add documentation

This commit is contained in:
Ubuntu 2025-03-08 12:07:33 +00:00 committed by raspawar
parent 409383ae5f
commit f5ebad130c
3 changed files with 147 additions and 1 deletions

View file

@ -9,6 +9,7 @@ The `llamastack/distribution-nvidia` distribution consists of the following prov
| datasetio | `inline::localfs` |
| eval | `inline::meta-reference` |
| inference | `remote::nvidia` |
| post_training | `remote::nvidia` |
| safety | `remote::nvidia` |
| scoring | `inline::basic` |
| telemetry | `inline::meta-reference` |
@ -21,6 +22,13 @@ The `llamastack/distribution-nvidia` distribution consists of the following prov
The following environment variables can be configured:
- `NVIDIA_API_KEY`: NVIDIA API Key (default: ``)
- `NVIDIA_CUSTOMIZER_URL`: NVIDIA Customizer URL (default: `http://nemo.test`)
- `NVIDIA_USER_ID`: NVIDIA user ID (default: `llama-stack-user`)
- `NVIDIA_DATASET_NAMESPACE`: NVIDIA dataset namespace (default: `default`)
- `NVIDIA_ACCESS_POLICIES`: NVIDIA access policies (default: `{}`)
- `NVIDIA_PROJECT_ID`: NVIDIA project ID (default: `test-project`)
- `NVIDIA_OUTPUT_MODEL_DIR`: Directory to save the output model (default: `test-example-model@v1`)
- `GUARDRAILS_SERVICE_URL`: URL for the NeMo Guardrails Service (default: `http://0.0.0.0:7331`)
- `INFERENCE_MODEL`: Inference model (default: `Llama3.1-8B-Instruct`)
- `SAFETY_MODEL`: Name of the model to use for safety (default: `meta/llama-3.1-8b-instruct`)

View file

@ -0,0 +1,138 @@
# NVIDIA Post-Training Provider for LlamaStack
This provider enables fine-tuning of LLMs using NVIDIA's NeMo Customizer service.
## Features
- Supervised fine-tuning of Llama models
- LoRA fine-tuning support
- Job management and status tracking
## Getting Started
### Prerequisites
- LlamaStack with NVIDIA configuration
- Access to Hosted NVIDIA NeMo Customizer service
- Dataset registered in the Hosted NVIDIA NeMo Customizer service
- Base model downloaded and available in the Hosted NVIDIA NeMo Customizer service
### Setup
Build the NVIDIA environment:
```bash
llama stack build --template nvidia --image-type conda
```
### Basic Usage using the LlamaStack Python Client
### Create Customization Job
#### Initialize the client
```python
import os
os.environ["NVIDIA_API_KEY"] = "your-api-key"
os.environ["NVIDIA_CUSTOMIZER_URL"] = "http://nemo.test"
os.environ["NVIDIA_USER_ID"] = "llama-stack-user"
os.environ["NVIDIA_DATASET_NAMESPACE"] = "default"
os.environ["NVIDIA_PROJECT_ID"] = "test-project"
os.environ["NVIDIA_OUTPUT_MODEL_DIR"] = "test-example-model@v1"
from llama_stack.distribution.library_client import LlamaStackAsLibraryClient
client = LlamaStackAsLibraryClient("nvidia")
client.initialize()
```
#### Configure fine-tuning parameters
```python
from llama_stack_client.types.post_training_supervised_fine_tune_params import (
TrainingConfig,
TrainingConfigDataConfig,
TrainingConfigOptimizerConfig,
)
from llama_stack_client.types.algorithm_config_param import LoraFinetuningConfig
```
#### Set up LoRA configuration
```python
algorithm_config = LoraFinetuningConfig(type="LoRA", adapter_dim=16)
```
#### Configure training data
```python
data_config = TrainingConfigDataConfig(
dataset_id="your-dataset-id", # Use client.datasets.list() to see available datasets
batch_size=16,
)
```
#### Configure optimizer
```python
optimizer_config = TrainingConfigOptimizerConfig(
lr=0.0001,
)
```
#### Set up training configuration
```python
training_config = TrainingConfig(
n_epochs=2,
data_config=data_config,
optimizer_config=optimizer_config,
)
```
#### Start fine-tuning job
```python
training_job = client.post_training.supervised_fine_tune(
job_uuid="unique-job-id",
model="meta-llama/Llama-3.1-8B-Instruct",
checkpoint_dir="",
algorithm_config=algorithm_config,
training_config=training_config,
logger_config={},
hyperparam_search_config={},
)
```
### List all jobs
```python
jobs = client.post_training.job.list()
```
### Check job status
```python
job_status = client.post_training.job.status(job_uuid="your-job-id")
```
### Cancel a job
```python
client.post_training.job.cancel(job_uuid="your-job-id")
```
### Inference with the fine-tuned model
```python
response = client.inference.completion(
content="Complete the sentence using one word: Roses are red, violets are ",
stream=False,
model_id="test-example-model@v1",
sampling_params={
"max_tokens": 50,
},
)
print(response.content)
```

View file

@ -40,7 +40,7 @@ class NvidiaPostTrainingConfig(BaseModel):
# ToDO: validate this, add default value
customizer_url: str = Field(
default_factory=lambda: os.getenv("NVIDIA_CUSTOMIZER_URL"),
default_factory=lambda: os.getenv("NVIDIA_CUSTOMIZER_URL", "http://nemo.test"),
description="Base URL for the NeMo Customizer API",
)