Merge branch 'main' of https://github.com/meta-llama/llama-stack into add_nemo_customizer

This commit is contained in:
Ubuntu 2025-03-20 09:34:19 +00:00
commit f534b4c2ea
571 changed files with 229651 additions and 12956 deletions

View file

@ -41,16 +41,36 @@ from llama_stack.schema_utils import json_schema_type, register_schema, webmetho
class Attachment(BaseModel):
"""An attachment to an agent turn.
:param content: The content of the attachment.
:param mime_type: The MIME type of the attachment.
"""
content: InterleavedContent | URL
mime_type: str
class Document(BaseModel):
"""A document to be used by an agent.
:param content: The content of the document.
:param mime_type: The MIME type of the document.
"""
content: InterleavedContent | URL
mime_type: str
class StepCommon(BaseModel):
"""A common step in an agent turn.
:param turn_id: The ID of the turn.
:param step_id: The ID of the step.
:param started_at: The time the step started.
:param completed_at: The time the step completed.
"""
turn_id: str
step_id: str
started_at: Optional[datetime] = None
@ -58,6 +78,14 @@ class StepCommon(BaseModel):
class StepType(Enum):
"""Type of the step in an agent turn.
:cvar inference: The step is an inference step that calls an LLM.
:cvar tool_execution: The step is a tool execution step that executes a tool call.
:cvar shield_call: The step is a shield call step that checks for safety violations.
:cvar memory_retrieval: The step is a memory retrieval step that retrieves context for vector dbs.
"""
inference = "inference"
tool_execution = "tool_execution"
shield_call = "shield_call"
@ -66,6 +94,11 @@ class StepType(Enum):
@json_schema_type
class InferenceStep(StepCommon):
"""An inference step in an agent turn.
:param model_response: The response from the LLM.
"""
model_config = ConfigDict(protected_namespaces=())
step_type: Literal[StepType.inference.value] = StepType.inference.value
@ -74,6 +107,12 @@ class InferenceStep(StepCommon):
@json_schema_type
class ToolExecutionStep(StepCommon):
"""A tool execution step in an agent turn.
:param tool_calls: The tool calls to execute.
:param tool_responses: The tool responses from the tool calls.
"""
step_type: Literal[StepType.tool_execution.value] = StepType.tool_execution.value
tool_calls: List[ToolCall]
tool_responses: List[ToolResponse]
@ -81,13 +120,25 @@ class ToolExecutionStep(StepCommon):
@json_schema_type
class ShieldCallStep(StepCommon):
"""A shield call step in an agent turn.
:param violation: The violation from the shield call.
"""
step_type: Literal[StepType.shield_call.value] = StepType.shield_call.value
violation: Optional[SafetyViolation]
@json_schema_type
class MemoryRetrievalStep(StepCommon):
"""A memory retrieval step in an agent turn.
:param vector_db_ids: The IDs of the vector databases to retrieve context from.
:param inserted_context: The context retrieved from the vector databases.
"""
step_type: Literal[StepType.memory_retrieval.value] = StepType.memory_retrieval.value
# TODO: should this be List[str]?
vector_db_ids: str
inserted_context: InterleavedContent
@ -138,17 +189,15 @@ class AgentToolGroupWithArgs(BaseModel):
args: Dict[str, Any]
AgentToolGroup = register_schema(
Union[
str,
AgentToolGroupWithArgs,
],
name="AgentTool",
)
AgentToolGroup = Union[
str,
AgentToolGroupWithArgs,
]
register_schema(AgentToolGroup, name="AgentTool")
class AgentConfigCommon(BaseModel):
sampling_params: Optional[SamplingParams] = SamplingParams()
sampling_params: Optional[SamplingParams] = Field(default_factory=SamplingParams)
input_shields: Optional[List[str]] = Field(default_factory=list)
output_shields: Optional[List[str]] = Field(default_factory=list)
@ -183,6 +232,23 @@ class AgentConfig(AgentConfigCommon):
response_format: Optional[ResponseFormat] = None
@json_schema_type
class Agent(BaseModel):
agent_id: str
agent_config: AgentConfig
created_at: datetime
@json_schema_type
class ListAgentsResponse(BaseModel):
data: List[Agent]
@json_schema_type
class ListAgentSessionsResponse(BaseModel):
data: List[Session]
class AgentConfigOverridablePerTurn(AgentConfigCommon):
instructions: Optional[str] = None
@ -244,20 +310,18 @@ class AgentTurnResponseTurnAwaitingInputPayload(BaseModel):
turn: Turn
AgentTurnResponseEventPayload = register_schema(
Annotated[
Union[
AgentTurnResponseStepStartPayload,
AgentTurnResponseStepProgressPayload,
AgentTurnResponseStepCompletePayload,
AgentTurnResponseTurnStartPayload,
AgentTurnResponseTurnCompletePayload,
AgentTurnResponseTurnAwaitingInputPayload,
],
Field(discriminator="event_type"),
AgentTurnResponseEventPayload = Annotated[
Union[
AgentTurnResponseStepStartPayload,
AgentTurnResponseStepProgressPayload,
AgentTurnResponseStepCompletePayload,
AgentTurnResponseTurnStartPayload,
AgentTurnResponseTurnCompletePayload,
AgentTurnResponseTurnAwaitingInputPayload,
],
name="AgentTurnResponseEventPayload",
)
Field(discriminator="event_type"),
]
register_schema(AgentTurnResponseEventPayload, name="AgentTurnResponseEventPayload")
@json_schema_type
@ -296,16 +360,13 @@ class AgentTurnCreateRequest(AgentConfigOverridablePerTurn):
stream: Optional[bool] = False
tool_config: Optional[ToolConfig] = None
# TODO (xiyan): temporary flag, will remove for 0.1.5
allow_turn_resume: Optional[bool] = False
@json_schema_type
class AgentTurnResumeRequest(BaseModel):
agent_id: str
session_id: str
turn_id: str
tool_responses: List[ToolResponseMessage]
tool_responses: List[ToolResponse]
stream: Optional[bool] = False
@ -338,7 +399,13 @@ class Agents(Protocol):
async def create_agent(
self,
agent_config: AgentConfig,
) -> AgentCreateResponse: ...
) -> AgentCreateResponse:
"""Create an agent with the given configuration.
:param agent_config: The configuration for the agent.
:returns: An AgentCreateResponse with the agent ID.
"""
...
@webmethod(route="/agents/{agent_id}/session/{session_id}/turn", method="POST")
async def create_agent_turn(
@ -355,8 +422,19 @@ class Agents(Protocol):
documents: Optional[List[Document]] = None,
toolgroups: Optional[List[AgentToolGroup]] = None,
tool_config: Optional[ToolConfig] = None,
allow_turn_resume: Optional[bool] = False,
) -> Union[Turn, AsyncIterator[AgentTurnResponseStreamChunk]]: ...
) -> Union[Turn, AsyncIterator[AgentTurnResponseStreamChunk]]:
"""Create a new turn for an agent.
:param agent_id: The ID of the agent to create the turn for.
:param session_id: The ID of the session to create the turn for.
:param messages: List of messages to start the turn with.
:param stream: (Optional) If True, generate an SSE event stream of the response. Defaults to False.
:param documents: (Optional) List of documents to create the turn with.
:param toolgroups: (Optional) List of toolgroups to create the turn with, will be used in addition to the agent's config toolgroups for the request.
:param tool_config: (Optional) The tool configuration to create the turn with, will be used to override the agent's tool_config.
:returns: If stream=False, returns a Turn object.
If stream=True, returns an SSE event stream of AgentTurnResponseStreamChunk
"""
@webmethod(
route="/agents/{agent_id}/session/{session_id}/turn/{turn_id}/resume",
@ -367,7 +445,7 @@ class Agents(Protocol):
agent_id: str,
session_id: str,
turn_id: str,
tool_responses: List[ToolResponseMessage],
tool_responses: List[ToolResponse],
stream: Optional[bool] = False,
) -> Union[Turn, AsyncIterator[AgentTurnResponseStreamChunk]]:
"""Resume an agent turn with executed tool call responses.
@ -392,7 +470,15 @@ class Agents(Protocol):
agent_id: str,
session_id: str,
turn_id: str,
) -> Turn: ...
) -> Turn:
"""Retrieve an agent turn by its ID.
:param agent_id: The ID of the agent to get the turn for.
:param session_id: The ID of the session to get the turn for.
:param turn_id: The ID of the turn to get.
:returns: A Turn.
"""
...
@webmethod(
route="/agents/{agent_id}/session/{session_id}/turn/{turn_id}/step/{step_id}",
@ -404,14 +490,30 @@ class Agents(Protocol):
session_id: str,
turn_id: str,
step_id: str,
) -> AgentStepResponse: ...
) -> AgentStepResponse:
"""Retrieve an agent step by its ID.
:param agent_id: The ID of the agent to get the step for.
:param session_id: The ID of the session to get the step for.
:param turn_id: The ID of the turn to get the step for.
:param step_id: The ID of the step to get.
:returns: An AgentStepResponse.
"""
...
@webmethod(route="/agents/{agent_id}/session", method="POST")
async def create_agent_session(
self,
agent_id: str,
session_name: str,
) -> AgentSessionCreateResponse: ...
) -> AgentSessionCreateResponse:
"""Create a new session for an agent.
:param agent_id: The ID of the agent to create the session for.
:param session_name: The name of the session to create.
:returns: An AgentSessionCreateResponse.
"""
...
@webmethod(route="/agents/{agent_id}/session/{session_id}", method="GET")
async def get_agents_session(
@ -419,17 +521,64 @@ class Agents(Protocol):
session_id: str,
agent_id: str,
turn_ids: Optional[List[str]] = None,
) -> Session: ...
) -> Session:
"""Retrieve an agent session by its ID.
:param session_id: The ID of the session to get.
:param agent_id: The ID of the agent to get the session for.
:param turn_ids: (Optional) List of turn IDs to filter the session by.
"""
...
@webmethod(route="/agents/{agent_id}/session/{session_id}", method="DELETE")
async def delete_agents_session(
self,
session_id: str,
agent_id: str,
) -> None: ...
) -> None:
"""Delete an agent session by its ID.
:param session_id: The ID of the session to delete.
:param agent_id: The ID of the agent to delete the session for.
"""
...
@webmethod(route="/agents/{agent_id}", method="DELETE")
async def delete_agent(
self,
agent_id: str,
) -> None: ...
) -> None:
"""Delete an agent by its ID.
:param agent_id: The ID of the agent to delete.
"""
...
@webmethod(route="/agents", method="GET")
async def list_agents(self) -> ListAgentsResponse:
"""List all agents.
:returns: A ListAgentsResponse.
"""
...
@webmethod(route="/agents/{agent_id}", method="GET")
async def get_agent(self, agent_id: str) -> Agent:
"""Describe an agent by its ID.
:param agent_id: ID of the agent.
:returns: An Agent of the agent.
"""
...
@webmethod(route="/agents/{agent_id}/sessions", method="GET")
async def list_agent_sessions(
self,
agent_id: str,
) -> ListAgentSessionsResponse:
"""List all session(s) of a given agent.
:param agent_id: The ID of the agent to list sessions for.
:returns: A ListAgentSessionsResponse.
"""
...

View file

@ -40,7 +40,7 @@ class BatchInference(Protocol):
self,
model: str,
content_batch: List[InterleavedContent],
sampling_params: Optional[SamplingParams] = SamplingParams(),
sampling_params: Optional[SamplingParams] = None,
response_format: Optional[ResponseFormat] = None,
logprobs: Optional[LogProbConfig] = None,
) -> BatchCompletionResponse: ...
@ -50,7 +50,7 @@ class BatchInference(Protocol):
self,
model: str,
messages_batch: List[List[Message]],
sampling_params: Optional[SamplingParams] = SamplingParams(),
sampling_params: Optional[SamplingParams] = None,
# zero-shot tool definitions as input to the model
tools: Optional[List[ToolDefinition]] = list,
tool_choice: Optional[ToolChoice] = ToolChoice.auto,

View file

@ -52,7 +52,7 @@ class Benchmarks(Protocol):
async def get_benchmark(
self,
benchmark_id: str,
) -> Optional[Benchmark]: ...
) -> Benchmark: ...
@webmethod(route="/eval/benchmarks", method="POST")
async def register_benchmark(

View file

@ -63,19 +63,15 @@ class TextContentItem(BaseModel):
# other modalities can be added here
InterleavedContentItem = register_schema(
Annotated[
Union[ImageContentItem, TextContentItem],
Field(discriminator="type"),
],
name="InterleavedContentItem",
)
InterleavedContentItem = Annotated[
Union[ImageContentItem, TextContentItem],
Field(discriminator="type"),
]
register_schema(InterleavedContentItem, name="InterleavedContentItem")
# accept a single "str" as a special case since it is common
InterleavedContent = register_schema(
Union[str, InterleavedContentItem, List[InterleavedContentItem]],
name="InterleavedContent",
)
InterleavedContent = Union[str, InterleavedContentItem, List[InterleavedContentItem]]
register_schema(InterleavedContent, name="InterleavedContent")
@json_schema_type
@ -109,10 +105,8 @@ class ToolCallDelta(BaseModel):
# streaming completions send a stream of ContentDeltas
ContentDelta = register_schema(
Annotated[
Union[TextDelta, ImageDelta, ToolCallDelta],
Field(discriminator="type"),
],
name="ContentDelta",
)
ContentDelta = Annotated[
Union[TextDelta, ImageDelta, ToolCallDelta],
Field(discriminator="type"),
]
register_schema(ContentDelta, name="ContentDelta")

View file

@ -72,24 +72,22 @@ class DialogType(BaseModel):
type: Literal["dialog"] = "dialog"
ParamType = register_schema(
Annotated[
Union[
StringType,
NumberType,
BooleanType,
ArrayType,
ObjectType,
JsonType,
UnionType,
ChatCompletionInputType,
CompletionInputType,
AgentTurnInputType,
],
Field(discriminator="type"),
ParamType = Annotated[
Union[
StringType,
NumberType,
BooleanType,
ArrayType,
ObjectType,
JsonType,
UnionType,
ChatCompletionInputType,
CompletionInputType,
AgentTurnInputType,
],
name="ParamType",
)
Field(discriminator="type"),
]
register_schema(ParamType, name="ParamType")
"""
# TODO: recursive definition of ParamType in these containers

View file

@ -13,11 +13,16 @@ from llama_stack.schema_utils import json_schema_type, webmethod
@json_schema_type
class PaginatedRowsResult(BaseModel):
# the rows obey the DatasetSchema for the given dataset
rows: List[Dict[str, Any]]
total_count: int
next_page_token: Optional[str] = None
class IterrowsResponse(BaseModel):
"""
A paginated list of rows from a dataset.
:param data: The rows in the current page.
:param next_start_index: Index into dataset for the first row in the next page. None if there are no more rows.
"""
data: List[Dict[str, Any]]
next_start_index: Optional[int] = None
class DatasetStore(Protocol):
@ -29,14 +34,21 @@ class DatasetIO(Protocol):
# keeping for aligning with inference/safety, but this is not used
dataset_store: DatasetStore
@webmethod(route="/datasetio/rows", method="GET")
async def get_rows_paginated(
# TODO(xiyan): there's a flakiness here where setting route to "/datasets/" here will not result in proper routing
@webmethod(route="/datasetio/iterrows/{dataset_id:path}", method="GET")
async def iterrows(
self,
dataset_id: str,
rows_in_page: int,
page_token: Optional[str] = None,
filter_condition: Optional[str] = None,
) -> PaginatedRowsResult: ...
start_index: Optional[int] = None,
limit: Optional[int] = None,
) -> IterrowsResponse:
"""Get a paginated list of rows from a dataset. Uses cursor-based pagination.
@webmethod(route="/datasetio/rows", method="POST")
:param dataset_id: The ID of the dataset to get the rows from.
:param start_index: Index into dataset for the first row to get. Get all rows if None.
:param limit: The number of rows to get.
"""
...
@webmethod(route="/datasetio/append-rows/{dataset_id:path}", method="POST")
async def append_rows(self, dataset_id: str, rows: List[Dict[str, Any]]) -> None: ...

View file

@ -4,19 +4,100 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict, List, Literal, Optional, Protocol
from enum import Enum
from typing import Annotated, Any, Dict, List, Literal, Optional, Protocol, Union
from pydantic import BaseModel, Field
from llama_stack.apis.common.content_types import URL
from llama_stack.apis.common.type_system import ParamType
from llama_stack.apis.resource import Resource, ResourceType
from llama_stack.schema_utils import json_schema_type, webmethod
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod
class DatasetPurpose(str, Enum):
"""
Purpose of the dataset. Each purpose has a required input data schema.
:cvar post-training/messages: The dataset contains messages used for post-training.
{
"messages": [
{"role": "user", "content": "Hello, world!"},
{"role": "assistant", "content": "Hello, world!"},
]
}
:cvar eval/question-answer: The dataset contains a question column and an answer column.
{
"question": "What is the capital of France?",
"answer": "Paris"
}
:cvar eval/messages-answer: The dataset contains a messages column with list of messages and an answer column.
{
"messages": [
{"role": "user", "content": "Hello, my name is John Doe."},
{"role": "assistant", "content": "Hello, John Doe. How can I help you today?"},
{"role": "user", "content": "What's my name?"},
],
"answer": "John Doe"
}
"""
post_training_messages = "post-training/messages"
eval_question_answer = "eval/question-answer"
eval_messages_answer = "eval/messages-answer"
# TODO: add more schemas here
class DatasetType(Enum):
"""
Type of the dataset source.
:cvar uri: The dataset can be obtained from a URI.
:cvar rows: The dataset is stored in rows.
"""
uri = "uri"
rows = "rows"
@json_schema_type
class URIDataSource(BaseModel):
"""A dataset that can be obtained from a URI.
:param uri: The dataset can be obtained from a URI. E.g.
- "https://mywebsite.com/mydata.jsonl"
- "lsfs://mydata.jsonl"
- "data:csv;base64,{base64_content}"
"""
type: Literal["uri"] = "uri"
uri: str
@json_schema_type
class RowsDataSource(BaseModel):
"""A dataset stored in rows.
:param rows: The dataset is stored in rows. E.g.
- [
{"messages": [{"role": "user", "content": "Hello, world!"}, {"role": "assistant", "content": "Hello, world!"}]}
]
"""
type: Literal["rows"] = "rows"
rows: List[Dict[str, Any]]
DataSource = Annotated[
Union[URIDataSource, RowsDataSource],
Field(discriminator="type"),
]
register_schema(DataSource, name="DataSource")
class CommonDatasetFields(BaseModel):
dataset_schema: Dict[str, ParamType]
url: URL
"""
Common fields for a dataset.
"""
purpose: DatasetPurpose
source: DataSource
metadata: Dict[str, Any] = Field(
default_factory=dict,
description="Any additional metadata for this dataset",
@ -38,8 +119,6 @@ class Dataset(CommonDatasetFields, Resource):
class DatasetInput(CommonDatasetFields, BaseModel):
dataset_id: str
provider_id: Optional[str] = None
provider_dataset_id: Optional[str] = None
class ListDatasetsResponse(BaseModel):
@ -50,19 +129,75 @@ class Datasets(Protocol):
@webmethod(route="/datasets", method="POST")
async def register_dataset(
self,
dataset_id: str,
dataset_schema: Dict[str, ParamType],
url: URL,
provider_dataset_id: Optional[str] = None,
provider_id: Optional[str] = None,
purpose: DatasetPurpose,
source: DataSource,
metadata: Optional[Dict[str, Any]] = None,
) -> None: ...
dataset_id: Optional[str] = None,
) -> Dataset:
"""
Register a new dataset.
:param purpose: The purpose of the dataset. One of
- "post-training/messages": The dataset contains a messages column with list of messages for post-training.
{
"messages": [
{"role": "user", "content": "Hello, world!"},
{"role": "assistant", "content": "Hello, world!"},
]
}
- "eval/question-answer": The dataset contains a question column and an answer column for evaluation.
{
"question": "What is the capital of France?",
"answer": "Paris"
}
- "eval/messages-answer": The dataset contains a messages column with list of messages and an answer column for evaluation.
{
"messages": [
{"role": "user", "content": "Hello, my name is John Doe."},
{"role": "assistant", "content": "Hello, John Doe. How can I help you today?"},
{"role": "user", "content": "What's my name?"},
],
"answer": "John Doe"
}
:param source: The data source of the dataset. Ensure that the data source schema is compatible with the purpose of the dataset. Examples:
- {
"type": "uri",
"uri": "https://mywebsite.com/mydata.jsonl"
}
- {
"type": "uri",
"uri": "lsfs://mydata.jsonl"
}
- {
"type": "uri",
"uri": "data:csv;base64,{base64_content}"
}
- {
"type": "uri",
"uri": "huggingface://llamastack/simpleqa?split=train"
}
- {
"type": "rows",
"rows": [
{
"messages": [
{"role": "user", "content": "Hello, world!"},
{"role": "assistant", "content": "Hello, world!"},
]
}
]
}
:param metadata: The metadata for the dataset.
- E.g. {"description": "My dataset"}
:param dataset_id: The ID of the dataset. If not provided, an ID will be generated.
"""
...
@webmethod(route="/datasets/{dataset_id:path}", method="GET")
async def get_dataset(
self,
dataset_id: str,
) -> Optional[Dataset]: ...
) -> Dataset: ...
@webmethod(route="/datasets", method="GET")
async def list_datasets(self) -> ListDatasetsResponse: ...

View file

@ -5,12 +5,16 @@
# the root directory of this source tree.
from enum import Enum
from typing import Optional
from pydantic import BaseModel
from llama_stack.schema_utils import json_schema_type
@json_schema_type
class Api(Enum):
providers = "providers"
inference = "inference"
safety = "safety"
agents = "agents"
@ -33,3 +37,20 @@ class Api(Enum):
# built-in API
inspect = "inspect"
@json_schema_type
class Error(BaseModel):
"""
Error response from the API. Roughly follows RFC 7807.
:param status: HTTP status code
:param title: Error title, a short summary of the error which is invariant for an error type
:param detail: Error detail, a longer human-readable description of the error
:param instance: (Optional) A URL which can be used to retrieve more information about the specific occurrence of the error
"""
status: int
title: str
detail: str
instance: Optional[str] = None

View file

@ -19,6 +19,13 @@ from llama_stack.schema_utils import json_schema_type, register_schema, webmetho
@json_schema_type
class ModelCandidate(BaseModel):
"""A model candidate for evaluation.
:param model: The model ID to evaluate.
:param sampling_params: The sampling parameters for the model.
:param system_message: (Optional) The system message providing instructions or context to the model.
"""
type: Literal["model"] = "model"
model: str
sampling_params: SamplingParams
@ -27,18 +34,28 @@ class ModelCandidate(BaseModel):
@json_schema_type
class AgentCandidate(BaseModel):
"""An agent candidate for evaluation.
:param config: The configuration for the agent candidate.
"""
type: Literal["agent"] = "agent"
config: AgentConfig
EvalCandidate = register_schema(
Annotated[Union[ModelCandidate, AgentCandidate], Field(discriminator="type")],
name="EvalCandidate",
)
EvalCandidate = Annotated[Union[ModelCandidate, AgentCandidate], Field(discriminator="type")]
register_schema(EvalCandidate, name="EvalCandidate")
@json_schema_type
class BenchmarkConfig(BaseModel):
"""A benchmark configuration for evaluation.
:param eval_candidate: The candidate to evaluate.
:param scoring_params: Map between scoring function id and parameters for each scoring function you want to run
:param num_examples: (Optional) The number of examples to evaluate. If not provided, all examples in the dataset will be evaluated
"""
eval_candidate: EvalCandidate
scoring_params: Dict[str, ScoringFnParams] = Field(
description="Map between scoring function id and parameters for each scoring function you want to run",
@ -53,18 +70,32 @@ class BenchmarkConfig(BaseModel):
@json_schema_type
class EvaluateResponse(BaseModel):
"""The response from an evaluation.
:param generations: The generations from the evaluation.
:param scores: The scores from the evaluation.
"""
generations: List[Dict[str, Any]]
# each key in the dict is a scoring function name
scores: Dict[str, ScoringResult]
class Eval(Protocol):
"""Llama Stack Evaluation API for running evaluations on model and agent candidates."""
@webmethod(route="/eval/benchmarks/{benchmark_id}/jobs", method="POST")
async def run_eval(
self,
benchmark_id: str,
task_config: BenchmarkConfig,
) -> Job: ...
benchmark_config: BenchmarkConfig,
) -> Job:
"""Run an evaluation on a benchmark.
:param benchmark_id: The ID of the benchmark to run the evaluation on.
:param benchmark_config: The configuration for the benchmark.
:return: The job that was created to run the evaluation.
"""
@webmethod(route="/eval/benchmarks/{benchmark_id}/evaluations", method="POST")
async def evaluate_rows(
@ -72,14 +103,41 @@ class Eval(Protocol):
benchmark_id: str,
input_rows: List[Dict[str, Any]],
scoring_functions: List[str],
task_config: BenchmarkConfig,
) -> EvaluateResponse: ...
benchmark_config: BenchmarkConfig,
) -> EvaluateResponse:
"""Evaluate a list of rows on a benchmark.
:param benchmark_id: The ID of the benchmark to run the evaluation on.
:param input_rows: The rows to evaluate.
:param scoring_functions: The scoring functions to use for the evaluation.
:param benchmark_config: The configuration for the benchmark.
:return: EvaluateResponse object containing generations and scores
"""
@webmethod(route="/eval/benchmarks/{benchmark_id}/jobs/{job_id}", method="GET")
async def job_status(self, benchmark_id: str, job_id: str) -> Optional[JobStatus]: ...
async def job_status(self, benchmark_id: str, job_id: str) -> JobStatus:
"""Get the status of a job.
:param benchmark_id: The ID of the benchmark to run the evaluation on.
:param job_id: The ID of the job to get the status of.
:return: The status of the evaluationjob.
"""
...
@webmethod(route="/eval/benchmarks/{benchmark_id}/jobs/{job_id}", method="DELETE")
async def job_cancel(self, benchmark_id: str, job_id: str) -> None: ...
async def job_cancel(self, benchmark_id: str, job_id: str) -> None:
"""Cancel a job.
:param benchmark_id: The ID of the benchmark to run the evaluation on.
:param job_id: The ID of the job to cancel.
"""
...
@webmethod(route="/eval/benchmarks/{benchmark_id}/jobs/{job_id}/result", method="GET")
async def job_result(self, benchmark_id: str, job_id: str) -> EvaluateResponse: ...
async def job_result(self, benchmark_id: str, job_id: str) -> EvaluateResponse:
"""Get the result of a job.
:param benchmark_id: The ID of the benchmark to run the evaluation on.
:param job_id: The ID of the job to get the result of.
:return: The result of the job.
"""

View file

@ -115,7 +115,7 @@ class Files(Protocol):
async def get_upload_session_info(
self,
upload_id: str,
) -> Optional[FileUploadResponse]:
) -> FileUploadResponse:
"""
Returns information about an existsing upload session

View file

@ -117,13 +117,11 @@ class ToolResponseMessage(BaseModel):
:param role: Must be "tool" to identify this as a tool response
:param call_id: Unique identifier for the tool call this response is for
:param tool_name: Name of the tool that was called
:param content: The response content from the tool
"""
role: Literal["tool"] = "tool"
call_id: str
tool_name: Union[BuiltinTool, str]
content: InterleavedContent
@ -146,18 +144,16 @@ class CompletionMessage(BaseModel):
tool_calls: Optional[List[ToolCall]] = Field(default_factory=list)
Message = register_schema(
Annotated[
Union[
UserMessage,
SystemMessage,
ToolResponseMessage,
CompletionMessage,
],
Field(discriminator="role"),
Message = Annotated[
Union[
UserMessage,
SystemMessage,
ToolResponseMessage,
CompletionMessage,
],
name="Message",
)
Field(discriminator="role"),
]
register_schema(Message, name="Message")
@json_schema_type
@ -265,27 +261,25 @@ class GrammarResponseFormat(BaseModel):
bnf: Dict[str, Any]
ResponseFormat = register_schema(
Annotated[
Union[JsonSchemaResponseFormat, GrammarResponseFormat],
Field(discriminator="type"),
],
name="ResponseFormat",
)
ResponseFormat = Annotated[
Union[JsonSchemaResponseFormat, GrammarResponseFormat],
Field(discriminator="type"),
]
register_schema(ResponseFormat, name="ResponseFormat")
# This is an internally used class
class CompletionRequest(BaseModel):
model: str
content: InterleavedContent
sampling_params: Optional[SamplingParams] = SamplingParams()
sampling_params: Optional[SamplingParams] = Field(default_factory=SamplingParams)
response_format: Optional[ResponseFormat] = None
stream: Optional[bool] = False
logprobs: Optional[LogProbConfig] = None
@json_schema_type
class CompletionResponse(BaseModel):
class CompletionResponse(MetricResponseMixin):
"""Response from a completion request.
:param content: The generated completion text
@ -299,7 +293,7 @@ class CompletionResponse(BaseModel):
@json_schema_type
class CompletionResponseStreamChunk(BaseModel):
class CompletionResponseStreamChunk(MetricResponseMixin):
"""A chunk of a streamed completion response.
:param delta: New content generated since last chunk. This can be one or more tokens.
@ -357,7 +351,7 @@ class ToolConfig(BaseModel):
class ChatCompletionRequest(BaseModel):
model: str
messages: List[Message]
sampling_params: Optional[SamplingParams] = SamplingParams()
sampling_params: Optional[SamplingParams] = Field(default_factory=SamplingParams)
tools: Optional[List[ToolDefinition]] = Field(default_factory=list)
tool_config: Optional[ToolConfig] = Field(default_factory=ToolConfig)
@ -368,7 +362,7 @@ class ChatCompletionRequest(BaseModel):
@json_schema_type
class ChatCompletionResponseStreamChunk(MetricResponseMixin, BaseModel):
class ChatCompletionResponseStreamChunk(MetricResponseMixin):
"""A chunk of a streamed chat completion response.
:param event: The event containing the new content
@ -378,7 +372,7 @@ class ChatCompletionResponseStreamChunk(MetricResponseMixin, BaseModel):
@json_schema_type
class ChatCompletionResponse(MetricResponseMixin, BaseModel):
class ChatCompletionResponse(MetricResponseMixin):
"""Response from a chat completion request.
:param completion_message: The complete response message
@ -444,7 +438,7 @@ class Inference(Protocol):
self,
model_id: str,
content: InterleavedContent,
sampling_params: Optional[SamplingParams] = SamplingParams(),
sampling_params: Optional[SamplingParams] = None,
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
@ -467,7 +461,7 @@ class Inference(Protocol):
self,
model_id: str,
messages: List[Message],
sampling_params: Optional[SamplingParams] = SamplingParams(),
sampling_params: Optional[SamplingParams] = None,
tools: Optional[List[ToolDefinition]] = None,
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
tool_prompt_format: Optional[ToolPromptFormat] = None,

View file

@ -11,13 +11,6 @@ from pydantic import BaseModel
from llama_stack.schema_utils import json_schema_type, webmethod
@json_schema_type
class ProviderInfo(BaseModel):
api: str
provider_id: str
provider_type: str
@json_schema_type
class RouteInfo(BaseModel):
route: str
@ -36,19 +29,12 @@ class VersionInfo(BaseModel):
version: str
class ListProvidersResponse(BaseModel):
data: List[ProviderInfo]
class ListRoutesResponse(BaseModel):
data: List[RouteInfo]
@runtime_checkable
class Inspect(Protocol):
@webmethod(route="/inspect/providers", method="GET")
async def list_providers(self) -> ListProvidersResponse: ...
@webmethod(route="/inspect/routes", method="GET")
async def list_routes(self) -> ListRoutesResponse: ...

View file

@ -66,7 +66,7 @@ class Models(Protocol):
async def get_model(
self,
model_id: str,
) -> Optional[Model]: ...
) -> Model: ...
@webmethod(route="/models", method="POST")
async def register_model(

View file

@ -6,7 +6,7 @@
from datetime import datetime
from enum import Enum
from typing import Any, Dict, List, Literal, Optional, Protocol, Union
from typing import Any, Dict, List, Literal, Optional, Protocol
from pydantic import BaseModel, Field
from typing_extensions import Annotated
@ -88,10 +88,8 @@ class QATFinetuningConfig(BaseModel):
group_size: int
AlgorithmConfig = register_schema(
Annotated[Union[LoraFinetuningConfig, QATFinetuningConfig], Field(discriminator="type")],
name="AlgorithmConfig",
)
AlgorithmConfig = Annotated[LoraFinetuningConfig | QATFinetuningConfig, Field(discriminator="type")]
register_schema(AlgorithmConfig, name="AlgorithmConfig")
@json_schema_type
@ -184,7 +182,7 @@ class PostTraining(Protocol):
description="Model descriptor from `llama model list`",
),
checkpoint_dir: Optional[str] = None,
algorithm_config: Optional[AlgorithmConfig] = None,
algorithm_config: Optional[LoraFinetuningConfig | QATFinetuningConfig] = None,
) -> PostTrainingJob: ...
@webmethod(route="/post-training/preference-optimize", method="POST")
@ -202,10 +200,10 @@ class PostTraining(Protocol):
async def get_training_jobs(self) -> ListPostTrainingJobsResponse: ...
@webmethod(route="/post-training/job/status", method="GET")
async def get_training_job_status(self, job_uuid: str) -> Optional[PostTrainingJobStatusResponse]: ...
async def get_training_job_status(self, job_uuid: str) -> PostTrainingJobStatusResponse: ...
@webmethod(route="/post-training/job/cancel", method="POST")
async def cancel_training_job(self, job_uuid: str) -> None: ...
@webmethod(route="/post-training/job/artifacts", method="GET")
async def get_training_job_artifacts(self, job_uuid: str) -> Optional[PostTrainingJobArtifactsResponse]: ...
async def get_training_job_artifacts(self, job_uuid: str) -> PostTrainingJobArtifactsResponse: ...

View file

@ -0,0 +1,7 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .providers import * # noqa: F401 F403

View file

@ -0,0 +1,36 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict, List, Protocol, runtime_checkable
from pydantic import BaseModel
from llama_stack.schema_utils import json_schema_type, webmethod
@json_schema_type
class ProviderInfo(BaseModel):
api: str
provider_id: str
provider_type: str
config: Dict[str, Any]
class ListProvidersResponse(BaseModel):
data: List[ProviderInfo]
@runtime_checkable
class Providers(Protocol):
"""
Providers API for inspecting, listing, and modifying providers and their configurations.
"""
@webmethod(route="/providers", method="GET")
async def list_providers(self) -> ListProvidersResponse: ...
@webmethod(route="/providers/{provider_id}", method="GET")
async def inspect_provider(self, provider_id: str) -> ProviderInfo: ...

View file

@ -17,6 +17,13 @@ ScoringResultRow = Dict[str, Any]
@json_schema_type
class ScoringResult(BaseModel):
"""
A scoring result for a single row.
:param score_rows: The scoring result for each row. Each row is a map of column name to value.
:param aggregated_results: Map of metric name to aggregated value
"""
score_rows: List[ScoringResultRow]
# aggregated metrics to value
aggregated_results: Dict[str, Any]
@ -30,6 +37,12 @@ class ScoreBatchResponse(BaseModel):
@json_schema_type
class ScoreResponse(BaseModel):
"""
The response from scoring.
:param results: A map of scoring function name to ScoringResult.
"""
# each key in the dict is a scoring function name
results: Dict[str, ScoringResult]
@ -55,4 +68,11 @@ class Scoring(Protocol):
self,
input_rows: List[Dict[str, Any]],
scoring_functions: Dict[str, Optional[ScoringFnParams]],
) -> ScoreResponse: ...
) -> ScoreResponse:
"""Score a list of rows.
:param input_rows: The rows to score.
:param scoring_functions: The scoring functions to use for the scoring.
:return: ScoreResponse object containing rows and aggregated results
"""
...

View file

@ -36,6 +36,7 @@ class ScoringFnParamsType(Enum):
@json_schema_type
class AggregationFunctionType(Enum):
average = "average"
weighted_average = "weighted_average"
median = "median"
categorical_count = "categorical_count"
accuracy = "accuracy"
@ -78,17 +79,15 @@ class BasicScoringFnParams(BaseModel):
)
ScoringFnParams = register_schema(
Annotated[
Union[
LLMAsJudgeScoringFnParams,
RegexParserScoringFnParams,
BasicScoringFnParams,
],
Field(discriminator="type"),
ScoringFnParams = Annotated[
Union[
LLMAsJudgeScoringFnParams,
RegexParserScoringFnParams,
BasicScoringFnParams,
],
name="ScoringFnParams",
)
Field(discriminator="type"),
]
register_schema(ScoringFnParams, name="ScoringFnParams")
class CommonScoringFnFields(BaseModel):
@ -135,7 +134,7 @@ class ScoringFunctions(Protocol):
async def list_scoring_functions(self) -> ListScoringFunctionsResponse: ...
@webmethod(route="/scoring-functions/{scoring_fn_id:path}", method="GET")
async def get_scoring_function(self, scoring_fn_id: str, /) -> Optional[ScoringFn]: ...
async def get_scoring_function(self, scoring_fn_id: str, /) -> ScoringFn: ...
@webmethod(route="/scoring-functions", method="POST")
async def register_scoring_function(

View file

@ -49,7 +49,7 @@ class Shields(Protocol):
async def list_shields(self) -> ListShieldsResponse: ...
@webmethod(route="/shields/{identifier:path}", method="GET")
async def get_shield(self, identifier: str) -> Optional[Shield]: ...
async def get_shield(self, identifier: str) -> Shield: ...
@webmethod(route="/shields", method="POST")
async def register_shield(

View file

@ -96,6 +96,13 @@ class MetricEvent(EventCommon):
unit: str
@json_schema_type
class MetricInResponse(BaseModel):
metric: str
value: Union[int, float]
unit: Optional[str] = None
# This is a short term solution to allow inference API to return metrics
# The ideal way to do this is to have a way for all response types to include metrics
# and all metric events logged to the telemetry API to be inlcuded with the response
@ -117,7 +124,7 @@ class MetricEvent(EventCommon):
class MetricResponseMixin(BaseModel):
metrics: Optional[List[MetricEvent]] = None
metrics: Optional[List[MetricInResponse]] = None
@json_schema_type
@ -139,16 +146,14 @@ class SpanEndPayload(BaseModel):
status: SpanStatus
StructuredLogPayload = register_schema(
Annotated[
Union[
SpanStartPayload,
SpanEndPayload,
],
Field(discriminator="type"),
StructuredLogPayload = Annotated[
Union[
SpanStartPayload,
SpanEndPayload,
],
name="StructuredLogPayload",
)
Field(discriminator="type"),
]
register_schema(StructuredLogPayload, name="StructuredLogPayload")
@json_schema_type
@ -157,17 +162,15 @@ class StructuredLogEvent(EventCommon):
payload: StructuredLogPayload
Event = register_schema(
Annotated[
Union[
UnstructuredLogEvent,
MetricEvent,
StructuredLogEvent,
],
Field(discriminator="type"),
Event = Annotated[
Union[
UnstructuredLogEvent,
MetricEvent,
StructuredLogEvent,
],
name="Event",
)
Field(discriminator="type"),
]
register_schema(Event, name="Event")
@json_schema_type

View file

@ -17,6 +17,15 @@ from llama_stack.schema_utils import json_schema_type, register_schema, webmetho
@json_schema_type
class RAGDocument(BaseModel):
"""
A document to be used for document ingestion in the RAG Tool.
:param document_id: The unique identifier for the document.
:param content: The content of the document.
:param mime_type: The MIME type of the document.
:param metadata: Additional metadata for the document.
"""
document_id: str
content: InterleavedContent | URL
mime_type: str | None = None
@ -49,16 +58,14 @@ class LLMRAGQueryGeneratorConfig(BaseModel):
template: str
RAGQueryGeneratorConfig = register_schema(
Annotated[
Union[
DefaultRAGQueryGeneratorConfig,
LLMRAGQueryGeneratorConfig,
],
Field(discriminator="type"),
RAGQueryGeneratorConfig = Annotated[
Union[
DefaultRAGQueryGeneratorConfig,
LLMRAGQueryGeneratorConfig,
],
name="RAGQueryGeneratorConfig",
)
Field(discriminator="type"),
]
register_schema(RAGQueryGeneratorConfig, name="RAGQueryGeneratorConfig")
@json_schema_type

View file

@ -50,7 +50,7 @@ class VectorDBs(Protocol):
async def get_vector_db(
self,
vector_db_id: str,
) -> Optional[VectorDB]: ...
) -> VectorDB: ...
@webmethod(route="/vector-dbs", method="POST")
async def register_vector_db(