Merge branch 'main' into make-kvstore-optional

This commit is contained in:
Francisco Arceo 2025-08-05 14:10:30 -04:00 committed by GitHub
commit f62e6cb063
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
554 changed files with 63962 additions and 4870 deletions

View file

@ -1,5 +1,13 @@
# Agents Providers
# Agents
## Overview
This section contains documentation for all available providers for the **agents** API.
- [inline::meta-reference](inline_meta-reference.md)
## Providers
```{toctree}
:maxdepth: 1
inline_meta-reference
```

View file

@ -1,7 +1,15 @@
# Datasetio Providers
# Datasetio
## Overview
This section contains documentation for all available providers for the **datasetio** API.
- [inline::localfs](inline_localfs.md)
- [remote::huggingface](remote_huggingface.md)
- [remote::nvidia](remote_nvidia.md)
## Providers
```{toctree}
:maxdepth: 1
inline_localfs
remote_huggingface
remote_nvidia
```

View file

@ -1,6 +1,14 @@
# Eval Providers
# Eval
## Overview
This section contains documentation for all available providers for the **eval** API.
- [inline::meta-reference](inline_meta-reference.md)
- [remote::nvidia](remote_nvidia.md)
## Providers
```{toctree}
:maxdepth: 1
inline_meta-reference
remote_nvidia
```

View file

@ -1,9 +1,4 @@
# External Providers Guide
Llama Stack supports external providers that live outside of the main codebase. This allows you to:
- Create and maintain your own providers independently
- Share providers with others without contributing to the main codebase
- Keep provider-specific code separate from the core Llama Stack code
# Creating External Providers
## Configuration
@ -12,8 +7,7 @@ To enable external providers, you need to add `module` into your build yaml, all
an example entry in your build.yaml should look like:
```
- provider_id: ramalama
provider_type: remote::ramalama
- provider_type: remote::ramalama
module: ramalama_stack
```
@ -56,17 +50,6 @@ Llama Stack supports two types of external providers:
1. **Remote Providers**: Providers that communicate with external services (e.g., cloud APIs)
2. **Inline Providers**: Providers that run locally within the Llama Stack process
## Known External Providers
Here's a list of known external providers that you can use with Llama Stack:
| Name | Description | API | Type | Repository |
|------|-------------|-----|------|------------|
| KubeFlow Training | Train models with KubeFlow | Post Training | Remote | [llama-stack-provider-kft](https://github.com/opendatahub-io/llama-stack-provider-kft) |
| KubeFlow Pipelines | Train models with KubeFlow Pipelines | Post Training | Inline **and** Remote | [llama-stack-provider-kfp-trainer](https://github.com/opendatahub-io/llama-stack-provider-kfp-trainer) |
| RamaLama | Inference models with RamaLama | Inference | Remote | [ramalama-stack](https://github.com/containers/ramalama-stack) |
| TrustyAI LM-Eval | Evaluate models with TrustyAI LM-Eval | Eval | Remote | [llama-stack-provider-lmeval](https://github.com/trustyai-explainability/llama-stack-provider-lmeval) |
### Remote Provider Specification
Remote providers are used when you need to communicate with external services. Here's an example for a custom Ollama provider:
@ -120,9 +103,9 @@ container_image: custom-vector-store:latest # optional
- `provider_data_validator`: Optional validator for provider data
- `container_image`: Optional container image to use instead of pip packages
## Required Implementation
## Required Fields
## All Providers
### All Providers
All providers must contain a `get_provider_spec` function in their `provider` module. This is a standardized structure that Llama Stack expects and is necessary for getting things such as the config class. The `get_provider_spec` method returns a structure identical to the `adapter`. An example function may look like:
@ -147,7 +130,7 @@ def get_provider_spec() -> ProviderSpec:
)
```
### Remote Providers
#### Remote Providers
Remote providers must expose a `get_adapter_impl()` function in their module that takes two arguments:
1. `config`: An instance of the provider's config class
@ -163,7 +146,7 @@ async def get_adapter_impl(
return OllamaInferenceAdapter(config)
```
### Inline Providers
#### Inline Providers
Inline providers must expose a `get_provider_impl()` function in their module that takes two arguments:
1. `config`: An instance of the provider's config class
@ -190,7 +173,40 @@ Version: 0.1.0
Location: /path/to/venv/lib/python3.10/site-packages
```
## Example using `external_providers_dir`: Custom Ollama Provider
## Best Practices
1. **Package Naming**: Use the prefix `llama-stack-provider-` for your provider packages to make them easily identifiable.
2. **Version Management**: Keep your provider package versioned and compatible with the Llama Stack version you're using.
3. **Dependencies**: Only include the minimum required dependencies in your provider package.
4. **Documentation**: Include clear documentation in your provider package about:
- Installation requirements
- Configuration options
- Usage examples
- Any limitations or known issues
5. **Testing**: Include tests in your provider package to ensure it works correctly with Llama Stack.
You can refer to the [integration tests
guide](https://github.com/meta-llama/llama-stack/blob/main/tests/integration/README.md) for more
information. Execute the test for the Provider type you are developing.
## Troubleshooting
If your external provider isn't being loaded:
1. Check that `module` points to a published pip package with a top level `provider` module including `get_provider_spec`.
1. Check that the `external_providers_dir` path is correct and accessible.
2. Verify that the YAML files are properly formatted.
3. Ensure all required Python packages are installed.
4. Check the Llama Stack server logs for any error messages - turn on debug logging to get more
information using `LLAMA_STACK_LOGGING=all=debug`.
5. Verify that the provider package is installed in your Python environment if using `external_providers_dir`.
## Examples
### Example using `external_providers_dir`: Custom Ollama Provider
Here's a complete example of creating and using a custom Ollama provider:
@ -242,7 +258,7 @@ external_providers_dir: ~/.llama/providers.d/
The provider will now be available in Llama Stack with the type `remote::custom_ollama`.
## Example using `module`: ramalama-stack
### Example using `module`: ramalama-stack
[ramalama-stack](https://github.com/containers/ramalama-stack) is a recognized external provider that supports installation via module.
@ -255,8 +271,7 @@ distribution_spec:
container_image: null
providers:
inference:
- provider_id: ramalama
provider_type: remote::ramalama
- provider_type: remote::ramalama
module: ramalama_stack==0.3.0a0
image_type: venv
image_name: null
@ -268,35 +283,4 @@ additional_pip_packages:
No other steps are required other than `llama stack build` and `llama stack run`. The build process will use `module` to install all of the provider dependencies, retrieve the spec, etc.
The provider will now be available in Llama Stack with the type `remote::ramalama`.
## Best Practices
1. **Package Naming**: Use the prefix `llama-stack-provider-` for your provider packages to make them easily identifiable.
2. **Version Management**: Keep your provider package versioned and compatible with the Llama Stack version you're using.
3. **Dependencies**: Only include the minimum required dependencies in your provider package.
4. **Documentation**: Include clear documentation in your provider package about:
- Installation requirements
- Configuration options
- Usage examples
- Any limitations or known issues
5. **Testing**: Include tests in your provider package to ensure it works correctly with Llama Stack.
You can refer to the [integration tests
guide](https://github.com/meta-llama/llama-stack/blob/main/tests/integration/README.md) for more
information. Execute the test for the Provider type you are developing.
## Troubleshooting
If your external provider isn't being loaded:
1. Check that `module` points to a published pip package with a top level `provider` module including `get_provider_spec`.
1. Check that the `external_providers_dir` path is correct and accessible.
2. Verify that the YAML files are properly formatted.
3. Ensure all required Python packages are installed.
4. Check the Llama Stack server logs for any error messages - turn on debug logging to get more
information using `LLAMA_STACK_LOGGING=all=debug`.
5. Verify that the provider package is installed in your Python environment if using `external_providers_dir`.
The provider will now be available in Llama Stack with the type `remote::ramalama`.

View file

@ -0,0 +1,10 @@
# Known External Providers
Here's a list of known external providers that you can use with Llama Stack:
| Name | Description | API | Type | Repository |
|------|-------------|-----|------|------------|
| KubeFlow Training | Train models with KubeFlow | Post Training | Remote | [llama-stack-provider-kft](https://github.com/opendatahub-io/llama-stack-provider-kft) |
| KubeFlow Pipelines | Train models with KubeFlow Pipelines | Post Training | Inline **and** Remote | [llama-stack-provider-kfp-trainer](https://github.com/opendatahub-io/llama-stack-provider-kfp-trainer) |
| RamaLama | Inference models with RamaLama | Inference | Remote | [ramalama-stack](https://github.com/containers/ramalama-stack) |
| TrustyAI LM-Eval | Evaluate models with TrustyAI LM-Eval | Eval | Remote | [llama-stack-provider-lmeval](https://github.com/trustyai-explainability/llama-stack-provider-lmeval) |

13
docs/source/providers/external/index.md vendored Normal file
View file

@ -0,0 +1,13 @@
# External Providers
Llama Stack supports external providers that live outside of the main codebase. This allows you to:
- Create and maintain your own providers independently
- Share providers with others without contributing to the main codebase
- Keep provider-specific code separate from the core Llama Stack code
```{toctree}
:maxdepth: 1
external-providers-list
external-providers-guide
```

View file

@ -1,5 +1,13 @@
# Files Providers
# Files
## Overview
This section contains documentation for all available providers for the **files** API.
- [inline::localfs](inline_localfs.md)
## Providers
```{toctree}
:maxdepth: 1
inline_localfs
```

View file

@ -1,4 +1,4 @@
# API Providers Overview
# API Providers
The goal of Llama Stack is to build an ecosystem where users can easily swap out different implementations for the same API. Examples for these include:
- LLM inference providers (e.g., Meta Reference, Ollama, Fireworks, Together, AWS Bedrock, Groq, Cerebras, SambaNova, vLLM, OpenAI, Anthropic, Gemini, WatsonX, etc.),
@ -12,81 +12,17 @@ Providers come in two flavors:
Importantly, Llama Stack always strives to provide at least one fully inline provider for each API so you can iterate on a fully featured environment locally.
## External Providers
Llama Stack supports external providers that live outside of the main codebase. This allows you to create and maintain your own providers independently.
```{toctree}
:maxdepth: 1
external.md
```
```{include} openai.md
:start-after: ## OpenAI API Compatibility
```
## Inference
Runs inference with an LLM.
```{toctree}
:maxdepth: 1
external/index
openai
inference/index
```
## Agents
Run multi-step agentic workflows with LLMs with tool usage, memory (RAG), etc.
```{toctree}
:maxdepth: 1
agents/index
```
## DatasetIO
Interfaces with datasets and data loaders.
```{toctree}
:maxdepth: 1
datasetio/index
```
## Safety
Applies safety policies to the output at a Systems (not only model) level.
```{toctree}
:maxdepth: 1
safety/index
```
## Telemetry
Collects telemetry data from the system.
```{toctree}
:maxdepth: 1
telemetry/index
```
## Vector IO
Vector IO refers to operations on vector databases, such as adding documents, searching, and deleting documents.
Vector IO plays a crucial role in [Retreival Augmented Generation (RAG)](../..//building_applications/rag), where the vector
io and database are used to store and retrieve documents for retrieval.
```{toctree}
:maxdepth: 1
vector_io/index
```
## Tool Runtime
Is associated with the ToolGroup resources.
```{toctree}
:maxdepth: 1
tool_runtime/index
```
files/index
```

View file

@ -1,26 +1,34 @@
# Inference Providers
# Inference
## Overview
This section contains documentation for all available providers for the **inference** API.
- [inline::meta-reference](inline_meta-reference.md)
- [inline::sentence-transformers](inline_sentence-transformers.md)
- [remote::anthropic](remote_anthropic.md)
- [remote::bedrock](remote_bedrock.md)
- [remote::cerebras](remote_cerebras.md)
- [remote::databricks](remote_databricks.md)
- [remote::fireworks](remote_fireworks.md)
- [remote::gemini](remote_gemini.md)
- [remote::groq](remote_groq.md)
- [remote::hf::endpoint](remote_hf_endpoint.md)
- [remote::hf::serverless](remote_hf_serverless.md)
- [remote::llama-openai-compat](remote_llama-openai-compat.md)
- [remote::nvidia](remote_nvidia.md)
- [remote::ollama](remote_ollama.md)
- [remote::openai](remote_openai.md)
- [remote::passthrough](remote_passthrough.md)
- [remote::runpod](remote_runpod.md)
- [remote::sambanova](remote_sambanova.md)
- [remote::tgi](remote_tgi.md)
- [remote::together](remote_together.md)
- [remote::vllm](remote_vllm.md)
- [remote::watsonx](remote_watsonx.md)
## Providers
```{toctree}
:maxdepth: 1
inline_meta-reference
inline_sentence-transformers
remote_anthropic
remote_bedrock
remote_cerebras
remote_databricks
remote_fireworks
remote_gemini
remote_groq
remote_hf_endpoint
remote_hf_serverless
remote_llama-openai-compat
remote_nvidia
remote_ollama
remote_openai
remote_passthrough
remote_runpod
remote_sambanova
remote_tgi
remote_together
remote_vllm
remote_watsonx
```

View file

@ -1,21 +0,0 @@
# remote::cerebras-openai-compat
## Description
Cerebras OpenAI-compatible provider for using Cerebras models with OpenAI API format.
## Configuration
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `api_key` | `str \| None` | No | | The Cerebras API key |
| `openai_compat_api_base` | `<class 'str'>` | No | https://api.cerebras.ai/v1 | The URL for the Cerebras API server |
## Sample Configuration
```yaml
openai_compat_api_base: https://api.cerebras.ai/v1
api_key: ${env.CEREBRAS_API_KEY}
```

View file

@ -1,21 +0,0 @@
# remote::fireworks-openai-compat
## Description
Fireworks AI OpenAI-compatible provider for using Fireworks models with OpenAI API format.
## Configuration
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `api_key` | `str \| None` | No | | The Fireworks API key |
| `openai_compat_api_base` | `<class 'str'>` | No | https://api.fireworks.ai/inference/v1 | The URL for the Fireworks API server |
## Sample Configuration
```yaml
openai_compat_api_base: https://api.fireworks.ai/inference/v1
api_key: ${env.FIREWORKS_API_KEY}
```

View file

@ -1,21 +0,0 @@
# remote::groq-openai-compat
## Description
Groq OpenAI-compatible provider for using Groq models with OpenAI API format.
## Configuration
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `api_key` | `str \| None` | No | | The Groq API key |
| `openai_compat_api_base` | `<class 'str'>` | No | https://api.groq.com/openai/v1 | The URL for the Groq API server |
## Sample Configuration
```yaml
openai_compat_api_base: https://api.groq.com/openai/v1
api_key: ${env.GROQ_API_KEY}
```

View file

@ -9,11 +9,13 @@ OpenAI inference provider for accessing GPT models and other OpenAI services.
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `api_key` | `str \| None` | No | | API key for OpenAI models |
| `base_url` | `<class 'str'>` | No | https://api.openai.com/v1 | Base URL for OpenAI API |
## Sample Configuration
```yaml
api_key: ${env.OPENAI_API_KEY:=}
base_url: ${env.OPENAI_BASE_URL:=https://api.openai.com/v1}
```

View file

@ -1,21 +0,0 @@
# remote::together-openai-compat
## Description
Together AI OpenAI-compatible provider for using Together models with OpenAI API format.
## Configuration
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `api_key` | `str \| None` | No | | The Together API key |
| `openai_compat_api_base` | `<class 'str'>` | No | https://api.together.xyz/v1 | The URL for the Together API server |
## Sample Configuration
```yaml
openai_compat_api_base: https://api.together.xyz/v1
api_key: ${env.TOGETHER_API_KEY}
```

View file

@ -1,7 +1,15 @@
# Post_Training Providers
# Post_Training
## Overview
This section contains documentation for all available providers for the **post_training** API.
- [inline::huggingface](inline_huggingface.md)
- [inline::torchtune](inline_torchtune.md)
- [remote::nvidia](remote_nvidia.md)
## Providers
```{toctree}
:maxdepth: 1
inline_huggingface
inline_torchtune
remote_nvidia
```

View file

@ -24,6 +24,10 @@ HuggingFace-based post-training provider for fine-tuning models using the Huggin
| `weight_decay` | `<class 'float'>` | No | 0.01 | |
| `dataloader_num_workers` | `<class 'int'>` | No | 4 | |
| `dataloader_pin_memory` | `<class 'bool'>` | No | True | |
| `dpo_beta` | `<class 'float'>` | No | 0.1 | |
| `use_reference_model` | `<class 'bool'>` | No | True | |
| `dpo_loss_type` | `Literal['sigmoid', 'hinge', 'ipo', 'kto_pair'` | No | sigmoid | |
| `dpo_output_dir` | `<class 'str'>` | No | ./checkpoints/dpo | |
## Sample Configuration

View file

@ -1,10 +1,18 @@
# Safety Providers
# Safety
## Overview
This section contains documentation for all available providers for the **safety** API.
- [inline::code-scanner](inline_code-scanner.md)
- [inline::llama-guard](inline_llama-guard.md)
- [inline::prompt-guard](inline_prompt-guard.md)
- [remote::bedrock](remote_bedrock.md)
- [remote::nvidia](remote_nvidia.md)
- [remote::sambanova](remote_sambanova.md)
## Providers
```{toctree}
:maxdepth: 1
inline_code-scanner
inline_llama-guard
inline_prompt-guard
remote_bedrock
remote_nvidia
remote_sambanova
```

View file

@ -1,7 +1,15 @@
# Scoring Providers
# Scoring
## Overview
This section contains documentation for all available providers for the **scoring** API.
- [inline::basic](inline_basic.md)
- [inline::braintrust](inline_braintrust.md)
- [inline::llm-as-judge](inline_llm-as-judge.md)
## Providers
```{toctree}
:maxdepth: 1
inline_basic
inline_braintrust
inline_llm-as-judge
```

View file

@ -1,5 +1,13 @@
# Telemetry Providers
# Telemetry
## Overview
This section contains documentation for all available providers for the **telemetry** API.
- [inline::meta-reference](inline_meta-reference.md)
## Providers
```{toctree}
:maxdepth: 1
inline_meta-reference
```

View file

@ -1,10 +1,18 @@
# Tool_Runtime Providers
# Tool_Runtime
## Overview
This section contains documentation for all available providers for the **tool_runtime** API.
- [inline::rag-runtime](inline_rag-runtime.md)
- [remote::bing-search](remote_bing-search.md)
- [remote::brave-search](remote_brave-search.md)
- [remote::model-context-protocol](remote_model-context-protocol.md)
- [remote::tavily-search](remote_tavily-search.md)
- [remote::wolfram-alpha](remote_wolfram-alpha.md)
## Providers
```{toctree}
:maxdepth: 1
inline_rag-runtime
remote_bing-search
remote_brave-search
remote_model-context-protocol
remote_tavily-search
remote_wolfram-alpha
```

View file

@ -1,16 +1,24 @@
# Vector_Io Providers
# Vector_Io
## Overview
This section contains documentation for all available providers for the **vector_io** API.
- [inline::chromadb](inline_chromadb.md)
- [inline::faiss](inline_faiss.md)
- [inline::meta-reference](inline_meta-reference.md)
- [inline::milvus](inline_milvus.md)
- [inline::qdrant](inline_qdrant.md)
- [inline::sqlite-vec](inline_sqlite-vec.md)
- [inline::sqlite_vec](inline_sqlite_vec.md)
- [remote::chromadb](remote_chromadb.md)
- [remote::milvus](remote_milvus.md)
- [remote::pgvector](remote_pgvector.md)
- [remote::qdrant](remote_qdrant.md)
- [remote::weaviate](remote_weaviate.md)
## Providers
```{toctree}
:maxdepth: 1
inline_chromadb
inline_faiss
inline_meta-reference
inline_milvus
inline_qdrant
inline_sqlite-vec
inline_sqlite_vec
remote_chromadb
remote_milvus
remote_pgvector
remote_qdrant
remote_weaviate
```

View file

@ -51,11 +51,15 @@ See the [Qdrant documentation](https://qdrant.tech/documentation/) for more deta
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `path` | `<class 'str'>` | No | PydanticUndefined | |
| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | |
## Sample Configuration
```yaml
path: ${env.QDRANT_PATH:=~/.llama/~/.llama/dummy}/qdrant.db
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/qdrant_registry.db
```

View file

@ -20,11 +20,15 @@ Please refer to the inline provider documentation.
| `prefix` | `str \| None` | No | | |
| `timeout` | `int \| None` | No | | |
| `host` | `str \| None` | No | | |
| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | |
## Sample Configuration
```yaml
api_key: ${env.QDRANT_API_KEY}
api_key: ${env.QDRANT_API_KEY:=}
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/qdrant_registry.db
```

View file

@ -33,9 +33,19 @@ To install Weaviate see the [Weaviate quickstart documentation](https://weaviate
See [Weaviate's documentation](https://weaviate.io/developers/weaviate) for more details about Weaviate in general.
## Configuration
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `weaviate_api_key` | `str \| None` | No | | The API key for the Weaviate instance |
| `weaviate_cluster_url` | `str \| None` | No | localhost:8080 | The URL of the Weaviate cluster |
| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig, annotation=NoneType, required=False, default='sqlite', discriminator='type'` | No | | Config for KV store backend (SQLite only for now) |
## Sample Configuration
```yaml
weaviate_api_key: null
weaviate_cluster_url: ${env.WEAVIATE_CLUSTER_URL:=localhost:8080}
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/weaviate_registry.db