s) |
|
||||
|-----|-------------|
|
||||
| agents | `inline::meta-reference` |
|
||||
| datasetio | `remote::huggingface`, `inline::localfs` |
|
||||
| eval | `inline::meta-reference` |
|
||||
| inference | `remote::passthrough`, `inline::sentence-transformers` |
|
||||
| safety | `inline::llama-guard` |
|
||||
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `remote::wolfram-alpha`, `inline::code-interpreter`, `inline::rag-runtime`, `remote::model-context-protocol` |
|
||||
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
|
||||
|
||||
### Environment Variables
|
||||
|
||||
The following environment variables can be configured:
|
||||
|
||||
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
|
||||
- `PASSTHROUGH_API_KEY`: Passthrough API Key (default: ``)
|
||||
- `PASSTHROUGH_URL`: Passthrough URL (default: ``)
|
||||
|
||||
### Models
|
||||
|
||||
The following models are available by default:
|
||||
|
||||
- `llama3.1-8b-instruct `
|
||||
- `llama3.2-11b-vision-instruct `
|
||||
|
|
@ -21,7 +21,7 @@ The `llamastack/distribution-remote-vllm` distribution consists of the following
|
|||
| safety | `inline::llama-guard` |
|
||||
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::rag-runtime`, `remote::model-context-protocol` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::rag-runtime`, `remote::model-context-protocol`, `remote::wolfram-alpha` |
|
||||
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -34,15 +34,15 @@ The following environment variables can be configured:
|
|||
|
||||
The following models are available by default:
|
||||
|
||||
- `meta-llama/Llama-3.1-8B-Instruct (Meta-Llama-3.1-8B-Instruct)`
|
||||
- `meta-llama/Llama-3.1-70B-Instruct (Meta-Llama-3.1-70B-Instruct)`
|
||||
- `meta-llama/Llama-3.1-405B-Instruct-FP8 (Meta-Llama-3.1-405B-Instruct)`
|
||||
- `meta-llama/Llama-3.2-1B-Instruct (Meta-Llama-3.2-1B-Instruct)`
|
||||
- `meta-llama/Llama-3.2-3B-Instruct (Meta-Llama-3.2-3B-Instruct)`
|
||||
- `meta-llama/Llama-3.3-70B-Instruct (Meta-Llama-3.3-70B-Instruct)`
|
||||
- `meta-llama/Llama-3.2-11B-Vision-Instruct (Llama-3.2-11B-Vision-Instruct)`
|
||||
- `meta-llama/Llama-3.2-90B-Vision-Instruct (Llama-3.2-90B-Vision-Instruct)`
|
||||
- `meta-llama/Llama-Guard-3-8B (Meta-Llama-Guard-3-8B)`
|
||||
- `Meta-Llama-3.1-8B-Instruct (aliases: meta-llama/Llama-3.1-8B-Instruct)`
|
||||
- `Meta-Llama-3.1-70B-Instruct (aliases: meta-llama/Llama-3.1-70B-Instruct)`
|
||||
- `Meta-Llama-3.1-405B-Instruct (aliases: meta-llama/Llama-3.1-405B-Instruct-FP8)`
|
||||
- `Meta-Llama-3.2-1B-Instruct (aliases: meta-llama/Llama-3.2-1B-Instruct)`
|
||||
- `Meta-Llama-3.2-3B-Instruct (aliases: meta-llama/Llama-3.2-3B-Instruct)`
|
||||
- `Meta-Llama-3.3-70B-Instruct (aliases: meta-llama/Llama-3.3-70B-Instruct)`
|
||||
- `Llama-3.2-11B-Vision-Instruct (aliases: meta-llama/Llama-3.2-11B-Vision-Instruct)`
|
||||
- `Llama-3.2-90B-Vision-Instruct (aliases: meta-llama/Llama-3.2-90B-Vision-Instruct)`
|
||||
- `Meta-Llama-Guard-3-8B (aliases: meta-llama/Llama-Guard-3-8B)`
|
||||
|
||||
|
||||
### Prerequisite: API Keys
|
||||
|
|
|
|||
|
|
@ -35,7 +35,7 @@ The following environment variables can be configured:
|
|||
|
||||
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
|
||||
- `INFERENCE_MODEL`: Inference model loaded into the TGI server (default: `meta-llama/Llama-3.2-3B-Instruct`)
|
||||
- `TGI_URL`: URL of the TGI server with the main inference model (default: `http://127.0.0.1:8080}/v1`)
|
||||
- `TGI_URL`: URL of the TGI server with the main inference model (default: `http://127.0.0.1:8080/v1`)
|
||||
- `TGI_SAFETY_URL`: URL of the TGI server with the safety model (default: `http://127.0.0.1:8081/v1`)
|
||||
- `SAFETY_MODEL`: Name of the safety (Llama-Guard) model to use (default: `meta-llama/Llama-Guard-3-1B`)
|
||||
|
||||
|
|
|
|||
|
|
@ -22,7 +22,7 @@ The `llamastack/distribution-together` distribution consists of the following pr
|
|||
| safety | `inline::llama-guard` |
|
||||
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::rag-runtime`, `remote::model-context-protocol` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::rag-runtime`, `remote::model-context-protocol`, `remote::wolfram-alpha` |
|
||||
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
|
||||
|
||||
|
|
@ -37,17 +37,17 @@ The following environment variables can be configured:
|
|||
|
||||
The following models are available by default:
|
||||
|
||||
- `meta-llama/Llama-3.1-8B-Instruct`
|
||||
- `meta-llama/Llama-3.1-70B-Instruct`
|
||||
- `meta-llama/Llama-3.1-405B-Instruct-FP8`
|
||||
- `meta-llama/Llama-3.2-3B-Instruct`
|
||||
- `meta-llama/Llama-3.2-11B-Vision-Instruct`
|
||||
- `meta-llama/Llama-3.2-90B-Vision-Instruct`
|
||||
- `meta-llama/Llama-3.3-70B-Instruct`
|
||||
- `meta-llama/Llama-Guard-3-8B`
|
||||
- `meta-llama/Llama-Guard-3-11B-Vision`
|
||||
- `togethercomputer/m2-bert-80M-8k-retrieval`
|
||||
- `togethercomputer/m2-bert-80M-32k-retrieval`
|
||||
- `meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo (aliases: meta-llama/Llama-3.1-8B-Instruct)`
|
||||
- `meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo (aliases: meta-llama/Llama-3.1-70B-Instruct)`
|
||||
- `meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo (aliases: meta-llama/Llama-3.1-405B-Instruct-FP8)`
|
||||
- `meta-llama/Llama-3.2-3B-Instruct-Turbo (aliases: meta-llama/Llama-3.2-3B-Instruct)`
|
||||
- `meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo (aliases: meta-llama/Llama-3.2-11B-Vision-Instruct)`
|
||||
- `meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo (aliases: meta-llama/Llama-3.2-90B-Vision-Instruct)`
|
||||
- `meta-llama/Llama-3.3-70B-Instruct-Turbo (aliases: meta-llama/Llama-3.3-70B-Instruct)`
|
||||
- `meta-llama/Meta-Llama-Guard-3-8B (aliases: meta-llama/Llama-Guard-3-8B)`
|
||||
- `meta-llama/Llama-Guard-3-11B-Vision-Turbo (aliases: meta-llama/Llama-Guard-3-11B-Vision)`
|
||||
- `togethercomputer/m2-bert-80M-8k-retrieval `
|
||||
- `togethercomputer/m2-bert-80M-32k-retrieval `
|
||||
|
||||
|
||||
### Prerequisite: API Keys
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue