mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-08-02 08:44:44 +00:00
move the save to dataset to telemetry
This commit is contained in:
parent
4c78432bc8
commit
f5d427c178
9 changed files with 79 additions and 64 deletions
|
@ -90,11 +90,6 @@ class Eval(Protocol):
|
||||||
task_config: EvalTaskConfig,
|
task_config: EvalTaskConfig,
|
||||||
) -> EvaluateResponse: ...
|
) -> EvaluateResponse: ...
|
||||||
|
|
||||||
@webmethod(route="/eval/create-annotation-dataset", method="POST")
|
|
||||||
async def create_annotation_dataset(
|
|
||||||
self, session_id: str, dataset_id: str
|
|
||||||
) -> None: ...
|
|
||||||
|
|
||||||
@webmethod(route="/eval/job/status", method="GET")
|
@webmethod(route="/eval/job/status", method="GET")
|
||||||
async def job_status(self, task_id: str, job_id: str) -> Optional[JobStatus]: ...
|
async def job_status(self, task_id: str, job_id: str) -> Optional[JobStatus]: ...
|
||||||
|
|
||||||
|
|
|
@ -21,6 +21,8 @@ from llama_models.schema_utils import json_schema_type, webmethod
|
||||||
from pydantic import BaseModel, Field
|
from pydantic import BaseModel, Field
|
||||||
from typing_extensions import Annotated
|
from typing_extensions import Annotated
|
||||||
|
|
||||||
|
from llama_stack.apis.datasetio import DatasetIO
|
||||||
|
|
||||||
# Add this constant near the top of the file, after the imports
|
# Add this constant near the top of the file, after the imports
|
||||||
DEFAULT_TTL_DAYS = 7
|
DEFAULT_TTL_DAYS = 7
|
||||||
|
|
||||||
|
@ -165,6 +167,8 @@ class QueryCondition(BaseModel):
|
||||||
@runtime_checkable
|
@runtime_checkable
|
||||||
class Telemetry(Protocol):
|
class Telemetry(Protocol):
|
||||||
|
|
||||||
|
datasetio_api: DatasetIO
|
||||||
|
|
||||||
@webmethod(route="/telemetry/log-event")
|
@webmethod(route="/telemetry/log-event")
|
||||||
async def log_event(
|
async def log_event(
|
||||||
self, event: Event, ttl_seconds: int = DEFAULT_TTL_DAYS * 86400
|
self, event: Event, ttl_seconds: int = DEFAULT_TTL_DAYS * 86400
|
||||||
|
@ -186,3 +190,64 @@ class Telemetry(Protocol):
|
||||||
attributes_to_return: Optional[List[str]] = None,
|
attributes_to_return: Optional[List[str]] = None,
|
||||||
max_depth: Optional[int] = None,
|
max_depth: Optional[int] = None,
|
||||||
) -> SpanWithChildren: ...
|
) -> SpanWithChildren: ...
|
||||||
|
|
||||||
|
@webmethod(route="/telemetry/query-spans", method="POST")
|
||||||
|
async def query_spans(
|
||||||
|
self,
|
||||||
|
attribute_filters: List[QueryCondition],
|
||||||
|
attributes_to_return: List[str],
|
||||||
|
max_depth: Optional[int] = None,
|
||||||
|
) -> List[Dict[str, Any]]:
|
||||||
|
traces = await self.query_traces(attribute_filters=attribute_filters)
|
||||||
|
|
||||||
|
rows = []
|
||||||
|
|
||||||
|
for trace in traces:
|
||||||
|
span_tree = await self.get_span_tree(
|
||||||
|
span_id=trace.root_span_id,
|
||||||
|
attributes_to_return=attributes_to_return,
|
||||||
|
max_depth=max_depth,
|
||||||
|
)
|
||||||
|
|
||||||
|
def extract_spans(span: SpanWithChildren) -> List[Dict[str, Any]]:
|
||||||
|
rows = []
|
||||||
|
if span.attributes and all(
|
||||||
|
attr in span.attributes and span.attributes[attr] is not None
|
||||||
|
for attr in attributes_to_return
|
||||||
|
):
|
||||||
|
row = {
|
||||||
|
"trace_id": trace.root_span_id,
|
||||||
|
"span_id": span.span_id,
|
||||||
|
"step_name": span.name,
|
||||||
|
}
|
||||||
|
for attr in attributes_to_return:
|
||||||
|
row[attr] = str(span.attributes[attr])
|
||||||
|
rows.append(row)
|
||||||
|
|
||||||
|
for child in span.children:
|
||||||
|
rows.extend(extract_spans(child))
|
||||||
|
|
||||||
|
return rows
|
||||||
|
|
||||||
|
rows.extend(extract_spans(span_tree))
|
||||||
|
|
||||||
|
return rows
|
||||||
|
|
||||||
|
@webmethod(route="/telemetry/save-traces-to-dataset", method="POST")
|
||||||
|
async def save_traces_to_dataset(
|
||||||
|
self,
|
||||||
|
attribute_filters: List[QueryCondition],
|
||||||
|
attributes_to_save: List[str],
|
||||||
|
dataset_id: str,
|
||||||
|
max_depth: Optional[int] = None,
|
||||||
|
) -> None:
|
||||||
|
annotation_rows = await self.query_spans(
|
||||||
|
attribute_filters=attribute_filters,
|
||||||
|
attributes_to_return=attributes_to_save,
|
||||||
|
max_depth=max_depth,
|
||||||
|
)
|
||||||
|
|
||||||
|
if annotation_rows:
|
||||||
|
await self.datasetio_api.append_rows(
|
||||||
|
dataset_id=dataset_id, rows=annotation_rows
|
||||||
|
)
|
||||||
|
|
|
@ -349,11 +349,14 @@ def check_protocol_compliance(obj: Any, protocol: Any) -> None:
|
||||||
method_owner = next(
|
method_owner = next(
|
||||||
(cls for cls in mro if name in cls.__dict__), None
|
(cls for cls in mro if name in cls.__dict__), None
|
||||||
)
|
)
|
||||||
if (
|
proto_method = getattr(protocol, name)
|
||||||
method_owner is None
|
if method_owner is None:
|
||||||
or method_owner.__name__ == protocol.__name__
|
|
||||||
):
|
|
||||||
missing_methods.append((name, "not_actually_implemented"))
|
missing_methods.append((name, "not_actually_implemented"))
|
||||||
|
elif method_owner.__name__ == protocol.__name__:
|
||||||
|
# Check if it's just a stub (...) or has real implementation
|
||||||
|
proto_source = inspect.getsource(proto_method)
|
||||||
|
if "..." in proto_source:
|
||||||
|
missing_methods.append((name, "not_actually_implemented"))
|
||||||
|
|
||||||
if missing_methods:
|
if missing_methods:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
|
|
|
@ -23,7 +23,6 @@ async def get_provider_impl(
|
||||||
deps[Api.scoring],
|
deps[Api.scoring],
|
||||||
deps[Api.inference],
|
deps[Api.inference],
|
||||||
deps[Api.agents],
|
deps[Api.agents],
|
||||||
deps[Api.telemetry],
|
|
||||||
)
|
)
|
||||||
await impl.initialize()
|
await impl.initialize()
|
||||||
return impl
|
return impl
|
||||||
|
|
|
@ -16,7 +16,6 @@ from llama_stack.apis.datasets import Datasets
|
||||||
from llama_stack.apis.eval_tasks import EvalTask
|
from llama_stack.apis.eval_tasks import EvalTask
|
||||||
from llama_stack.apis.inference import Inference
|
from llama_stack.apis.inference import Inference
|
||||||
from llama_stack.apis.scoring import Scoring
|
from llama_stack.apis.scoring import Scoring
|
||||||
from llama_stack.apis.telemetry import QueryCondition, SpanWithChildren, Telemetry
|
|
||||||
from llama_stack.providers.datatypes import EvalTasksProtocolPrivate
|
from llama_stack.providers.datatypes import EvalTasksProtocolPrivate
|
||||||
from llama_stack.providers.utils.kvstore import kvstore_impl
|
from llama_stack.providers.utils.kvstore import kvstore_impl
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
|
@ -43,7 +42,6 @@ class MetaReferenceEvalImpl(Eval, EvalTasksProtocolPrivate):
|
||||||
scoring_api: Scoring,
|
scoring_api: Scoring,
|
||||||
inference_api: Inference,
|
inference_api: Inference,
|
||||||
agents_api: Agents,
|
agents_api: Agents,
|
||||||
telemetry_api: Telemetry,
|
|
||||||
) -> None:
|
) -> None:
|
||||||
self.config = config
|
self.config = config
|
||||||
self.datasetio_api = datasetio_api
|
self.datasetio_api = datasetio_api
|
||||||
|
@ -51,7 +49,6 @@ class MetaReferenceEvalImpl(Eval, EvalTasksProtocolPrivate):
|
||||||
self.scoring_api = scoring_api
|
self.scoring_api = scoring_api
|
||||||
self.inference_api = inference_api
|
self.inference_api = inference_api
|
||||||
self.agents_api = agents_api
|
self.agents_api = agents_api
|
||||||
self.telemetry_api = telemetry_api
|
|
||||||
|
|
||||||
# TODO: assume sync job, will need jobs API for async scheduling
|
# TODO: assume sync job, will need jobs API for async scheduling
|
||||||
self.jobs = {}
|
self.jobs = {}
|
||||||
|
@ -272,50 +269,3 @@ class MetaReferenceEvalImpl(Eval, EvalTasksProtocolPrivate):
|
||||||
raise ValueError(f"Job is not completed, Status: {status.value}")
|
raise ValueError(f"Job is not completed, Status: {status.value}")
|
||||||
|
|
||||||
return self.jobs[job_id]
|
return self.jobs[job_id]
|
||||||
|
|
||||||
async def create_annotation_dataset(self, session_id: str, dataset_id: str) -> None:
|
|
||||||
traces = await self.telemetry_api.query_traces(
|
|
||||||
attribute_filters=[
|
|
||||||
QueryCondition(key="session_id", op="eq", value=session_id),
|
|
||||||
]
|
|
||||||
)
|
|
||||||
|
|
||||||
annotation_rows = []
|
|
||||||
|
|
||||||
for trace in traces:
|
|
||||||
span_tree = await self.telemetry_api.get_span_tree(
|
|
||||||
span_id=trace.root_span_id,
|
|
||||||
attributes_to_return=[
|
|
||||||
"input",
|
|
||||||
"output",
|
|
||||||
"name",
|
|
||||||
],
|
|
||||||
)
|
|
||||||
|
|
||||||
def extract_spans(span: SpanWithChildren) -> List[Dict[str, Any]]:
|
|
||||||
rows = []
|
|
||||||
if (
|
|
||||||
span.attributes
|
|
||||||
and "input" in span.attributes
|
|
||||||
and "output" in span.attributes
|
|
||||||
):
|
|
||||||
row = {
|
|
||||||
"input_query": span.attributes.get("input", ""),
|
|
||||||
"generated_answer": span.attributes.get("output", ""),
|
|
||||||
"trace_id": trace.root_span_id,
|
|
||||||
"span_id": span.span_id,
|
|
||||||
"step_name": span.name,
|
|
||||||
}
|
|
||||||
rows.append(row)
|
|
||||||
|
|
||||||
for child in span.children:
|
|
||||||
rows.extend(extract_spans(child))
|
|
||||||
|
|
||||||
return rows
|
|
||||||
|
|
||||||
annotation_rows.extend(extract_spans(span_tree))
|
|
||||||
|
|
||||||
if annotation_rows:
|
|
||||||
await self.datasetio_api.append_rows(
|
|
||||||
dataset_id=dataset_id, rows=annotation_rows
|
|
||||||
)
|
|
||||||
|
|
|
@ -13,6 +13,6 @@ __all__ = ["TelemetryConfig", "TelemetryAdapter", "TelemetrySink"]
|
||||||
|
|
||||||
|
|
||||||
async def get_provider_impl(config: TelemetryConfig, deps: Dict[str, Any]):
|
async def get_provider_impl(config: TelemetryConfig, deps: Dict[str, Any]):
|
||||||
impl = TelemetryAdapter(config)
|
impl = TelemetryAdapter(config, deps)
|
||||||
await impl.initialize()
|
await impl.initialize()
|
||||||
return impl
|
return impl
|
||||||
|
|
|
@ -5,7 +5,7 @@
|
||||||
# the root directory of this source tree.
|
# the root directory of this source tree.
|
||||||
|
|
||||||
import threading
|
import threading
|
||||||
from typing import List, Optional
|
from typing import Any, Dict, List, Optional
|
||||||
|
|
||||||
from opentelemetry import metrics, trace
|
from opentelemetry import metrics, trace
|
||||||
from opentelemetry.exporter.otlp.proto.http.metric_exporter import OTLPMetricExporter
|
from opentelemetry.exporter.otlp.proto.http.metric_exporter import OTLPMetricExporter
|
||||||
|
@ -28,6 +28,8 @@ from llama_stack.providers.utils.telemetry.sqlite_trace_store import SQLiteTrace
|
||||||
|
|
||||||
from llama_stack.apis.telemetry import * # noqa: F403
|
from llama_stack.apis.telemetry import * # noqa: F403
|
||||||
|
|
||||||
|
from llama_stack.distribution.datatypes import Api
|
||||||
|
|
||||||
from .config import TelemetryConfig, TelemetrySink
|
from .config import TelemetryConfig, TelemetrySink
|
||||||
|
|
||||||
_GLOBAL_STORAGE = {
|
_GLOBAL_STORAGE = {
|
||||||
|
@ -55,8 +57,9 @@ def is_tracing_enabled(tracer):
|
||||||
|
|
||||||
|
|
||||||
class TelemetryAdapter(Telemetry):
|
class TelemetryAdapter(Telemetry):
|
||||||
def __init__(self, config: TelemetryConfig) -> None:
|
def __init__(self, config: TelemetryConfig, deps: Dict[str, Any]) -> None:
|
||||||
self.config = config
|
self.config = config
|
||||||
|
self.datasetio_api = deps[Api.datasetio]
|
||||||
|
|
||||||
resource = Resource.create(
|
resource = Resource.create(
|
||||||
{
|
{
|
||||||
|
|
|
@ -23,7 +23,6 @@ def available_providers() -> List[ProviderSpec]:
|
||||||
Api.scoring,
|
Api.scoring,
|
||||||
Api.inference,
|
Api.inference,
|
||||||
Api.agents,
|
Api.agents,
|
||||||
Api.telemetry,
|
|
||||||
],
|
],
|
||||||
),
|
),
|
||||||
]
|
]
|
||||||
|
|
|
@ -18,6 +18,7 @@ def available_providers() -> List[ProviderSpec]:
|
||||||
"opentelemetry-sdk",
|
"opentelemetry-sdk",
|
||||||
"opentelemetry-exporter-otlp-proto-http",
|
"opentelemetry-exporter-otlp-proto-http",
|
||||||
],
|
],
|
||||||
|
api_dependencies=[Api.datasetio],
|
||||||
module="llama_stack.providers.inline.telemetry.meta_reference",
|
module="llama_stack.providers.inline.telemetry.meta_reference",
|
||||||
config_class="llama_stack.providers.inline.telemetry.meta_reference.config.TelemetryConfig",
|
config_class="llama_stack.providers.inline.telemetry.meta_reference.config.TelemetryConfig",
|
||||||
),
|
),
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue