mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 10:54:19 +00:00
feat: created unit test to verify query_vector function handles the edge case when the query embedding and an embedding in the vector db are identical doesn't lead to zero divison exception.
This commit is contained in:
parent
fea01c5a25
commit
f60c3c4acf
1 changed files with 134 additions and 0 deletions
134
tests/unit/providers/vector_io/test_faiss.py
Normal file
134
tests/unit/providers/vector_io/test_faiss.py
Normal file
|
@ -0,0 +1,134 @@
|
||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
#
|
||||||
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
|
# the root directory of this source tree.
|
||||||
|
|
||||||
|
import asyncio
|
||||||
|
from unittest.mock import AsyncMock, MagicMock, patch
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import pytest
|
||||||
|
import pytest_asyncio
|
||||||
|
|
||||||
|
from llama_stack.apis.inference import EmbeddingsResponse, Inference
|
||||||
|
from llama_stack.apis.vector_dbs import VectorDB
|
||||||
|
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse
|
||||||
|
|
||||||
|
from llama_stack.providers.inline.vector_io.faiss.faiss import (
|
||||||
|
FaissIndex,
|
||||||
|
FaissVectorIOAdapter,
|
||||||
|
)
|
||||||
|
from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig
|
||||||
|
|
||||||
|
# This test is a unit test for the FaissVectorIOAdapter class. This should only contain
|
||||||
|
# tests which are specific to this class. More general (API-level) tests should be placed in
|
||||||
|
# tests/integration/vector_io/
|
||||||
|
#
|
||||||
|
# How to run this test:
|
||||||
|
#
|
||||||
|
# pytest tests/unit/providers/vector_io/test_faiss.py \
|
||||||
|
# -v -s --tb=short --disable-warnings --asyncio-mode=auto
|
||||||
|
|
||||||
|
FAISS_PROVIDER = "faiss"
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture(scope="session")
|
||||||
|
def loop():
|
||||||
|
return asyncio.new_event_loop()
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture
|
||||||
|
def embedding_dimension():
|
||||||
|
return 384
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture
|
||||||
|
def vector_db_id():
|
||||||
|
return "test_vector_db"
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture
|
||||||
|
def sample_chunks():
|
||||||
|
return [
|
||||||
|
Chunk(
|
||||||
|
content="MOCK text content 1",
|
||||||
|
mime_type="text/plain",
|
||||||
|
metadata={"document_id": "mock-doc-1"}
|
||||||
|
),
|
||||||
|
Chunk(
|
||||||
|
content="MOCK text content 1",
|
||||||
|
mime_type="text/plain",
|
||||||
|
metadata={"document_id": "mock-doc-2"}
|
||||||
|
)
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture
|
||||||
|
def sample_embeddings(embedding_dimension):
|
||||||
|
return np.random.rand(2, embedding_dimension).astype(np.float32)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture
|
||||||
|
def mock_vector_db(vector_db_id, embedding_dimension) -> MagicMock:
|
||||||
|
mock_vector_db = MagicMock(spec=VectorDB)
|
||||||
|
mock_vector_db.embedding_model = "mock_embedding_model"
|
||||||
|
mock_vector_db.identifier = vector_db_id
|
||||||
|
mock_vector_db.embedding_dimension = embedding_dimension
|
||||||
|
return mock_vector_db
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture
|
||||||
|
def mock_inference_api(sample_embeddings):
|
||||||
|
mock_api = MagicMock(spec=Inference)
|
||||||
|
mock_api.embeddings = AsyncMock(return_value=EmbeddingsResponse(embeddings=sample_embeddings))
|
||||||
|
return mock_api
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture
|
||||||
|
def faiss_config():
|
||||||
|
config = MagicMock(spec=FaissVectorIOConfig)
|
||||||
|
config.kvstore = None
|
||||||
|
return config
|
||||||
|
|
||||||
|
|
||||||
|
@pytest_asyncio.fixture
|
||||||
|
async def faiss_index(embedding_dimension):
|
||||||
|
index = await FaissIndex.create(dimension=embedding_dimension)
|
||||||
|
yield index
|
||||||
|
|
||||||
|
|
||||||
|
@pytest_asyncio.fixture
|
||||||
|
async def faiss_adapter(faiss_config, mock_inference_api) -> FaissVectorIOAdapter:
|
||||||
|
adapter = FaissVectorIOAdapter(config=faiss_config, inference_api=mock_inference_api)
|
||||||
|
await adapter.initialize()
|
||||||
|
yield adapter
|
||||||
|
await adapter.shutdown()
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_faiss_query_vector_returns_infinity_when_query_and_embedding_are_identical(faiss_index, sample_chunks, sample_embeddings, embedding_dimension):
|
||||||
|
await faiss_index.add_chunks(sample_chunks, sample_embeddings)
|
||||||
|
query_embedding = np.random.rand(embedding_dimension).astype(np.float32)
|
||||||
|
|
||||||
|
with patch.object(faiss_index.index, 'search') as mock_search:
|
||||||
|
mock_search.return_value = (
|
||||||
|
np.array([[0.0, 0.1]]),
|
||||||
|
np.array([[0, 1]])
|
||||||
|
)
|
||||||
|
|
||||||
|
response = await faiss_index.query_vector(
|
||||||
|
embedding=query_embedding,
|
||||||
|
k=2,
|
||||||
|
score_threshold=0.0
|
||||||
|
)
|
||||||
|
|
||||||
|
assert isinstance(response, QueryChunksResponse)
|
||||||
|
assert len(response.chunks) == 2
|
||||||
|
assert len(response.scores) == 2
|
||||||
|
|
||||||
|
assert response.scores[0] == float("inf") # infinity (1.0 / 0.0)
|
||||||
|
assert response.scores[1] == 10.0 # (1.0 / 0.1 = 10.0)
|
||||||
|
|
||||||
|
assert response.chunks[0] == sample_chunks[0]
|
||||||
|
assert response.chunks[1] == sample_chunks[1]
|
Loading…
Add table
Add a link
Reference in a new issue