Merge branch 'main' of https://github.com/meta-llama/llama-stack into add_nemo_customizer

This commit is contained in:
Ubuntu 2025-03-20 09:34:19 +00:00
commit f534b4c2ea
571 changed files with 229651 additions and 12956 deletions

View file

@ -6,32 +6,26 @@
from pathlib import Path
from llama_stack.distribution.datatypes import ModelInput, Provider, ToolGroupInput
from llama_stack.models.llama.sku_list import all_registered_models
from llama_stack.distribution.datatypes import ModelInput, Provider, ShieldInput, ToolGroupInput
from llama_stack.providers.remote.inference.nvidia import NVIDIAConfig
from llama_stack.providers.remote.inference.nvidia.models import _MODEL_ENTRIES
from llama_stack.providers.remote.inference.nvidia.models import MODEL_ENTRIES
from llama_stack.providers.remote.post_training.nvidia import NvidiaPostTrainingConfig
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
from llama_stack.providers.remote.safety.nvidia import NVIDIASafetyConfig
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings, get_model_registry
def get_distribution_template() -> DistributionTemplate:
providers = {
"inference": ["remote::nvidia"],
"vector_io": ["inline::faiss"],
"safety": ["inline::llama-guard"],
"safety": ["remote::nvidia"],
"post_training": ["remote::nvidia"],
"agents": ["inline::meta-reference"],
"telemetry": ["inline::meta-reference"],
"eval": ["inline::meta-reference"],
"datasetio": ["remote::huggingface", "inline::localfs"],
"scoring": ["inline::basic", "inline::llm-as-judge", "inline::braintrust"],
"tool_runtime": [
"remote::brave-search",
"remote::tavily-search",
"inline::code-interpreter",
"inline::rag-runtime",
"remote::model-context-protocol",
],
"datasetio": ["inline::localfs"],
"scoring": ["inline::basic"],
"tool_runtime": ["inline::rag-runtime"],
}
inference_provider = Provider(
@ -45,55 +39,61 @@ def get_distribution_template() -> DistributionTemplate:
provider_type="remote::nvidia",
config=NvidiaPostTrainingConfig.sample_run_config(),
)
safety_provider = Provider(
provider_id="nvidia",
provider_type="remote::nvidia",
config=NVIDIASafetyConfig.sample_run_config(),
)
inference_model = ModelInput(
model_id="${env.INFERENCE_MODEL}",
provider_id="nvidia",
)
safety_model = ModelInput(
model_id="${env.SAFETY_MODEL}",
provider_id="nvidia",
)
core_model_to_hf_repo = {m.descriptor(): m.huggingface_repo for m in all_registered_models()}
default_models = [
ModelInput(
model_id=core_model_to_hf_repo[m.llama_model] if m.llama_model else m.provider_model_id,
provider_model_id=m.provider_model_id,
provider_id="nvidia",
model_type=m.model_type,
metadata=m.metadata,
)
for m in _MODEL_ENTRIES
]
available_models = {
"nvidia": MODEL_ENTRIES,
}
default_tool_groups = [
ToolGroupInput(
toolgroup_id="builtin::websearch",
provider_id="tavily-search",
),
ToolGroupInput(
toolgroup_id="builtin::rag",
provider_id="rag-runtime",
),
ToolGroupInput(
toolgroup_id="builtin::code_interpreter",
provider_id="code-interpreter",
),
]
default_models = get_model_registry(available_models)
return DistributionTemplate(
name="nvidia",
distro_type="remote_hosted",
description="Use NVIDIA NIM for running LLM inference",
description="Use NVIDIA NIM for running LLM inference and safety",
container_image=None,
template_path=Path(__file__).parent / "doc_template.md",
providers=providers,
default_models=default_models,
available_models_by_provider=available_models,
run_configs={
"run.yaml": RunConfigSettings(
provider_overrides={
"inference": [inference_provider],
"post_training": [post_training_provider],
},
default_models=default_models,
default_tool_groups=default_tool_groups,
),
"run-with-safety.yaml": RunConfigSettings(
provider_overrides={
"inference": [
inference_provider,
safety_provider,
]
},
default_models=[inference_model, safety_model],
default_shields=[ShieldInput(shield_id="${env.SAFETY_MODEL}", provider_id="nvidia")],
default_tool_groups=default_tool_groups,
),
},
run_config_env_vars={
"LLAMASTACK_PORT": (
"5001",
"Port for the Llama Stack distribution server",
),
"NVIDIA_API_KEY": (
"",
"NVIDIA API Key",
@ -123,5 +123,17 @@ def get_distribution_template() -> DistributionTemplate:
"test-example-model@v1",
"NVIDIA Output Model Directory",
),
"GUARDRAILS_SERVICE_URL": (
"http://0.0.0.0:7331",
"URL for the NeMo Guardrails Service",
),
"INFERENCE_MODEL": (
"Llama3.1-8B-Instruct",
"Inference model",
),
"SAFETY_MODEL": (
"meta/llama-3.1-8b-instruct",
"Name of the model to use for safety",
),
},
)