Merge branch 'main' into make-kvstore-optional

This commit is contained in:
Francisco Arceo 2025-08-05 14:10:30 -04:00 committed by GitHub
commit f62e6cb063
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
554 changed files with 63962 additions and 4870 deletions

View file

@ -4,7 +4,7 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.distribution.library_client import ( # noqa: F401
from llama_stack.core.library_client import ( # noqa: F401
AsyncLlamaStackAsLibraryClient,
LlamaStackAsLibraryClient,
)

View file

@ -152,7 +152,17 @@ Step = Annotated[
@json_schema_type
class Turn(BaseModel):
"""A single turn in an interaction with an Agentic System."""
"""A single turn in an interaction with an Agentic System.
:param turn_id: Unique identifier for the turn within a session
:param session_id: Unique identifier for the conversation session
:param input_messages: List of messages that initiated this turn
:param steps: Ordered list of processing steps executed during this turn
:param output_message: The model's generated response containing content and metadata
:param output_attachments: (Optional) Files or media attached to the agent's response
:param started_at: Timestamp when the turn began
:param completed_at: (Optional) Timestamp when the turn finished, if completed
"""
turn_id: str
session_id: str
@ -167,7 +177,13 @@ class Turn(BaseModel):
@json_schema_type
class Session(BaseModel):
"""A single session of an interaction with an Agentic System."""
"""A single session of an interaction with an Agentic System.
:param session_id: Unique identifier for the conversation session
:param session_name: Human-readable name for the session
:param turns: List of all turns that have occurred in this session
:param started_at: Timestamp when the session was created
"""
session_id: str
session_name: str
@ -232,6 +248,13 @@ class AgentConfig(AgentConfigCommon):
@json_schema_type
class Agent(BaseModel):
"""An agent instance with configuration and metadata.
:param agent_id: Unique identifier for the agent
:param agent_config: Configuration settings for the agent
:param created_at: Timestamp when the agent was created
"""
agent_id: str
agent_config: AgentConfig
created_at: datetime
@ -253,6 +276,14 @@ class AgentTurnResponseEventType(StrEnum):
@json_schema_type
class AgentTurnResponseStepStartPayload(BaseModel):
"""Payload for step start events in agent turn responses.
:param event_type: Type of event being reported
:param step_type: Type of step being executed
:param step_id: Unique identifier for the step within a turn
:param metadata: (Optional) Additional metadata for the step
"""
event_type: Literal[AgentTurnResponseEventType.step_start] = AgentTurnResponseEventType.step_start
step_type: StepType
step_id: str
@ -261,6 +292,14 @@ class AgentTurnResponseStepStartPayload(BaseModel):
@json_schema_type
class AgentTurnResponseStepCompletePayload(BaseModel):
"""Payload for step completion events in agent turn responses.
:param event_type: Type of event being reported
:param step_type: Type of step being executed
:param step_id: Unique identifier for the step within a turn
:param step_details: Complete details of the executed step
"""
event_type: Literal[AgentTurnResponseEventType.step_complete] = AgentTurnResponseEventType.step_complete
step_type: StepType
step_id: str
@ -269,6 +308,14 @@ class AgentTurnResponseStepCompletePayload(BaseModel):
@json_schema_type
class AgentTurnResponseStepProgressPayload(BaseModel):
"""Payload for step progress events in agent turn responses.
:param event_type: Type of event being reported
:param step_type: Type of step being executed
:param step_id: Unique identifier for the step within a turn
:param delta: Incremental content changes during step execution
"""
model_config = ConfigDict(protected_namespaces=())
event_type: Literal[AgentTurnResponseEventType.step_progress] = AgentTurnResponseEventType.step_progress
@ -280,18 +327,36 @@ class AgentTurnResponseStepProgressPayload(BaseModel):
@json_schema_type
class AgentTurnResponseTurnStartPayload(BaseModel):
"""Payload for turn start events in agent turn responses.
:param event_type: Type of event being reported
:param turn_id: Unique identifier for the turn within a session
"""
event_type: Literal[AgentTurnResponseEventType.turn_start] = AgentTurnResponseEventType.turn_start
turn_id: str
@json_schema_type
class AgentTurnResponseTurnCompletePayload(BaseModel):
"""Payload for turn completion events in agent turn responses.
:param event_type: Type of event being reported
:param turn: Complete turn data including all steps and results
"""
event_type: Literal[AgentTurnResponseEventType.turn_complete] = AgentTurnResponseEventType.turn_complete
turn: Turn
@json_schema_type
class AgentTurnResponseTurnAwaitingInputPayload(BaseModel):
"""Payload for turn awaiting input events in agent turn responses.
:param event_type: Type of event being reported
:param turn: Turn data when waiting for external tool responses
"""
event_type: Literal[AgentTurnResponseEventType.turn_awaiting_input] = AgentTurnResponseEventType.turn_awaiting_input
turn: Turn
@ -310,21 +375,47 @@ register_schema(AgentTurnResponseEventPayload, name="AgentTurnResponseEventPaylo
@json_schema_type
class AgentTurnResponseEvent(BaseModel):
"""An event in an agent turn response stream.
:param payload: Event-specific payload containing event data
"""
payload: AgentTurnResponseEventPayload
@json_schema_type
class AgentCreateResponse(BaseModel):
"""Response returned when creating a new agent.
:param agent_id: Unique identifier for the created agent
"""
agent_id: str
@json_schema_type
class AgentSessionCreateResponse(BaseModel):
"""Response returned when creating a new agent session.
:param session_id: Unique identifier for the created session
"""
session_id: str
@json_schema_type
class AgentTurnCreateRequest(AgentConfigOverridablePerTurn):
"""Request to create a new turn for an agent.
:param agent_id: Unique identifier for the agent
:param session_id: Unique identifier for the conversation session
:param messages: List of messages to start the turn with
:param documents: (Optional) List of documents to provide to the agent
:param toolgroups: (Optional) List of tool groups to make available for this turn
:param stream: (Optional) Whether to stream the response
:param tool_config: (Optional) Tool configuration to override agent defaults
"""
agent_id: str
session_id: str
@ -342,6 +433,15 @@ class AgentTurnCreateRequest(AgentConfigOverridablePerTurn):
@json_schema_type
class AgentTurnResumeRequest(BaseModel):
"""Request to resume an agent turn with tool responses.
:param agent_id: Unique identifier for the agent
:param session_id: Unique identifier for the conversation session
:param turn_id: Unique identifier for the turn within a session
:param tool_responses: List of tool responses to submit to continue the turn
:param stream: (Optional) Whether to stream the response
"""
agent_id: str
session_id: str
turn_id: str
@ -351,13 +451,21 @@ class AgentTurnResumeRequest(BaseModel):
@json_schema_type
class AgentTurnResponseStreamChunk(BaseModel):
"""streamed agent turn completion response."""
"""Streamed agent turn completion response.
:param event: Individual event in the agent turn response stream
"""
event: AgentTurnResponseEvent
@json_schema_type
class AgentStepResponse(BaseModel):
"""Response containing details of a specific agent step.
:param step: The complete step data and execution details
"""
step: Step

View file

@ -18,18 +18,37 @@ from llama_stack.schema_utils import json_schema_type, register_schema
@json_schema_type
class OpenAIResponseError(BaseModel):
"""Error details for failed OpenAI response requests.
:param code: Error code identifying the type of failure
:param message: Human-readable error message describing the failure
"""
code: str
message: str
@json_schema_type
class OpenAIResponseInputMessageContentText(BaseModel):
"""Text content for input messages in OpenAI response format.
:param text: The text content of the input message
:param type: Content type identifier, always "input_text"
"""
text: str
type: Literal["input_text"] = "input_text"
@json_schema_type
class OpenAIResponseInputMessageContentImage(BaseModel):
"""Image content for input messages in OpenAI response format.
:param detail: Level of detail for image processing, can be "low", "high", or "auto"
:param type: Content type identifier, always "input_image"
:param image_url: (Optional) URL of the image content
"""
detail: Literal["low"] | Literal["high"] | Literal["auto"] = "auto"
type: Literal["input_image"] = "input_image"
# TODO: handle file_id
@ -46,6 +65,14 @@ register_schema(OpenAIResponseInputMessageContent, name="OpenAIResponseInputMess
@json_schema_type
class OpenAIResponseAnnotationFileCitation(BaseModel):
"""File citation annotation for referencing specific files in response content.
:param type: Annotation type identifier, always "file_citation"
:param file_id: Unique identifier of the referenced file
:param filename: Name of the referenced file
:param index: Position index of the citation within the content
"""
type: Literal["file_citation"] = "file_citation"
file_id: str
filename: str
@ -54,6 +81,15 @@ class OpenAIResponseAnnotationFileCitation(BaseModel):
@json_schema_type
class OpenAIResponseAnnotationCitation(BaseModel):
"""URL citation annotation for referencing external web resources.
:param type: Annotation type identifier, always "url_citation"
:param end_index: End position of the citation span in the content
:param start_index: Start position of the citation span in the content
:param title: Title of the referenced web resource
:param url: URL of the referenced web resource
"""
type: Literal["url_citation"] = "url_citation"
end_index: int
start_index: int
@ -122,6 +158,13 @@ class OpenAIResponseMessage(BaseModel):
@json_schema_type
class OpenAIResponseOutputMessageWebSearchToolCall(BaseModel):
"""Web search tool call output message for OpenAI responses.
:param id: Unique identifier for this tool call
:param status: Current status of the web search operation
:param type: Tool call type identifier, always "web_search_call"
"""
id: str
status: str
type: Literal["web_search_call"] = "web_search_call"
@ -129,6 +172,15 @@ class OpenAIResponseOutputMessageWebSearchToolCall(BaseModel):
@json_schema_type
class OpenAIResponseOutputMessageFileSearchToolCall(BaseModel):
"""File search tool call output message for OpenAI responses.
:param id: Unique identifier for this tool call
:param queries: List of search queries executed
:param status: Current status of the file search operation
:param type: Tool call type identifier, always "file_search_call"
:param results: (Optional) Search results returned by the file search operation
"""
id: str
queries: list[str]
status: str
@ -138,6 +190,16 @@ class OpenAIResponseOutputMessageFileSearchToolCall(BaseModel):
@json_schema_type
class OpenAIResponseOutputMessageFunctionToolCall(BaseModel):
"""Function tool call output message for OpenAI responses.
:param call_id: Unique identifier for the function call
:param name: Name of the function being called
:param arguments: JSON string containing the function arguments
:param type: Tool call type identifier, always "function_call"
:param id: (Optional) Additional identifier for the tool call
:param status: (Optional) Current status of the function call execution
"""
call_id: str
name: str
arguments: str
@ -148,6 +210,17 @@ class OpenAIResponseOutputMessageFunctionToolCall(BaseModel):
@json_schema_type
class OpenAIResponseOutputMessageMCPCall(BaseModel):
"""Model Context Protocol (MCP) call output message for OpenAI responses.
:param id: Unique identifier for this MCP call
:param type: Tool call type identifier, always "mcp_call"
:param arguments: JSON string containing the MCP call arguments
:param name: Name of the MCP method being called
:param server_label: Label identifying the MCP server handling the call
:param error: (Optional) Error message if the MCP call failed
:param output: (Optional) Output result from the successful MCP call
"""
id: str
type: Literal["mcp_call"] = "mcp_call"
arguments: str
@ -158,6 +231,13 @@ class OpenAIResponseOutputMessageMCPCall(BaseModel):
class MCPListToolsTool(BaseModel):
"""Tool definition returned by MCP list tools operation.
:param input_schema: JSON schema defining the tool's input parameters
:param name: Name of the tool
:param description: (Optional) Description of what the tool does
"""
input_schema: dict[str, Any]
name: str
description: str | None = None
@ -165,6 +245,14 @@ class MCPListToolsTool(BaseModel):
@json_schema_type
class OpenAIResponseOutputMessageMCPListTools(BaseModel):
"""MCP list tools output message containing available tools from an MCP server.
:param id: Unique identifier for this MCP list tools operation
:param type: Tool call type identifier, always "mcp_list_tools"
:param server_label: Label identifying the MCP server providing the tools
:param tools: List of available tools provided by the MCP server
"""
id: str
type: Literal["mcp_list_tools"] = "mcp_list_tools"
server_label: str
@ -206,11 +294,34 @@ class OpenAIResponseTextFormat(TypedDict, total=False):
@json_schema_type
class OpenAIResponseText(BaseModel):
"""Text response configuration for OpenAI responses.
:param format: (Optional) Text format configuration specifying output format requirements
"""
format: OpenAIResponseTextFormat | None = None
@json_schema_type
class OpenAIResponseObject(BaseModel):
"""Complete OpenAI response object containing generation results and metadata.
:param created_at: Unix timestamp when the response was created
:param error: (Optional) Error details if the response generation failed
:param id: Unique identifier for this response
:param model: Model identifier used for generation
:param object: Object type identifier, always "response"
:param output: List of generated output items (messages, tool calls, etc.)
:param parallel_tool_calls: Whether tool calls can be executed in parallel
:param previous_response_id: (Optional) ID of the previous response in a conversation
:param status: Current status of the response generation
:param temperature: (Optional) Sampling temperature used for generation
:param text: Text formatting configuration for the response
:param top_p: (Optional) Nucleus sampling parameter used for generation
:param truncation: (Optional) Truncation strategy applied to the response
:param user: (Optional) User identifier associated with the request
"""
created_at: int
error: OpenAIResponseError | None = None
id: str
@ -231,6 +342,13 @@ class OpenAIResponseObject(BaseModel):
@json_schema_type
class OpenAIDeleteResponseObject(BaseModel):
"""Response object confirming deletion of an OpenAI response.
:param id: Unique identifier of the deleted response
:param object: Object type identifier, always "response"
:param deleted: Deletion confirmation flag, always True
"""
id: str
object: Literal["response"] = "response"
deleted: bool = True
@ -238,18 +356,39 @@ class OpenAIDeleteResponseObject(BaseModel):
@json_schema_type
class OpenAIResponseObjectStreamResponseCreated(BaseModel):
"""Streaming event indicating a new response has been created.
:param response: The newly created response object
:param type: Event type identifier, always "response.created"
"""
response: OpenAIResponseObject
type: Literal["response.created"] = "response.created"
@json_schema_type
class OpenAIResponseObjectStreamResponseCompleted(BaseModel):
"""Streaming event indicating a response has been completed.
:param response: The completed response object
:param type: Event type identifier, always "response.completed"
"""
response: OpenAIResponseObject
type: Literal["response.completed"] = "response.completed"
@json_schema_type
class OpenAIResponseObjectStreamResponseOutputItemAdded(BaseModel):
"""Streaming event for when a new output item is added to the response.
:param response_id: Unique identifier of the response containing this output
:param item: The output item that was added (message, tool call, etc.)
:param output_index: Index position of this item in the output list
:param sequence_number: Sequential number for ordering streaming events
:param type: Event type identifier, always "response.output_item.added"
"""
response_id: str
item: OpenAIResponseOutput
output_index: int
@ -259,6 +398,15 @@ class OpenAIResponseObjectStreamResponseOutputItemAdded(BaseModel):
@json_schema_type
class OpenAIResponseObjectStreamResponseOutputItemDone(BaseModel):
"""Streaming event for when an output item is completed.
:param response_id: Unique identifier of the response containing this output
:param item: The completed output item (message, tool call, etc.)
:param output_index: Index position of this item in the output list
:param sequence_number: Sequential number for ordering streaming events
:param type: Event type identifier, always "response.output_item.done"
"""
response_id: str
item: OpenAIResponseOutput
output_index: int
@ -268,6 +416,16 @@ class OpenAIResponseObjectStreamResponseOutputItemDone(BaseModel):
@json_schema_type
class OpenAIResponseObjectStreamResponseOutputTextDelta(BaseModel):
"""Streaming event for incremental text content updates.
:param content_index: Index position within the text content
:param delta: Incremental text content being added
:param item_id: Unique identifier of the output item being updated
:param output_index: Index position of the item in the output list
:param sequence_number: Sequential number for ordering streaming events
:param type: Event type identifier, always "response.output_text.delta"
"""
content_index: int
delta: str
item_id: str
@ -278,6 +436,16 @@ class OpenAIResponseObjectStreamResponseOutputTextDelta(BaseModel):
@json_schema_type
class OpenAIResponseObjectStreamResponseOutputTextDone(BaseModel):
"""Streaming event for when text output is completed.
:param content_index: Index position within the text content
:param text: Final complete text content of the output item
:param item_id: Unique identifier of the completed output item
:param output_index: Index position of the item in the output list
:param sequence_number: Sequential number for ordering streaming events
:param type: Event type identifier, always "response.output_text.done"
"""
content_index: int
text: str # final text of the output item
item_id: str
@ -288,6 +456,15 @@ class OpenAIResponseObjectStreamResponseOutputTextDone(BaseModel):
@json_schema_type
class OpenAIResponseObjectStreamResponseFunctionCallArgumentsDelta(BaseModel):
"""Streaming event for incremental function call argument updates.
:param delta: Incremental function call arguments being added
:param item_id: Unique identifier of the function call being updated
:param output_index: Index position of the item in the output list
:param sequence_number: Sequential number for ordering streaming events
:param type: Event type identifier, always "response.function_call_arguments.delta"
"""
delta: str
item_id: str
output_index: int
@ -297,6 +474,15 @@ class OpenAIResponseObjectStreamResponseFunctionCallArgumentsDelta(BaseModel):
@json_schema_type
class OpenAIResponseObjectStreamResponseFunctionCallArgumentsDone(BaseModel):
"""Streaming event for when function call arguments are completed.
:param arguments: Final complete arguments JSON string for the function call
:param item_id: Unique identifier of the completed function call
:param output_index: Index position of the item in the output list
:param sequence_number: Sequential number for ordering streaming events
:param type: Event type identifier, always "response.function_call_arguments.done"
"""
arguments: str # final arguments of the function call
item_id: str
output_index: int
@ -306,6 +492,14 @@ class OpenAIResponseObjectStreamResponseFunctionCallArgumentsDone(BaseModel):
@json_schema_type
class OpenAIResponseObjectStreamResponseWebSearchCallInProgress(BaseModel):
"""Streaming event for web search calls in progress.
:param item_id: Unique identifier of the web search call
:param output_index: Index position of the item in the output list
:param sequence_number: Sequential number for ordering streaming events
:param type: Event type identifier, always "response.web_search_call.in_progress"
"""
item_id: str
output_index: int
sequence_number: int
@ -322,6 +516,14 @@ class OpenAIResponseObjectStreamResponseWebSearchCallSearching(BaseModel):
@json_schema_type
class OpenAIResponseObjectStreamResponseWebSearchCallCompleted(BaseModel):
"""Streaming event for completed web search calls.
:param item_id: Unique identifier of the completed web search call
:param output_index: Index position of the item in the output list
:param sequence_number: Sequential number for ordering streaming events
:param type: Event type identifier, always "response.web_search_call.completed"
"""
item_id: str
output_index: int
sequence_number: int
@ -366,6 +568,14 @@ class OpenAIResponseObjectStreamResponseMcpCallArgumentsDone(BaseModel):
@json_schema_type
class OpenAIResponseObjectStreamResponseMcpCallInProgress(BaseModel):
"""Streaming event for MCP calls in progress.
:param item_id: Unique identifier of the MCP call
:param output_index: Index position of the item in the output list
:param sequence_number: Sequential number for ordering streaming events
:param type: Event type identifier, always "response.mcp_call.in_progress"
"""
item_id: str
output_index: int
sequence_number: int
@ -374,12 +584,24 @@ class OpenAIResponseObjectStreamResponseMcpCallInProgress(BaseModel):
@json_schema_type
class OpenAIResponseObjectStreamResponseMcpCallFailed(BaseModel):
"""Streaming event for failed MCP calls.
:param sequence_number: Sequential number for ordering streaming events
:param type: Event type identifier, always "response.mcp_call.failed"
"""
sequence_number: int
type: Literal["response.mcp_call.failed"] = "response.mcp_call.failed"
@json_schema_type
class OpenAIResponseObjectStreamResponseMcpCallCompleted(BaseModel):
"""Streaming event for completed MCP calls.
:param sequence_number: Sequential number for ordering streaming events
:param type: Event type identifier, always "response.mcp_call.completed"
"""
sequence_number: int
type: Literal["response.mcp_call.completed"] = "response.mcp_call.completed"
@ -442,6 +664,12 @@ WebSearchToolTypes = ["web_search", "web_search_preview", "web_search_preview_20
@json_schema_type
class OpenAIResponseInputToolWebSearch(BaseModel):
"""Web search tool configuration for OpenAI response inputs.
:param type: Web search tool type variant to use
:param search_context_size: (Optional) Size of search context, must be "low", "medium", or "high"
"""
# Must match values of WebSearchToolTypes above
type: Literal["web_search"] | Literal["web_search_preview"] | Literal["web_search_preview_2025_03_11"] = (
"web_search"
@ -453,6 +681,15 @@ class OpenAIResponseInputToolWebSearch(BaseModel):
@json_schema_type
class OpenAIResponseInputToolFunction(BaseModel):
"""Function tool configuration for OpenAI response inputs.
:param type: Tool type identifier, always "function"
:param name: Name of the function that can be called
:param description: (Optional) Description of what the function does
:param parameters: (Optional) JSON schema defining the function's parameters
:param strict: (Optional) Whether to enforce strict parameter validation
"""
type: Literal["function"] = "function"
name: str
description: str | None = None
@ -462,6 +699,15 @@ class OpenAIResponseInputToolFunction(BaseModel):
@json_schema_type
class OpenAIResponseInputToolFileSearch(BaseModel):
"""File search tool configuration for OpenAI response inputs.
:param type: Tool type identifier, always "file_search"
:param vector_store_ids: List of vector store identifiers to search within
:param filters: (Optional) Additional filters to apply to the search
:param max_num_results: (Optional) Maximum number of search results to return (1-50)
:param ranking_options: (Optional) Options for ranking and scoring search results
"""
type: Literal["file_search"] = "file_search"
vector_store_ids: list[str]
filters: dict[str, Any] | None = None
@ -470,16 +716,37 @@ class OpenAIResponseInputToolFileSearch(BaseModel):
class ApprovalFilter(BaseModel):
"""Filter configuration for MCP tool approval requirements.
:param always: (Optional) List of tool names that always require approval
:param never: (Optional) List of tool names that never require approval
"""
always: list[str] | None = None
never: list[str] | None = None
class AllowedToolsFilter(BaseModel):
"""Filter configuration for restricting which MCP tools can be used.
:param tool_names: (Optional) List of specific tool names that are allowed
"""
tool_names: list[str] | None = None
@json_schema_type
class OpenAIResponseInputToolMCP(BaseModel):
"""Model Context Protocol (MCP) tool configuration for OpenAI response inputs.
:param type: Tool type identifier, always "mcp"
:param server_label: Label to identify this MCP server
:param server_url: URL endpoint of the MCP server
:param headers: (Optional) HTTP headers to include when connecting to the server
:param require_approval: Approval requirement for tool calls ("always", "never", or filter)
:param allowed_tools: (Optional) Restriction on which tools can be used from this server
"""
type: Literal["mcp"] = "mcp"
server_label: str
server_url: str
@ -500,17 +767,37 @@ register_schema(OpenAIResponseInputTool, name="OpenAIResponseInputTool")
class ListOpenAIResponseInputItem(BaseModel):
"""List container for OpenAI response input items.
:param data: List of input items
:param object: Object type identifier, always "list"
"""
data: list[OpenAIResponseInput]
object: Literal["list"] = "list"
@json_schema_type
class OpenAIResponseObjectWithInput(OpenAIResponseObject):
"""OpenAI response object extended with input context information.
:param input: List of input items that led to this response
"""
input: list[OpenAIResponseInput]
@json_schema_type
class ListOpenAIResponseObject(BaseModel):
"""Paginated list of OpenAI response objects with navigation metadata.
:param data: List of response objects with their input context
:param has_more: Whether there are more results available beyond this page
:param first_id: Identifier of the first item in this page
:param last_id: Identifier of the last item in this page
:param object: Object type identifier, always "list"
"""
data: list[OpenAIResponseObjectWithInput]
has_more: bool
first_id: str

View file

@ -22,6 +22,14 @@ class CommonBenchmarkFields(BaseModel):
@json_schema_type
class Benchmark(CommonBenchmarkFields, Resource):
"""A benchmark resource for evaluating model performance.
:param dataset_id: Identifier of the dataset to use for the benchmark evaluation
:param scoring_functions: List of scoring function identifiers to apply during evaluation
:param metadata: Metadata for this evaluation task
:param type: The resource type, always benchmark
"""
type: Literal[ResourceType.benchmark] = ResourceType.benchmark
@property

View file

@ -15,6 +15,11 @@ from llama_stack.schema_utils import json_schema_type, register_schema
@json_schema_type
class URL(BaseModel):
"""A URL reference to external content.
:param uri: The URL string pointing to the resource
"""
uri: str
@ -76,17 +81,36 @@ register_schema(InterleavedContent, name="InterleavedContent")
@json_schema_type
class TextDelta(BaseModel):
"""A text content delta for streaming responses.
:param type: Discriminator type of the delta. Always "text"
:param text: The incremental text content
"""
type: Literal["text"] = "text"
text: str
@json_schema_type
class ImageDelta(BaseModel):
"""An image content delta for streaming responses.
:param type: Discriminator type of the delta. Always "image"
:param image: The incremental image data as bytes
"""
type: Literal["image"] = "image"
image: bytes
class ToolCallParseStatus(Enum):
"""Status of tool call parsing during streaming.
:cvar started: Tool call parsing has begun
:cvar in_progress: Tool call parsing is ongoing
:cvar failed: Tool call parsing failed
:cvar succeeded: Tool call parsing completed successfully
"""
started = "started"
in_progress = "in_progress"
failed = "failed"
@ -95,6 +119,13 @@ class ToolCallParseStatus(Enum):
@json_schema_type
class ToolCallDelta(BaseModel):
"""A tool call content delta for streaming responses.
:param type: Discriminator type of the delta. Always "tool_call"
:param tool_call: Either an in-progress tool call string or the final parsed tool call
:param parse_status: Current parsing status of the tool call
"""
type: Literal["tool_call"] = "tool_call"
# you either send an in-progress tool call so the client can stream a long

View file

@ -4,6 +4,11 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
# Custom Llama Stack Exception classes should follow the following schema
# 1. All classes should inherit from an existing Built-In Exception class: https://docs.python.org/3/library/exceptions.html
# 2. All classes should have a custom error message with the goal of informing the Llama Stack user specifically
# 3. All classes should propogate the inherited __init__ function otherwise via 'super().__init__(message)'
class UnsupportedModelError(ValueError):
"""raised when model is not present in the list of supported models"""
@ -11,3 +16,45 @@ class UnsupportedModelError(ValueError):
def __init__(self, model_name: str, supported_models_list: list[str]):
message = f"'{model_name}' model is not supported. Supported models are: {', '.join(supported_models_list)}"
super().__init__(message)
class ModelNotFoundError(ValueError):
"""raised when Llama Stack cannot find a referenced model"""
def __init__(self, model_name: str) -> None:
message = f"Model '{model_name}' not found. Use client.models.list() to list available models."
super().__init__(message)
class VectorStoreNotFoundError(ValueError):
"""raised when Llama Stack cannot find a referenced vector store"""
def __init__(self, vector_store_name: str) -> None:
message = f"Vector store '{vector_store_name}' not found. Use client.vector_dbs.list() to list available vector stores."
super().__init__(message)
class DatasetNotFoundError(ValueError):
"""raised when Llama Stack cannot find a referenced dataset"""
def __init__(self, dataset_name: str) -> None:
message = f"Dataset '{dataset_name}' not found. Use client.datasets.list() to list available datasets."
super().__init__(message)
class ToolGroupNotFoundError(ValueError):
"""raised when Llama Stack cannot find a referenced tool group"""
def __init__(self, toolgroup_name: str) -> None:
message = (
f"Tool group '{toolgroup_name}' not found. Use client.toolgroups.list() to list available tool groups."
)
super().__init__(message)
class SessionNotFoundError(ValueError):
"""raised when Llama Stack cannot find a referenced session or access is denied"""
def __init__(self, session_name: str) -> None:
message = f"Session '{session_name}' not found or access denied."
super().__init__(message)

View file

@ -11,6 +11,14 @@ from llama_stack.schema_utils import json_schema_type
class JobStatus(Enum):
"""Status of a job execution.
:cvar completed: Job has finished successfully
:cvar in_progress: Job is currently running
:cvar failed: Job has failed during execution
:cvar scheduled: Job is scheduled but not yet started
:cvar cancelled: Job was cancelled before completion
"""
completed = "completed"
in_progress = "in_progress"
failed = "failed"
@ -20,5 +28,11 @@ class JobStatus(Enum):
@json_schema_type
class Job(BaseModel):
"""A job execution instance with status tracking.
:param job_id: Unique identifier for the job
:param status: Current execution status of the job
"""
job_id: str
status: JobStatus

View file

@ -13,6 +13,11 @@ from llama_stack.schema_utils import json_schema_type
class Order(Enum):
"""Sort order for paginated responses.
:cvar asc: Ascending order
:cvar desc: Descending order
"""
asc = "asc"
desc = "desc"

View file

@ -13,6 +13,14 @@ from llama_stack.schema_utils import json_schema_type
@json_schema_type
class PostTrainingMetric(BaseModel):
"""Training metrics captured during post-training jobs.
:param epoch: Training epoch number
:param train_loss: Loss value on the training dataset
:param validation_loss: Loss value on the validation dataset
:param perplexity: Perplexity metric indicating model confidence
"""
epoch: int
train_loss: float
validation_loss: float
@ -21,7 +29,15 @@ class PostTrainingMetric(BaseModel):
@json_schema_type
class Checkpoint(BaseModel):
"""Checkpoint created during training runs"""
"""Checkpoint created during training runs.
:param identifier: Unique identifier for the checkpoint
:param created_at: Timestamp when the checkpoint was created
:param epoch: Training epoch when the checkpoint was saved
:param post_training_job_id: Identifier of the training job that created this checkpoint
:param path: File system path where the checkpoint is stored
:param training_metrics: (Optional) Training metrics associated with this checkpoint
"""
identifier: str
created_at: datetime

View file

@ -13,59 +13,114 @@ from llama_stack.schema_utils import json_schema_type, register_schema
@json_schema_type
class StringType(BaseModel):
"""Parameter type for string values.
:param type: Discriminator type. Always "string"
"""
type: Literal["string"] = "string"
@json_schema_type
class NumberType(BaseModel):
"""Parameter type for numeric values.
:param type: Discriminator type. Always "number"
"""
type: Literal["number"] = "number"
@json_schema_type
class BooleanType(BaseModel):
"""Parameter type for boolean values.
:param type: Discriminator type. Always "boolean"
"""
type: Literal["boolean"] = "boolean"
@json_schema_type
class ArrayType(BaseModel):
"""Parameter type for array values.
:param type: Discriminator type. Always "array"
"""
type: Literal["array"] = "array"
@json_schema_type
class ObjectType(BaseModel):
"""Parameter type for object values.
:param type: Discriminator type. Always "object"
"""
type: Literal["object"] = "object"
@json_schema_type
class JsonType(BaseModel):
"""Parameter type for JSON values.
:param type: Discriminator type. Always "json"
"""
type: Literal["json"] = "json"
@json_schema_type
class UnionType(BaseModel):
"""Parameter type for union values.
:param type: Discriminator type. Always "union"
"""
type: Literal["union"] = "union"
@json_schema_type
class ChatCompletionInputType(BaseModel):
"""Parameter type for chat completion input.
:param type: Discriminator type. Always "chat_completion_input"
"""
# expects List[Message] for messages
type: Literal["chat_completion_input"] = "chat_completion_input"
@json_schema_type
class CompletionInputType(BaseModel):
"""Parameter type for completion input.
:param type: Discriminator type. Always "completion_input"
"""
# expects InterleavedTextMedia for content
type: Literal["completion_input"] = "completion_input"
@json_schema_type
class AgentTurnInputType(BaseModel):
"""Parameter type for agent turn input.
:param type: Discriminator type. Always "agent_turn_input"
"""
# expects List[Message] for messages (may also include attachments?)
type: Literal["agent_turn_input"] = "agent_turn_input"
@json_schema_type
class DialogType(BaseModel):
"""Parameter type for dialog data with semantic output labels.
:param type: Discriminator type. Always "dialog"
"""
# expects List[Message] for messages
# this type semantically contains the output label whereas ChatCompletionInputType does not
type: Literal["dialog"] = "dialog"

View file

@ -94,6 +94,10 @@ register_schema(DataSource, name="DataSource")
class CommonDatasetFields(BaseModel):
"""
Common fields for a dataset.
:param purpose: Purpose of the dataset indicating its intended use
:param source: Data source configuration for the dataset
:param metadata: Additional metadata for the dataset
"""
purpose: DatasetPurpose
@ -106,6 +110,11 @@ class CommonDatasetFields(BaseModel):
@json_schema_type
class Dataset(CommonDatasetFields, Resource):
"""Dataset resource for storing and accessing training or evaluation data.
:param type: Type of resource, always 'dataset' for datasets
"""
type: Literal[ResourceType.dataset] = ResourceType.dataset
@property
@ -118,10 +127,20 @@ class Dataset(CommonDatasetFields, Resource):
class DatasetInput(CommonDatasetFields, BaseModel):
"""Input parameters for dataset operations.
:param dataset_id: Unique identifier for the dataset
"""
dataset_id: str
class ListDatasetsResponse(BaseModel):
"""Response from listing datasets.
:param data: List of datasets
"""
data: list[Dataset]

View file

@ -81,6 +81,29 @@ class DynamicApiMeta(EnumMeta):
@json_schema_type
class Api(Enum, metaclass=DynamicApiMeta):
"""Enumeration of all available APIs in the Llama Stack system.
:cvar providers: Provider management and configuration
:cvar inference: Text generation, chat completions, and embeddings
:cvar safety: Content moderation and safety shields
:cvar agents: Agent orchestration and execution
:cvar vector_io: Vector database operations and queries
:cvar datasetio: Dataset input/output operations
:cvar scoring: Model output evaluation and scoring
:cvar eval: Model evaluation and benchmarking framework
:cvar post_training: Fine-tuning and model training
:cvar tool_runtime: Tool execution and management
:cvar telemetry: Observability and system monitoring
:cvar models: Model metadata and management
:cvar shields: Safety shield implementations
:cvar vector_dbs: Vector database management
:cvar datasets: Dataset creation and management
:cvar scoring_functions: Scoring function definitions
:cvar benchmarks: Benchmark suite management
:cvar tool_groups: Tool group organization
:cvar files: File storage and management
:cvar inspect: Built-in system inspection and introspection
"""
providers = "providers"
inference = "inference"
safety = "safety"

View file

@ -54,6 +54,9 @@ class ListOpenAIFileResponse(BaseModel):
Response for listing files in OpenAI Files API.
:param data: List of file objects
:param has_more: Whether there are more files available beyond this page
:param first_id: ID of the first file in the list for pagination
:param last_id: ID of the last file in the list for pagination
:param object: The object type, which is always "list"
"""

View file

@ -41,11 +41,23 @@ from enum import StrEnum
@json_schema_type
class GreedySamplingStrategy(BaseModel):
"""Greedy sampling strategy that selects the highest probability token at each step.
:param type: Must be "greedy" to identify this sampling strategy
"""
type: Literal["greedy"] = "greedy"
@json_schema_type
class TopPSamplingStrategy(BaseModel):
"""Top-p (nucleus) sampling strategy that samples from the smallest set of tokens with cumulative probability >= p.
:param type: Must be "top_p" to identify this sampling strategy
:param temperature: Controls randomness in sampling. Higher values increase randomness
:param top_p: Cumulative probability threshold for nucleus sampling. Defaults to 0.95
"""
type: Literal["top_p"] = "top_p"
temperature: float | None = Field(..., gt=0.0)
top_p: float | None = 0.95
@ -53,6 +65,12 @@ class TopPSamplingStrategy(BaseModel):
@json_schema_type
class TopKSamplingStrategy(BaseModel):
"""Top-k sampling strategy that restricts sampling to the k most likely tokens.
:param type: Must be "top_k" to identify this sampling strategy
:param top_k: Number of top tokens to consider for sampling. Must be at least 1
"""
type: Literal["top_k"] = "top_k"
top_k: int = Field(..., ge=1)
@ -108,11 +126,21 @@ class QuantizationType(Enum):
@json_schema_type
class Fp8QuantizationConfig(BaseModel):
"""Configuration for 8-bit floating point quantization.
:param type: Must be "fp8_mixed" to identify this quantization type
"""
type: Literal["fp8_mixed"] = "fp8_mixed"
@json_schema_type
class Bf16QuantizationConfig(BaseModel):
"""Configuration for BFloat16 precision (typically no quantization).
:param type: Must be "bf16" to identify this quantization type
"""
type: Literal["bf16"] = "bf16"
@ -202,6 +230,14 @@ register_schema(Message, name="Message")
@json_schema_type
class ToolResponse(BaseModel):
"""Response from a tool invocation.
:param call_id: Unique identifier for the tool call this response is for
:param tool_name: Name of the tool that was invoked
:param content: The response content from the tool
:param metadata: (Optional) Additional metadata about the tool response
"""
call_id: str
tool_name: BuiltinTool | str
content: InterleavedContent
@ -439,24 +475,55 @@ class EmbeddingsResponse(BaseModel):
@json_schema_type
class OpenAIChatCompletionContentPartTextParam(BaseModel):
"""Text content part for OpenAI-compatible chat completion messages.
:param type: Must be "text" to identify this as text content
:param text: The text content of the message
"""
type: Literal["text"] = "text"
text: str
@json_schema_type
class OpenAIImageURL(BaseModel):
"""Image URL specification for OpenAI-compatible chat completion messages.
:param url: URL of the image to include in the message
:param detail: (Optional) Level of detail for image processing. Can be "low", "high", or "auto"
"""
url: str
detail: str | None = None
@json_schema_type
class OpenAIChatCompletionContentPartImageParam(BaseModel):
"""Image content part for OpenAI-compatible chat completion messages.
:param type: Must be "image_url" to identify this as image content
:param image_url: Image URL specification and processing details
"""
type: Literal["image_url"] = "image_url"
image_url: OpenAIImageURL
@json_schema_type
class OpenAIFileFile(BaseModel):
file_data: str | None = None
file_id: str | None = None
filename: str | None = None
@json_schema_type
class OpenAIFile(BaseModel):
type: Literal["file"] = "file"
file: OpenAIFileFile
OpenAIChatCompletionContentPartParam = Annotated[
OpenAIChatCompletionContentPartTextParam | OpenAIChatCompletionContentPartImageParam,
OpenAIChatCompletionContentPartTextParam | OpenAIChatCompletionContentPartImageParam | OpenAIFile,
Field(discriminator="type"),
]
register_schema(OpenAIChatCompletionContentPartParam, name="OpenAIChatCompletionContentPartParam")
@ -464,6 +531,8 @@ register_schema(OpenAIChatCompletionContentPartParam, name="OpenAIChatCompletion
OpenAIChatCompletionMessageContent = str | list[OpenAIChatCompletionContentPartParam]
OpenAIChatCompletionTextOnlyMessageContent = str | list[OpenAIChatCompletionContentPartTextParam]
@json_schema_type
class OpenAIUserMessageParam(BaseModel):
@ -489,18 +558,32 @@ class OpenAISystemMessageParam(BaseModel):
"""
role: Literal["system"] = "system"
content: OpenAIChatCompletionMessageContent
content: OpenAIChatCompletionTextOnlyMessageContent
name: str | None = None
@json_schema_type
class OpenAIChatCompletionToolCallFunction(BaseModel):
"""Function call details for OpenAI-compatible tool calls.
:param name: (Optional) Name of the function to call
:param arguments: (Optional) Arguments to pass to the function as a JSON string
"""
name: str | None = None
arguments: str | None = None
@json_schema_type
class OpenAIChatCompletionToolCall(BaseModel):
"""Tool call specification for OpenAI-compatible chat completion responses.
:param index: (Optional) Index of the tool call in the list
:param id: (Optional) Unique identifier for the tool call
:param type: Must be "function" to identify this as a function call
:param function: (Optional) Function call details
"""
index: int | None = None
id: str | None = None
type: Literal["function"] = "function"
@ -518,7 +601,7 @@ class OpenAIAssistantMessageParam(BaseModel):
"""
role: Literal["assistant"] = "assistant"
content: OpenAIChatCompletionMessageContent | None = None
content: OpenAIChatCompletionTextOnlyMessageContent | None = None
name: str | None = None
tool_calls: list[OpenAIChatCompletionToolCall] | None = None
@ -534,7 +617,7 @@ class OpenAIToolMessageParam(BaseModel):
role: Literal["tool"] = "tool"
tool_call_id: str
content: OpenAIChatCompletionMessageContent
content: OpenAIChatCompletionTextOnlyMessageContent
@json_schema_type
@ -547,7 +630,7 @@ class OpenAIDeveloperMessageParam(BaseModel):
"""
role: Literal["developer"] = "developer"
content: OpenAIChatCompletionMessageContent
content: OpenAIChatCompletionTextOnlyMessageContent
name: str | None = None
@ -564,11 +647,24 @@ register_schema(OpenAIMessageParam, name="OpenAIMessageParam")
@json_schema_type
class OpenAIResponseFormatText(BaseModel):
"""Text response format for OpenAI-compatible chat completion requests.
:param type: Must be "text" to indicate plain text response format
"""
type: Literal["text"] = "text"
@json_schema_type
class OpenAIJSONSchema(TypedDict, total=False):
"""JSON schema specification for OpenAI-compatible structured response format.
:param name: Name of the schema
:param description: (Optional) Description of the schema
:param strict: (Optional) Whether to enforce strict adherence to the schema
:param schema: (Optional) The JSON schema definition
"""
name: str
description: str | None
strict: bool | None
@ -582,12 +678,23 @@ class OpenAIJSONSchema(TypedDict, total=False):
@json_schema_type
class OpenAIResponseFormatJSONSchema(BaseModel):
"""JSON schema response format for OpenAI-compatible chat completion requests.
:param type: Must be "json_schema" to indicate structured JSON response format
:param json_schema: The JSON schema specification for the response
"""
type: Literal["json_schema"] = "json_schema"
json_schema: OpenAIJSONSchema
@json_schema_type
class OpenAIResponseFormatJSONObject(BaseModel):
"""JSON object response format for OpenAI-compatible chat completion requests.
:param type: Must be "json_object" to indicate generic JSON object response format
"""
type: Literal["json_object"] = "json_object"
@ -846,11 +953,21 @@ class EmbeddingTaskType(Enum):
@json_schema_type
class BatchCompletionResponse(BaseModel):
"""Response from a batch completion request.
:param batch: List of completion responses, one for each input in the batch
"""
batch: list[CompletionResponse]
@json_schema_type
class BatchChatCompletionResponse(BaseModel):
"""Response from a batch chat completion request.
:param batch: List of chat completion responses, one for each conversation in the batch
"""
batch: list[ChatCompletionResponse]
@ -860,6 +977,15 @@ class OpenAICompletionWithInputMessages(OpenAIChatCompletion):
@json_schema_type
class ListOpenAIChatCompletionResponse(BaseModel):
"""Response from listing OpenAI-compatible chat completions.
:param data: List of chat completion objects with their input messages
:param has_more: Whether there are more completions available beyond this list
:param first_id: ID of the first completion in this list
:param last_id: ID of the last completion in this list
:param object: Must be "list" to identify this as a list response
"""
data: list[OpenAICompletionWithInputMessages]
has_more: bool
first_id: str

View file

@ -14,6 +14,13 @@ from llama_stack.schema_utils import json_schema_type, webmethod
@json_schema_type
class RouteInfo(BaseModel):
"""Information about an API route including its path, method, and implementing providers.
:param route: The API endpoint path
:param method: HTTP method for the route
:param provider_types: List of provider types that implement this route
"""
route: str
method: str
provider_types: list[str]
@ -21,15 +28,30 @@ class RouteInfo(BaseModel):
@json_schema_type
class HealthInfo(BaseModel):
"""Health status information for the service.
:param status: Current health status of the service
"""
status: HealthStatus
@json_schema_type
class VersionInfo(BaseModel):
"""Version information for the service.
:param version: Version number of the service
"""
version: str
class ListRoutesResponse(BaseModel):
"""Response containing a list of all available API routes.
:param data: List of available route information objects
"""
data: list[RouteInfo]
@ -37,17 +59,17 @@ class ListRoutesResponse(BaseModel):
class Inspect(Protocol):
@webmethod(route="/inspect/routes", method="GET")
async def list_routes(self) -> ListRoutesResponse:
"""List all routes.
"""List all available API routes with their methods and implementing providers.
:returns: A ListRoutesResponse.
:returns: Response containing information about all available routes.
"""
...
@webmethod(route="/health", method="GET")
async def health(self) -> HealthInfo:
"""Get the health of the service.
"""Get the current health status of the service.
:returns: A HealthInfo.
:returns: Health information indicating if the service is operational.
"""
...
@ -55,6 +77,6 @@ class Inspect(Protocol):
async def version(self) -> VersionInfo:
"""Get the version of the service.
:returns: A VersionInfo.
:returns: Version information containing the service version number.
"""
...

View file

@ -23,12 +23,27 @@ class CommonModelFields(BaseModel):
@json_schema_type
class ModelType(StrEnum):
"""Enumeration of supported model types in Llama Stack.
:cvar llm: Large language model for text generation and completion
:cvar embedding: Embedding model for converting text to vector representations
"""
llm = "llm"
embedding = "embedding"
@json_schema_type
class Model(CommonModelFields, Resource):
"""A model resource representing an AI model registered in Llama Stack.
:param type: The resource type, always 'model' for model resources
:param model_type: The type of model (LLM or embedding model)
:param metadata: Any additional metadata for this model
:param identifier: Unique identifier for this resource in llama stack
:param provider_resource_id: Unique identifier for this resource in the provider
:param provider_id: ID of the provider that owns this resource
"""
type: Literal[ResourceType.model] = ResourceType.model
@property

View file

@ -18,6 +18,12 @@ from llama_stack.schema_utils import json_schema_type, register_schema, webmetho
@json_schema_type
class OptimizerType(Enum):
"""Available optimizer algorithms for training.
:cvar adam: Adaptive Moment Estimation optimizer
:cvar adamw: AdamW optimizer with weight decay
:cvar sgd: Stochastic Gradient Descent optimizer
"""
adam = "adam"
adamw = "adamw"
sgd = "sgd"
@ -25,12 +31,28 @@ class OptimizerType(Enum):
@json_schema_type
class DatasetFormat(Enum):
"""Format of the training dataset.
:cvar instruct: Instruction-following format with prompt and completion
:cvar dialog: Multi-turn conversation format with messages
"""
instruct = "instruct"
dialog = "dialog"
@json_schema_type
class DataConfig(BaseModel):
"""Configuration for training data and data loading.
:param dataset_id: Unique identifier for the training dataset
:param batch_size: Number of samples per training batch
:param shuffle: Whether to shuffle the dataset during training
:param data_format: Format of the dataset (instruct or dialog)
:param validation_dataset_id: (Optional) Unique identifier for the validation dataset
:param packed: (Optional) Whether to pack multiple samples into a single sequence for efficiency
:param train_on_input: (Optional) Whether to compute loss on input tokens as well as output tokens
"""
dataset_id: str
batch_size: int
shuffle: bool
@ -42,6 +64,14 @@ class DataConfig(BaseModel):
@json_schema_type
class OptimizerConfig(BaseModel):
"""Configuration parameters for the optimization algorithm.
:param optimizer_type: Type of optimizer to use (adam, adamw, or sgd)
:param lr: Learning rate for the optimizer
:param weight_decay: Weight decay coefficient for regularization
:param num_warmup_steps: Number of steps for learning rate warmup
"""
optimizer_type: OptimizerType
lr: float
weight_decay: float
@ -50,6 +80,14 @@ class OptimizerConfig(BaseModel):
@json_schema_type
class EfficiencyConfig(BaseModel):
"""Configuration for memory and compute efficiency optimizations.
:param enable_activation_checkpointing: (Optional) Whether to use activation checkpointing to reduce memory usage
:param enable_activation_offloading: (Optional) Whether to offload activations to CPU to save GPU memory
:param memory_efficient_fsdp_wrap: (Optional) Whether to use memory-efficient FSDP wrapping
:param fsdp_cpu_offload: (Optional) Whether to offload FSDP parameters to CPU
"""
enable_activation_checkpointing: bool | None = False
enable_activation_offloading: bool | None = False
memory_efficient_fsdp_wrap: bool | None = False
@ -58,6 +96,18 @@ class EfficiencyConfig(BaseModel):
@json_schema_type
class TrainingConfig(BaseModel):
"""Comprehensive configuration for the training process.
:param n_epochs: Number of training epochs to run
:param max_steps_per_epoch: Maximum number of steps to run per epoch
:param gradient_accumulation_steps: Number of steps to accumulate gradients before updating
:param max_validation_steps: (Optional) Maximum number of validation steps per epoch
:param data_config: (Optional) Configuration for data loading and formatting
:param optimizer_config: (Optional) Configuration for the optimization algorithm
:param efficiency_config: (Optional) Configuration for memory and compute optimizations
:param dtype: (Optional) Data type for model parameters (bf16, fp16, fp32)
"""
n_epochs: int
max_steps_per_epoch: int = 1
gradient_accumulation_steps: int = 1
@ -70,6 +120,18 @@ class TrainingConfig(BaseModel):
@json_schema_type
class LoraFinetuningConfig(BaseModel):
"""Configuration for Low-Rank Adaptation (LoRA) fine-tuning.
:param type: Algorithm type identifier, always "LoRA"
:param lora_attn_modules: List of attention module names to apply LoRA to
:param apply_lora_to_mlp: Whether to apply LoRA to MLP layers
:param apply_lora_to_output: Whether to apply LoRA to output projection layers
:param rank: Rank of the LoRA adaptation (lower rank = fewer parameters)
:param alpha: LoRA scaling parameter that controls adaptation strength
:param use_dora: (Optional) Whether to use DoRA (Weight-Decomposed Low-Rank Adaptation)
:param quantize_base: (Optional) Whether to quantize the base model weights
"""
type: Literal["LoRA"] = "LoRA"
lora_attn_modules: list[str]
apply_lora_to_mlp: bool
@ -82,6 +144,13 @@ class LoraFinetuningConfig(BaseModel):
@json_schema_type
class QATFinetuningConfig(BaseModel):
"""Configuration for Quantization-Aware Training (QAT) fine-tuning.
:param type: Algorithm type identifier, always "QAT"
:param quantizer_name: Name of the quantization algorithm to use
:param group_size: Size of groups for grouped quantization
"""
type: Literal["QAT"] = "QAT"
quantizer_name: str
group_size: int
@ -93,7 +162,11 @@ register_schema(AlgorithmConfig, name="AlgorithmConfig")
@json_schema_type
class PostTrainingJobLogStream(BaseModel):
"""Stream of logs from a finetuning job."""
"""Stream of logs from a finetuning job.
:param job_uuid: Unique identifier for the training job
:param log_lines: List of log message strings from the training process
"""
job_uuid: str
log_lines: list[str]
@ -101,6 +174,10 @@ class PostTrainingJobLogStream(BaseModel):
@json_schema_type
class RLHFAlgorithm(Enum):
"""Available reinforcement learning from human feedback algorithms.
:cvar dpo: Direct Preference Optimization algorithm
"""
dpo = "dpo"
@ -114,13 +191,31 @@ class DPOLossType(Enum):
@json_schema_type
class DPOAlignmentConfig(BaseModel):
"""Configuration for Direct Preference Optimization (DPO) alignment.
:param beta: Temperature parameter for the DPO loss
:param loss_type: The type of loss function to use for DPO
"""
beta: float
loss_type: DPOLossType = DPOLossType.sigmoid
@json_schema_type
class PostTrainingRLHFRequest(BaseModel):
"""Request to finetune a model."""
"""Request to finetune a model using reinforcement learning from human feedback.
:param job_uuid: Unique identifier for the training job
:param finetuned_model: URL or path to the base model to fine-tune
:param dataset_id: Unique identifier for the training dataset
:param validation_dataset_id: Unique identifier for the validation dataset
:param algorithm: RLHF algorithm to use for training
:param algorithm_config: Configuration parameters for the RLHF algorithm
:param optimizer_config: Configuration parameters for the optimization algorithm
:param training_config: Configuration parameters for the training process
:param hyperparam_search_config: Configuration for hyperparameter search
:param logger_config: Configuration for training logging
"""
job_uuid: str
@ -146,7 +241,16 @@ class PostTrainingJob(BaseModel):
@json_schema_type
class PostTrainingJobStatusResponse(BaseModel):
"""Status of a finetuning job."""
"""Status of a finetuning job.
:param job_uuid: Unique identifier for the training job
:param status: Current status of the training job
:param scheduled_at: (Optional) Timestamp when the job was scheduled
:param started_at: (Optional) Timestamp when the job execution began
:param completed_at: (Optional) Timestamp when the job finished, if completed
:param resources_allocated: (Optional) Information about computational resources allocated to the job
:param checkpoints: List of model checkpoints created during training
"""
job_uuid: str
status: JobStatus
@ -166,7 +270,11 @@ class ListPostTrainingJobsResponse(BaseModel):
@json_schema_type
class PostTrainingJobArtifactsResponse(BaseModel):
"""Artifacts of a finetuning job."""
"""Artifacts of a finetuning job.
:param job_uuid: Unique identifier for the training job
:param checkpoints: List of model checkpoints created during training
"""
job_uuid: str
checkpoints: list[Checkpoint] = Field(default_factory=list)

View file

@ -14,6 +14,15 @@ from llama_stack.schema_utils import json_schema_type, webmethod
@json_schema_type
class ProviderInfo(BaseModel):
"""Information about a registered provider including its configuration and health status.
:param api: The API name this provider implements
:param provider_id: Unique identifier for the provider
:param provider_type: The type of provider implementation
:param config: Configuration parameters for the provider
:param health: Current health status of the provider
"""
api: str
provider_id: str
provider_type: str
@ -22,6 +31,11 @@ class ProviderInfo(BaseModel):
class ListProvidersResponse(BaseModel):
"""Response containing a list of all available providers.
:param data: List of provider information objects
"""
data: list[ProviderInfo]

View file

@ -17,6 +17,13 @@ from llama_stack.schema_utils import json_schema_type, webmethod
@json_schema_type
class ViolationLevel(Enum):
"""Severity level of a safety violation.
:cvar INFO: Informational level violation that does not require action
:cvar WARN: Warning level violation that suggests caution but allows continuation
:cvar ERROR: Error level violation that requires blocking or intervention
"""
INFO = "info"
WARN = "warn"
ERROR = "error"
@ -24,6 +31,13 @@ class ViolationLevel(Enum):
@json_schema_type
class SafetyViolation(BaseModel):
"""Details of a safety violation detected by content moderation.
:param violation_level: Severity level of the violation
:param user_message: (Optional) Message to convey to the user about the violation
:param metadata: Additional metadata including specific violation codes for debugging and telemetry
"""
violation_level: ViolationLevel
# what message should you convey to the user
@ -36,6 +50,11 @@ class SafetyViolation(BaseModel):
@json_schema_type
class RunShieldResponse(BaseModel):
"""Response from running a safety shield.
:param violation: (Optional) Safety violation detected by the shield, if any
"""
violation: SafetyViolation | None = None

View file

@ -31,6 +31,12 @@ class ScoringResult(BaseModel):
@json_schema_type
class ScoreBatchResponse(BaseModel):
"""Response from batch scoring operations on datasets.
:param dataset_id: (Optional) The identifier of the dataset that was scored
:param results: A map of scoring function name to ScoringResult
"""
dataset_id: str | None = None
results: dict[str, ScoringResult]

View file

@ -25,6 +25,12 @@ from llama_stack.schema_utils import json_schema_type, register_schema, webmetho
# with standard metrics so they can be rolled up?
@json_schema_type
class ScoringFnParamsType(StrEnum):
"""Types of scoring function parameter configurations.
:cvar llm_as_judge: Use an LLM model to evaluate and score responses
:cvar regex_parser: Use regex patterns to extract and score specific parts of responses
:cvar basic: Basic scoring with simple aggregation functions
"""
llm_as_judge = "llm_as_judge"
regex_parser = "regex_parser"
basic = "basic"
@ -32,6 +38,14 @@ class ScoringFnParamsType(StrEnum):
@json_schema_type
class AggregationFunctionType(StrEnum):
"""Types of aggregation functions for scoring results.
:cvar average: Calculate the arithmetic mean of scores
:cvar weighted_average: Calculate a weighted average of scores
:cvar median: Calculate the median value of scores
:cvar categorical_count: Count occurrences of categorical values
:cvar accuracy: Calculate accuracy as the proportion of correct answers
"""
average = "average"
weighted_average = "weighted_average"
median = "median"
@ -41,6 +55,14 @@ class AggregationFunctionType(StrEnum):
@json_schema_type
class LLMAsJudgeScoringFnParams(BaseModel):
"""Parameters for LLM-as-judge scoring function configuration.
:param type: The type of scoring function parameters, always llm_as_judge
:param judge_model: Identifier of the LLM model to use as a judge for scoring
:param prompt_template: (Optional) Custom prompt template for the judge model
:param judge_score_regexes: Regexes to extract the answer from generated response
:param aggregation_functions: Aggregation functions to apply to the scores of each row
"""
type: Literal[ScoringFnParamsType.llm_as_judge] = ScoringFnParamsType.llm_as_judge
judge_model: str
prompt_template: str | None = None
@ -56,6 +78,12 @@ class LLMAsJudgeScoringFnParams(BaseModel):
@json_schema_type
class RegexParserScoringFnParams(BaseModel):
"""Parameters for regex parser scoring function configuration.
:param type: The type of scoring function parameters, always regex_parser
:param parsing_regexes: Regex to extract the answer from generated response
:param aggregation_functions: Aggregation functions to apply to the scores of each row
"""
type: Literal[ScoringFnParamsType.regex_parser] = ScoringFnParamsType.regex_parser
parsing_regexes: list[str] = Field(
description="Regex to extract the answer from generated response",
@ -69,6 +97,11 @@ class RegexParserScoringFnParams(BaseModel):
@json_schema_type
class BasicScoringFnParams(BaseModel):
"""Parameters for basic scoring function configuration.
:param type: The type of scoring function parameters, always basic
:param aggregation_functions: Aggregation functions to apply to the scores of each row
"""
type: Literal[ScoringFnParamsType.basic] = ScoringFnParamsType.basic
aggregation_functions: list[AggregationFunctionType] = Field(
description="Aggregation functions to apply to the scores of each row",
@ -100,6 +133,10 @@ class CommonScoringFnFields(BaseModel):
@json_schema_type
class ScoringFn(CommonScoringFnFields, Resource):
"""A scoring function resource for evaluating model outputs.
:param type: The resource type, always scoring_function
"""
type: Literal[ResourceType.scoring_function] = ResourceType.scoring_function
@property

View file

@ -19,7 +19,11 @@ class CommonShieldFields(BaseModel):
@json_schema_type
class Shield(CommonShieldFields, Resource):
"""A safety shield resource that can be used to check content"""
"""A safety shield resource that can be used to check content.
:param params: (Optional) Configuration parameters for the shield
:param type: The resource type, always shield
"""
type: Literal[ResourceType.shield] = ResourceType.shield
@ -79,3 +83,11 @@ class Shields(Protocol):
:returns: A Shield.
"""
...
@webmethod(route="/shields/{identifier:path}", method="DELETE")
async def unregister_shield(self, identifier: str) -> None:
"""Unregister a shield.
:param identifier: The identifier of the shield to unregister.
"""
...

View file

@ -14,7 +14,15 @@ from llama_stack.schema_utils import json_schema_type, webmethod
class FilteringFunction(Enum):
"""The type of filtering function."""
"""The type of filtering function.
:cvar none: No filtering applied, accept all generated synthetic data
:cvar random: Random sampling of generated data points
:cvar top_k: Keep only the top-k highest scoring synthetic data samples
:cvar top_p: Nucleus-style filtering, keep samples exceeding cumulative score threshold
:cvar top_k_top_p: Combined top-k and top-p filtering strategy
:cvar sigmoid: Apply sigmoid function for probability-based filtering
"""
none = "none"
random = "random"
@ -26,7 +34,12 @@ class FilteringFunction(Enum):
@json_schema_type
class SyntheticDataGenerationRequest(BaseModel):
"""Request to generate synthetic data. A small batch of prompts and a filtering function"""
"""Request to generate synthetic data. A small batch of prompts and a filtering function
:param dialogs: List of conversation messages to use as input for synthetic data generation
:param filtering_function: Type of filtering to apply to generated synthetic data samples
:param model: (Optional) The identifier of the model to use. The model must be registered with Llama Stack and available via the /models endpoint
"""
dialogs: list[Message]
filtering_function: FilteringFunction = FilteringFunction.none
@ -35,7 +48,11 @@ class SyntheticDataGenerationRequest(BaseModel):
@json_schema_type
class SyntheticDataGenerationResponse(BaseModel):
"""Response from the synthetic data generation. Batch of (prompt, response, score) tuples that pass the threshold."""
"""Response from the synthetic data generation. Batch of (prompt, response, score) tuples that pass the threshold.
:param synthetic_data: List of generated synthetic data samples that passed the filtering criteria
:param statistics: (Optional) Statistical information about the generation process and filtering results
"""
synthetic_data: list[dict[str, Any]]
statistics: dict[str, Any] | None = None
@ -48,4 +65,12 @@ class SyntheticDataGeneration(Protocol):
dialogs: list[Message],
filtering_function: FilteringFunction = FilteringFunction.none,
model: str | None = None,
) -> SyntheticDataGenerationResponse: ...
) -> SyntheticDataGenerationResponse:
"""Generate synthetic data based on input dialogs and apply filtering.
:param dialogs: List of conversation messages to use as input for synthetic data generation
:param filtering_function: Type of filtering to apply to generated synthetic data samples
:param model: (Optional) The identifier of the model to use. The model must be registered with Llama Stack and available via the /models endpoint
:returns: Response containing filtered synthetic data samples and optional statistics
"""
...

View file

@ -27,12 +27,27 @@ REQUIRED_SCOPE = "telemetry.read"
@json_schema_type
class SpanStatus(Enum):
"""The status of a span indicating whether it completed successfully or with an error.
:cvar OK: Span completed successfully without errors
:cvar ERROR: Span completed with an error or failure
"""
OK = "ok"
ERROR = "error"
@json_schema_type
class Span(BaseModel):
"""A span representing a single operation within a trace.
:param span_id: Unique identifier for the span
:param trace_id: Unique identifier for the trace this span belongs to
:param parent_span_id: (Optional) Unique identifier for the parent span, if this is a child span
:param name: Human-readable name describing the operation this span represents
:param start_time: Timestamp when the operation began
:param end_time: (Optional) Timestamp when the operation finished, if completed
:param attributes: (Optional) Key-value pairs containing additional metadata about the span
"""
span_id: str
trace_id: str
parent_span_id: str | None = None
@ -49,6 +64,13 @@ class Span(BaseModel):
@json_schema_type
class Trace(BaseModel):
"""A trace representing the complete execution path of a request across multiple operations.
:param trace_id: Unique identifier for the trace
:param root_span_id: Unique identifier for the root span that started this trace
:param start_time: Timestamp when the trace began
:param end_time: (Optional) Timestamp when the trace finished, if completed
"""
trace_id: str
root_span_id: str
start_time: datetime
@ -57,6 +79,12 @@ class Trace(BaseModel):
@json_schema_type
class EventType(Enum):
"""The type of telemetry event being logged.
:cvar UNSTRUCTURED_LOG: A simple log message with severity level
:cvar STRUCTURED_LOG: A structured log event with typed payload data
:cvar METRIC: A metric measurement with value and unit
"""
UNSTRUCTURED_LOG = "unstructured_log"
STRUCTURED_LOG = "structured_log"
METRIC = "metric"
@ -64,6 +92,15 @@ class EventType(Enum):
@json_schema_type
class LogSeverity(Enum):
"""The severity level of a log message.
:cvar VERBOSE: Detailed diagnostic information for troubleshooting
:cvar DEBUG: Debug information useful during development
:cvar INFO: General informational messages about normal operation
:cvar WARN: Warning messages about potentially problematic situations
:cvar ERROR: Error messages indicating failures that don't stop execution
:cvar CRITICAL: Critical error messages indicating severe failures
"""
VERBOSE = "verbose"
DEBUG = "debug"
INFO = "info"
@ -73,6 +110,13 @@ class LogSeverity(Enum):
class EventCommon(BaseModel):
"""Common fields shared by all telemetry events.
:param trace_id: Unique identifier for the trace this event belongs to
:param span_id: Unique identifier for the span this event belongs to
:param timestamp: Timestamp when the event occurred
:param attributes: (Optional) Key-value pairs containing additional metadata about the event
"""
trace_id: str
span_id: str
timestamp: datetime
@ -81,6 +125,12 @@ class EventCommon(BaseModel):
@json_schema_type
class UnstructuredLogEvent(EventCommon):
"""An unstructured log event containing a simple text message.
:param type: Event type identifier set to UNSTRUCTURED_LOG
:param message: The log message text
:param severity: The severity level of the log message
"""
type: Literal[EventType.UNSTRUCTURED_LOG] = EventType.UNSTRUCTURED_LOG
message: str
severity: LogSeverity
@ -88,6 +138,13 @@ class UnstructuredLogEvent(EventCommon):
@json_schema_type
class MetricEvent(EventCommon):
"""A metric event containing a measured value.
:param type: Event type identifier set to METRIC
:param metric: The name of the metric being measured
:param value: The numeric value of the metric measurement
:param unit: The unit of measurement for the metric value
"""
type: Literal[EventType.METRIC] = EventType.METRIC
metric: str # this would be an enum
value: int | float
@ -96,6 +153,12 @@ class MetricEvent(EventCommon):
@json_schema_type
class MetricInResponse(BaseModel):
"""A metric value included in API responses.
:param metric: The name of the metric
:param value: The numeric value of the metric
:param unit: (Optional) The unit of measurement for the metric value
"""
metric: str
value: int | float
unit: str | None = None
@ -122,17 +185,32 @@ class MetricInResponse(BaseModel):
class MetricResponseMixin(BaseModel):
"""Mixin class for API responses that can include metrics.
:param metrics: (Optional) List of metrics associated with the API response
"""
metrics: list[MetricInResponse] | None = None
@json_schema_type
class StructuredLogType(Enum):
"""The type of structured log event payload.
:cvar SPAN_START: Event indicating the start of a new span
:cvar SPAN_END: Event indicating the completion of a span
"""
SPAN_START = "span_start"
SPAN_END = "span_end"
@json_schema_type
class SpanStartPayload(BaseModel):
"""Payload for a span start event.
:param type: Payload type identifier set to SPAN_START
:param name: Human-readable name describing the operation this span represents
:param parent_span_id: (Optional) Unique identifier for the parent span, if this is a child span
"""
type: Literal[StructuredLogType.SPAN_START] = StructuredLogType.SPAN_START
name: str
parent_span_id: str | None = None
@ -140,6 +218,11 @@ class SpanStartPayload(BaseModel):
@json_schema_type
class SpanEndPayload(BaseModel):
"""Payload for a span end event.
:param type: Payload type identifier set to SPAN_END
:param status: The final status of the span indicating success or failure
"""
type: Literal[StructuredLogType.SPAN_END] = StructuredLogType.SPAN_END
status: SpanStatus
@ -153,6 +236,11 @@ register_schema(StructuredLogPayload, name="StructuredLogPayload")
@json_schema_type
class StructuredLogEvent(EventCommon):
"""A structured log event containing typed payload data.
:param type: Event type identifier set to STRUCTURED_LOG
:param payload: The structured payload data for the log event
"""
type: Literal[EventType.STRUCTURED_LOG] = EventType.STRUCTURED_LOG
payload: StructuredLogPayload
@ -166,6 +254,14 @@ register_schema(Event, name="Event")
@json_schema_type
class EvalTrace(BaseModel):
"""A trace record for evaluation purposes.
:param session_id: Unique identifier for the evaluation session
:param step: The evaluation step or phase identifier
:param input: The input data for the evaluation
:param output: The actual output produced during evaluation
:param expected_output: The expected output for comparison during evaluation
"""
session_id: str
step: str
input: str
@ -175,11 +271,22 @@ class EvalTrace(BaseModel):
@json_schema_type
class SpanWithStatus(Span):
"""A span that includes status information.
:param status: (Optional) The current status of the span
"""
status: SpanStatus | None = None
@json_schema_type
class QueryConditionOp(Enum):
"""Comparison operators for query conditions.
:cvar EQ: Equal to comparison
:cvar NE: Not equal to comparison
:cvar GT: Greater than comparison
:cvar LT: Less than comparison
"""
EQ = "eq"
NE = "ne"
GT = "gt"
@ -188,29 +295,59 @@ class QueryConditionOp(Enum):
@json_schema_type
class QueryCondition(BaseModel):
"""A condition for filtering query results.
:param key: The attribute key to filter on
:param op: The comparison operator to apply
:param value: The value to compare against
"""
key: str
op: QueryConditionOp
value: Any
class QueryTracesResponse(BaseModel):
"""Response containing a list of traces.
:param data: List of traces matching the query criteria
"""
data: list[Trace]
class QuerySpansResponse(BaseModel):
"""Response containing a list of spans.
:param data: List of spans matching the query criteria
"""
data: list[Span]
class QuerySpanTreeResponse(BaseModel):
"""Response containing a tree structure of spans.
:param data: Dictionary mapping span IDs to spans with status information
"""
data: dict[str, SpanWithStatus]
class MetricQueryType(Enum):
"""The type of metric query to perform.
:cvar RANGE: Query metrics over a time range
:cvar INSTANT: Query metrics at a specific point in time
"""
RANGE = "range"
INSTANT = "instant"
class MetricLabelOperator(Enum):
"""Operators for matching metric labels.
:cvar EQUALS: Label value must equal the specified value
:cvar NOT_EQUALS: Label value must not equal the specified value
:cvar REGEX_MATCH: Label value must match the specified regular expression
:cvar REGEX_NOT_MATCH: Label value must not match the specified regular expression
"""
EQUALS = "="
NOT_EQUALS = "!="
REGEX_MATCH = "=~"
@ -218,6 +355,12 @@ class MetricLabelOperator(Enum):
class MetricLabelMatcher(BaseModel):
"""A matcher for filtering metrics by label values.
:param name: The name of the label to match
:param value: The value to match against
:param operator: The comparison operator to use for matching
"""
name: str
value: str
operator: MetricLabelOperator = MetricLabelOperator.EQUALS
@ -225,24 +368,44 @@ class MetricLabelMatcher(BaseModel):
@json_schema_type
class MetricLabel(BaseModel):
"""A label associated with a metric.
:param name: The name of the label
:param value: The value of the label
"""
name: str
value: str
@json_schema_type
class MetricDataPoint(BaseModel):
"""A single data point in a metric time series.
:param timestamp: Unix timestamp when the metric value was recorded
:param value: The numeric value of the metric at this timestamp
"""
timestamp: int
value: float
@json_schema_type
class MetricSeries(BaseModel):
"""A time series of metric data points.
:param metric: The name of the metric
:param labels: List of labels associated with this metric series
:param values: List of data points in chronological order
"""
metric: str
labels: list[MetricLabel]
values: list[MetricDataPoint]
class QueryMetricsResponse(BaseModel):
"""Response containing metric time series data.
:param data: List of metric series matching the query criteria
"""
data: list[MetricSeries]

View file

@ -22,7 +22,7 @@ class RRFRanker(BaseModel):
:param type: The type of ranker, always "rrf"
:param impact_factor: The impact factor for RRF scoring. Higher values give more weight to higher-ranked results.
Must be greater than 0. Default of 60 is from the original RRF paper (Cormack et al., 2009).
Must be greater than 0
"""
type: Literal["rrf"] = "rrf"
@ -76,12 +76,25 @@ class RAGDocument(BaseModel):
@json_schema_type
class RAGQueryResult(BaseModel):
"""Result of a RAG query containing retrieved content and metadata.
:param content: (Optional) The retrieved content from the query
:param metadata: Additional metadata about the query result
"""
content: InterleavedContent | None = None
metadata: dict[str, Any] = Field(default_factory=dict)
@json_schema_type
class RAGQueryGenerator(Enum):
"""Types of query generators for RAG systems.
:cvar default: Default query generator using simple text processing
:cvar llm: LLM-based query generator for enhanced query understanding
:cvar custom: Custom query generator implementation
"""
default = "default"
llm = "llm"
custom = "custom"
@ -103,12 +116,25 @@ class RAGSearchMode(StrEnum):
@json_schema_type
class DefaultRAGQueryGeneratorConfig(BaseModel):
"""Configuration for the default RAG query generator.
:param type: Type of query generator, always 'default'
:param separator: String separator used to join query terms
"""
type: Literal["default"] = "default"
separator: str = " "
@json_schema_type
class LLMRAGQueryGeneratorConfig(BaseModel):
"""Configuration for the LLM-based RAG query generator.
:param type: Type of query generator, always 'llm'
:param model: Name of the language model to use for query generation
:param template: Template string for formatting the query generation prompt
"""
type: Literal["llm"] = "llm"
model: str
template: str
@ -166,7 +192,12 @@ class RAGToolRuntime(Protocol):
vector_db_id: str,
chunk_size_in_tokens: int = 512,
) -> None:
"""Index documents so they can be used by the RAG system"""
"""Index documents so they can be used by the RAG system.
:param documents: List of documents to index in the RAG system
:param vector_db_id: ID of the vector database to store the document embeddings
:param chunk_size_in_tokens: (Optional) Size in tokens for document chunking during indexing
"""
...
@webmethod(route="/tool-runtime/rag-tool/query", method="POST")
@ -176,5 +207,11 @@ class RAGToolRuntime(Protocol):
vector_db_ids: list[str],
query_config: RAGQueryConfig | None = None,
) -> RAGQueryResult:
"""Query the RAG system for context; typically invoked by the agent"""
"""Query the RAG system for context; typically invoked by the agent.
:param content: The query content to search for in the indexed documents
:param vector_db_ids: List of vector database IDs to search within
:param query_config: (Optional) Configuration parameters for the query operation
:returns: RAGQueryResult containing the retrieved content and metadata
"""
...

View file

@ -20,6 +20,15 @@ from .rag_tool import RAGToolRuntime
@json_schema_type
class ToolParameter(BaseModel):
"""Parameter definition for a tool.
:param name: Name of the parameter
:param parameter_type: Type of the parameter (e.g., string, integer)
:param description: Human-readable description of what the parameter does
:param required: Whether this parameter is required for tool invocation
:param default: (Optional) Default value for the parameter if not provided
"""
name: str
parameter_type: str
description: str
@ -29,6 +38,15 @@ class ToolParameter(BaseModel):
@json_schema_type
class Tool(Resource):
"""A tool that can be invoked by agents.
:param type: Type of resource, always 'tool'
:param toolgroup_id: ID of the tool group this tool belongs to
:param description: Human-readable description of what the tool does
:param parameters: List of parameters this tool accepts
:param metadata: (Optional) Additional metadata about the tool
"""
type: Literal[ResourceType.tool] = ResourceType.tool
toolgroup_id: str
description: str
@ -38,6 +56,14 @@ class Tool(Resource):
@json_schema_type
class ToolDef(BaseModel):
"""Tool definition used in runtime contexts.
:param name: Name of the tool
:param description: (Optional) Human-readable description of what the tool does
:param parameters: (Optional) List of parameters this tool accepts
:param metadata: (Optional) Additional metadata about the tool
"""
name: str
description: str | None = None
parameters: list[ToolParameter] | None = None
@ -46,6 +72,14 @@ class ToolDef(BaseModel):
@json_schema_type
class ToolGroupInput(BaseModel):
"""Input data for registering a tool group.
:param toolgroup_id: Unique identifier for the tool group
:param provider_id: ID of the provider that will handle this tool group
:param args: (Optional) Additional arguments to pass to the provider
:param mcp_endpoint: (Optional) Model Context Protocol endpoint for remote tools
"""
toolgroup_id: str
provider_id: str
args: dict[str, Any] | None = None
@ -54,6 +88,13 @@ class ToolGroupInput(BaseModel):
@json_schema_type
class ToolGroup(Resource):
"""A group of related tools managed together.
:param type: Type of resource, always 'tool_group'
:param mcp_endpoint: (Optional) Model Context Protocol endpoint for remote tools
:param args: (Optional) Additional arguments for the tool group
"""
type: Literal[ResourceType.tool_group] = ResourceType.tool_group
mcp_endpoint: URL | None = None
args: dict[str, Any] | None = None
@ -61,6 +102,14 @@ class ToolGroup(Resource):
@json_schema_type
class ToolInvocationResult(BaseModel):
"""Result of a tool invocation.
:param content: (Optional) The output content from the tool execution
:param error_message: (Optional) Error message if the tool execution failed
:param error_code: (Optional) Numeric error code if the tool execution failed
:param metadata: (Optional) Additional metadata about the tool execution
"""
content: InterleavedContent | None = None
error_message: str | None = None
error_code: int | None = None
@ -73,14 +122,29 @@ class ToolStore(Protocol):
class ListToolGroupsResponse(BaseModel):
"""Response containing a list of tool groups.
:param data: List of tool groups
"""
data: list[ToolGroup]
class ListToolsResponse(BaseModel):
"""Response containing a list of tools.
:param data: List of tools
"""
data: list[Tool]
class ListToolDefsResponse(BaseModel):
"""Response containing a list of tool definitions.
:param data: List of tool definitions
"""
data: list[ToolDef]
@ -158,6 +222,11 @@ class ToolGroups(Protocol):
class SpecialToolGroup(Enum):
"""Special tool groups with predefined functionality.
:cvar rag_tool: Retrieval-Augmented Generation tool group for document search and retrieval
"""
rag_tool = "rag_tool"

View file

@ -15,6 +15,13 @@ from llama_stack.schema_utils import json_schema_type, webmethod
@json_schema_type
class VectorDB(Resource):
"""Vector database resource for storing and querying vector embeddings.
:param type: Type of resource, always 'vector_db' for vector databases
:param embedding_model: Name of the embedding model to use for vector generation
:param embedding_dimension: Dimension of the embedding vectors
"""
type: Literal[ResourceType.vector_db] = ResourceType.vector_db
embedding_model: str
@ -31,6 +38,14 @@ class VectorDB(Resource):
class VectorDBInput(BaseModel):
"""Input parameters for creating or configuring a vector database.
:param vector_db_id: Unique identifier for the vector database
:param embedding_model: Name of the embedding model to use for vector generation
:param embedding_dimension: Dimension of the embedding vectors
:param provider_vector_db_id: (Optional) Provider-specific identifier for the vector database
"""
vector_db_id: str
embedding_model: str
embedding_dimension: int
@ -39,6 +54,11 @@ class VectorDBInput(BaseModel):
class ListVectorDBsResponse(BaseModel):
"""Response from listing vector databases.
:param data: List of vector databases
"""
data: list[VectorDB]

View file

@ -16,7 +16,7 @@ from pydantic import BaseModel, Field
from llama_stack.apis.inference import InterleavedContent
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
from llama_stack.providers.utils.vector_io.chunk_utils import generate_chunk_id
from llama_stack.providers.utils.vector_io.vector_utils import generate_chunk_id
from llama_stack.schema_utils import json_schema_type, webmethod
from llama_stack.strong_typing.schema import register_schema
@ -94,12 +94,27 @@ class Chunk(BaseModel):
@json_schema_type
class QueryChunksResponse(BaseModel):
"""Response from querying chunks in a vector database.
:param chunks: List of content chunks returned from the query
:param scores: Relevance scores corresponding to each returned chunk
"""
chunks: list[Chunk]
scores: list[float]
@json_schema_type
class VectorStoreFileCounts(BaseModel):
"""File processing status counts for a vector store.
:param completed: Number of files that have been successfully processed
:param cancelled: Number of files that had their processing cancelled
:param failed: Number of files that failed to process
:param in_progress: Number of files currently being processed
:param total: Total number of files in the vector store
"""
completed: int
cancelled: int
failed: int
@ -109,7 +124,20 @@ class VectorStoreFileCounts(BaseModel):
@json_schema_type
class VectorStoreObject(BaseModel):
"""OpenAI Vector Store object."""
"""OpenAI Vector Store object.
:param id: Unique identifier for the vector store
:param object: Object type identifier, always "vector_store"
:param created_at: Timestamp when the vector store was created
:param name: (Optional) Name of the vector store
:param usage_bytes: Storage space used by the vector store in bytes
:param file_counts: File processing status counts for the vector store
:param status: Current status of the vector store
:param expires_after: (Optional) Expiration policy for the vector store
:param expires_at: (Optional) Timestamp when the vector store will expire
:param last_active_at: (Optional) Timestamp of last activity on the vector store
:param metadata: Set of key-value pairs that can be attached to the vector store
"""
id: str
object: str = "vector_store"
@ -126,7 +154,14 @@ class VectorStoreObject(BaseModel):
@json_schema_type
class VectorStoreCreateRequest(BaseModel):
"""Request to create a vector store."""
"""Request to create a vector store.
:param name: (Optional) Name for the vector store
:param file_ids: List of file IDs to include in the vector store
:param expires_after: (Optional) Expiration policy for the vector store
:param chunking_strategy: (Optional) Strategy for splitting files into chunks
:param metadata: Set of key-value pairs that can be attached to the vector store
"""
name: str | None = None
file_ids: list[str] = Field(default_factory=list)
@ -137,7 +172,12 @@ class VectorStoreCreateRequest(BaseModel):
@json_schema_type
class VectorStoreModifyRequest(BaseModel):
"""Request to modify a vector store."""
"""Request to modify a vector store.
:param name: (Optional) Updated name for the vector store
:param expires_after: (Optional) Updated expiration policy for the vector store
:param metadata: (Optional) Updated set of key-value pairs for the vector store
"""
name: str | None = None
expires_after: dict[str, Any] | None = None
@ -146,7 +186,14 @@ class VectorStoreModifyRequest(BaseModel):
@json_schema_type
class VectorStoreListResponse(BaseModel):
"""Response from listing vector stores."""
"""Response from listing vector stores.
:param object: Object type identifier, always "list"
:param data: List of vector store objects
:param first_id: (Optional) ID of the first vector store in the list for pagination
:param last_id: (Optional) ID of the last vector store in the list for pagination
:param has_more: Whether there are more vector stores available beyond this page
"""
object: str = "list"
data: list[VectorStoreObject]
@ -157,7 +204,14 @@ class VectorStoreListResponse(BaseModel):
@json_schema_type
class VectorStoreSearchRequest(BaseModel):
"""Request to search a vector store."""
"""Request to search a vector store.
:param query: Search query as a string or list of strings
:param filters: (Optional) Filters based on file attributes to narrow search results
:param max_num_results: Maximum number of results to return, defaults to 10
:param ranking_options: (Optional) Options for ranking and filtering search results
:param rewrite_query: Whether to rewrite the query for better vector search performance
"""
query: str | list[str]
filters: dict[str, Any] | None = None
@ -168,13 +222,26 @@ class VectorStoreSearchRequest(BaseModel):
@json_schema_type
class VectorStoreContent(BaseModel):
"""Content item from a vector store file or search result.
:param type: Content type, currently only "text" is supported
:param text: The actual text content
"""
type: Literal["text"]
text: str
@json_schema_type
class VectorStoreSearchResponse(BaseModel):
"""Response from searching a vector store."""
"""Response from searching a vector store.
:param file_id: Unique identifier of the file containing the result
:param filename: Name of the file containing the result
:param score: Relevance score for this search result
:param attributes: (Optional) Key-value attributes associated with the file
:param content: List of content items matching the search query
"""
file_id: str
filename: str
@ -185,7 +252,14 @@ class VectorStoreSearchResponse(BaseModel):
@json_schema_type
class VectorStoreSearchResponsePage(BaseModel):
"""Response from searching a vector store."""
"""Paginated response from searching a vector store.
:param object: Object type identifier for the search results page
:param search_query: The original search query that was executed
:param data: List of search result objects
:param has_more: Whether there are more results available beyond this page
:param next_page: (Optional) Token for retrieving the next page of results
"""
object: str = "vector_store.search_results.page"
search_query: str
@ -196,7 +270,12 @@ class VectorStoreSearchResponsePage(BaseModel):
@json_schema_type
class VectorStoreDeleteResponse(BaseModel):
"""Response from deleting a vector store."""
"""Response from deleting a vector store.
:param id: Unique identifier of the deleted vector store
:param object: Object type identifier for the deletion response
:param deleted: Whether the deletion operation was successful
"""
id: str
object: str = "vector_store.deleted"
@ -205,17 +284,34 @@ class VectorStoreDeleteResponse(BaseModel):
@json_schema_type
class VectorStoreChunkingStrategyAuto(BaseModel):
"""Automatic chunking strategy for vector store files.
:param type: Strategy type, always "auto" for automatic chunking
"""
type: Literal["auto"] = "auto"
@json_schema_type
class VectorStoreChunkingStrategyStaticConfig(BaseModel):
"""Configuration for static chunking strategy.
:param chunk_overlap_tokens: Number of tokens to overlap between adjacent chunks
:param max_chunk_size_tokens: Maximum number of tokens per chunk, must be between 100 and 4096
"""
chunk_overlap_tokens: int = 400
max_chunk_size_tokens: int = Field(800, ge=100, le=4096)
@json_schema_type
class VectorStoreChunkingStrategyStatic(BaseModel):
"""Static chunking strategy with configurable parameters.
:param type: Strategy type, always "static" for static chunking
:param static: Configuration parameters for the static chunking strategy
"""
type: Literal["static"] = "static"
static: VectorStoreChunkingStrategyStaticConfig
@ -227,6 +323,12 @@ register_schema(VectorStoreChunkingStrategy, name="VectorStoreChunkingStrategy")
class SearchRankingOptions(BaseModel):
"""Options for ranking and filtering search results.
:param ranker: (Optional) Name of the ranking algorithm to use
:param score_threshold: (Optional) Minimum relevance score threshold for results
"""
ranker: str | None = None
# NOTE: OpenAI File Search Tool requires threshold to be between 0 and 1, however
# we don't guarantee that the score is between 0 and 1, so will leave this unconstrained
@ -236,6 +338,12 @@ class SearchRankingOptions(BaseModel):
@json_schema_type
class VectorStoreFileLastError(BaseModel):
"""Error information for failed vector store file processing.
:param code: Error code indicating the type of failure
:param message: Human-readable error message describing the failure
"""
code: Literal["server_error"] | Literal["rate_limit_exceeded"]
message: str
@ -246,7 +354,18 @@ register_schema(VectorStoreFileStatus, name="VectorStoreFileStatus")
@json_schema_type
class VectorStoreFileObject(BaseModel):
"""OpenAI Vector Store File object."""
"""OpenAI Vector Store File object.
:param id: Unique identifier for the file
:param object: Object type identifier, always "vector_store.file"
:param attributes: Key-value attributes associated with the file
:param chunking_strategy: Strategy used for splitting the file into chunks
:param created_at: Timestamp when the file was added to the vector store
:param last_error: (Optional) Error information if file processing failed
:param status: Current processing status of the file
:param usage_bytes: Storage space used by this file in bytes
:param vector_store_id: ID of the vector store containing this file
"""
id: str
object: str = "vector_store.file"
@ -261,7 +380,14 @@ class VectorStoreFileObject(BaseModel):
@json_schema_type
class VectorStoreListFilesResponse(BaseModel):
"""Response from listing vector stores."""
"""Response from listing files in a vector store.
:param object: Object type identifier, always "list"
:param data: List of vector store file objects
:param first_id: (Optional) ID of the first file in the list for pagination
:param last_id: (Optional) ID of the last file in the list for pagination
:param has_more: Whether there are more files available beyond this page
"""
object: str = "list"
data: list[VectorStoreFileObject]
@ -272,7 +398,13 @@ class VectorStoreListFilesResponse(BaseModel):
@json_schema_type
class VectorStoreFileContentsResponse(BaseModel):
"""Response from retrieving the contents of a vector store file."""
"""Response from retrieving the contents of a vector store file.
:param file_id: Unique identifier for the file
:param filename: Name of the file
:param attributes: Key-value attributes associated with the file
:param content: List of content items from the file
"""
file_id: str
filename: str
@ -282,7 +414,12 @@ class VectorStoreFileContentsResponse(BaseModel):
@json_schema_type
class VectorStoreFileDeleteResponse(BaseModel):
"""Response from deleting a vector store file."""
"""Response from deleting a vector store file.
:param id: Unique identifier of the deleted file
:param object: Object type identifier for the deletion response
:param deleted: Whether the deletion operation was successful
"""
id: str
object: str = "vector_store.file.deleted"
@ -478,6 +615,11 @@ class VectorIO(Protocol):
"""List files in a vector store.
:param vector_store_id: The ID of the vector store to list files from.
:param limit: (Optional) A limit on the number of objects to be returned. Limit can range between 1 and 100, and the default is 20.
:param order: (Optional) Sort order by the `created_at` timestamp of the objects. `asc` for ascending order and `desc` for descending order.
:param after: (Optional) A cursor for use in pagination. `after` is an object ID that defines your place in the list.
:param before: (Optional) A cursor for use in pagination. `before` is an object ID that defines your place in the list.
:param filter: (Optional) Filter by file status to only return files with the specified status.
:returns: A VectorStoreListFilesResponse containing the list of files.
"""
...

View file

@ -323,7 +323,7 @@ def _hf_download(
from huggingface_hub import snapshot_download
from huggingface_hub.utils import GatedRepoError, RepositoryNotFoundError
from llama_stack.distribution.utils.model_utils import model_local_dir
from llama_stack.core.utils.model_utils import model_local_dir
repo_id = model.huggingface_repo
if repo_id is None:
@ -361,7 +361,7 @@ def _meta_download(
info: "LlamaDownloadInfo",
max_concurrent_downloads: int,
):
from llama_stack.distribution.utils.model_utils import model_local_dir
from llama_stack.core.utils.model_utils import model_local_dir
output_dir = Path(model_local_dir(model.descriptor()))
os.makedirs(output_dir, exist_ok=True)
@ -403,7 +403,7 @@ class Manifest(BaseModel):
def _download_from_manifest(manifest_file: str, max_concurrent_downloads: int):
from llama_stack.distribution.utils.model_utils import model_local_dir
from llama_stack.core.utils.model_utils import model_local_dir
with open(manifest_file) as f:
d = json.load(f)

View file

@ -11,7 +11,7 @@ from pathlib import Path
from llama_stack.cli.subcommand import Subcommand
from llama_stack.cli.table import print_table
from llama_stack.distribution.utils.config_dirs import DEFAULT_CHECKPOINT_DIR
from llama_stack.core.utils.config_dirs import DEFAULT_CHECKPOINT_DIR
from llama_stack.models.llama.sku_list import all_registered_models

View file

@ -9,7 +9,7 @@ import os
import shutil
from llama_stack.cli.subcommand import Subcommand
from llama_stack.distribution.utils.config_dirs import DEFAULT_CHECKPOINT_DIR
from llama_stack.core.utils.config_dirs import DEFAULT_CHECKPOINT_DIR
from llama_stack.models.llama.sku_list import resolve_model

View file

@ -23,73 +23,80 @@ from termcolor import colored, cprint
from llama_stack.cli.stack.utils import ImageType
from llama_stack.cli.table import print_table
from llama_stack.distribution.build import (
from llama_stack.core.build import (
SERVER_DEPENDENCIES,
build_image,
get_provider_dependencies,
)
from llama_stack.distribution.configure import parse_and_maybe_upgrade_config
from llama_stack.distribution.datatypes import (
from llama_stack.core.configure import parse_and_maybe_upgrade_config
from llama_stack.core.datatypes import (
BuildConfig,
BuildProvider,
DistributionSpec,
Provider,
StackRunConfig,
)
from llama_stack.distribution.distribution import get_provider_registry
from llama_stack.distribution.external import load_external_apis
from llama_stack.distribution.resolver import InvalidProviderError
from llama_stack.distribution.stack import replace_env_vars
from llama_stack.distribution.utils.config_dirs import DISTRIBS_BASE_DIR, EXTERNAL_PROVIDERS_DIR
from llama_stack.distribution.utils.dynamic import instantiate_class_type
from llama_stack.distribution.utils.exec import formulate_run_args, run_command
from llama_stack.distribution.utils.image_types import LlamaStackImageType
from llama_stack.core.distribution import get_provider_registry
from llama_stack.core.external import load_external_apis
from llama_stack.core.resolver import InvalidProviderError
from llama_stack.core.stack import replace_env_vars
from llama_stack.core.utils.config_dirs import DISTRIBS_BASE_DIR, EXTERNAL_PROVIDERS_DIR
from llama_stack.core.utils.dynamic import instantiate_class_type
from llama_stack.core.utils.exec import formulate_run_args, run_command
from llama_stack.core.utils.image_types import LlamaStackImageType
from llama_stack.providers.datatypes import Api
TEMPLATES_PATH = Path(__file__).parent.parent.parent / "templates"
DISTRIBS_PATH = Path(__file__).parent.parent.parent / "distributions"
@lru_cache
def available_templates_specs() -> dict[str, BuildConfig]:
def available_distros_specs() -> dict[str, BuildConfig]:
import yaml
template_specs = {}
for p in TEMPLATES_PATH.rglob("*build.yaml"):
template_name = p.parent.name
distro_specs = {}
for p in DISTRIBS_PATH.rglob("*build.yaml"):
distro_name = p.parent.name
with open(p) as f:
build_config = BuildConfig(**yaml.safe_load(f))
template_specs[template_name] = build_config
return template_specs
distro_specs[distro_name] = build_config
return distro_specs
def run_stack_build_command(args: argparse.Namespace) -> None:
if args.list_templates:
return _run_template_list_cmd()
if args.list_distros:
return _run_distro_list_cmd()
if args.image_type == ImageType.VENV.value:
current_venv = os.environ.get("VIRTUAL_ENV")
image_name = args.image_name or current_venv
elif args.image_type == ImageType.CONDA.value:
current_conda_env = os.environ.get("CONDA_DEFAULT_ENV")
image_name = args.image_name or current_conda_env
else:
image_name = args.image_name
if args.template:
available_templates = available_templates_specs()
if args.template not in available_templates:
cprint(
"The --template argument is deprecated. Please use --distro instead.",
color="red",
file=sys.stderr,
)
distro_name = args.template
else:
distro_name = args.distribution
if distro_name:
available_distros = available_distros_specs()
if distro_name not in available_distros:
cprint(
f"Could not find template {args.template}. Please run `llama stack build --list-templates` to check out the available templates",
f"Could not find distribution {distro_name}. Please run `llama stack build --list-distros` to check out the available distributions",
color="red",
file=sys.stderr,
)
sys.exit(1)
build_config = available_templates[args.template]
build_config = available_distros[distro_name]
if args.image_type:
build_config.image_type = args.image_type
else:
cprint(
f"Please specify a image-type ({' | '.join(e.value for e in ImageType)}) for {args.template}",
f"Please specify a image-type ({' | '.join(e.value for e in ImageType)}) for {distro_name}",
color="red",
file=sys.stderr,
)
@ -132,14 +139,14 @@ def run_stack_build_command(args: argparse.Namespace) -> None:
)
if not args.image_type:
cprint(
f"Please specify a image-type (container | conda | venv) for {args.template}",
f"Please specify a image-type (container | venv) for {args.template}",
color="red",
file=sys.stderr,
)
sys.exit(1)
build_config = BuildConfig(image_type=args.image_type, distribution_spec=distribution_spec)
elif not args.config and not args.template:
elif not args.config and not distro_name:
name = prompt(
"> Enter a name for your Llama Stack (e.g. my-local-stack): ",
validator=Validator.from_callable(
@ -158,22 +165,7 @@ def run_stack_build_command(args: argparse.Namespace) -> None:
),
)
if image_type == ImageType.CONDA.value:
if not image_name:
cprint(
f"No current conda environment detected or specified, will create a new conda environment with the name `llamastack-{name}`",
color="yellow",
file=sys.stderr,
)
image_name = f"llamastack-{name}"
else:
cprint(
f"Using conda environment {image_name}",
color="green",
file=sys.stderr,
)
else:
image_name = f"llamastack-{name}"
image_name = f"llamastack-{name}"
cprint(
textwrap.dedent(
@ -236,7 +228,7 @@ def run_stack_build_command(args: argparse.Namespace) -> None:
sys.exit(1)
if args.print_deps_only:
print(f"# Dependencies for {args.template or args.config or image_name}")
print(f"# Dependencies for {distro_name or args.config or image_name}")
normal_deps, special_deps, external_provider_dependencies = get_provider_dependencies(build_config)
normal_deps += SERVER_DEPENDENCIES
print(f"uv pip install {' '.join(normal_deps)}")
@ -251,7 +243,7 @@ def run_stack_build_command(args: argparse.Namespace) -> None:
build_config,
image_name=image_name,
config_path=args.config,
template_name=args.template,
distro_name=distro_name,
)
except (Exception, RuntimeError) as exc:
@ -279,7 +271,7 @@ def run_stack_build_command(args: argparse.Namespace) -> None:
config = parse_and_maybe_upgrade_config(config_dict)
if config.external_providers_dir and not config.external_providers_dir.exists():
config.external_providers_dir.mkdir(exist_ok=True)
run_args = formulate_run_args(args.image_type, args.image_name)
run_args = formulate_run_args(args.image_type, image_name or config.image_name)
run_args.extend([str(os.getenv("LLAMA_STACK_PORT", 8321)), "--config", str(run_config)])
run_command(run_args)
@ -362,20 +354,17 @@ def _generate_run_config(
def _run_stack_build_command_from_build_config(
build_config: BuildConfig,
image_name: str | None = None,
template_name: str | None = None,
distro_name: str | None = None,
config_path: str | None = None,
) -> Path | Traversable:
image_name = image_name or build_config.image_name
if build_config.image_type == LlamaStackImageType.CONTAINER.value:
if template_name:
image_name = f"distribution-{template_name}"
if distro_name:
image_name = f"distribution-{distro_name}"
else:
if not image_name:
raise ValueError("Please specify an image name when building a container image without a template")
elif build_config.image_type == LlamaStackImageType.CONDA.value:
if not image_name:
raise ValueError("Please specify an image name when building a conda image")
elif build_config.image_type == LlamaStackImageType.VENV.value:
else:
if not image_name and os.environ.get("UV_SYSTEM_PYTHON"):
image_name = "__system__"
if not image_name:
@ -385,9 +374,9 @@ def _run_stack_build_command_from_build_config(
if image_name is None:
raise ValueError("image_name should not be None after validation")
if template_name:
build_dir = DISTRIBS_BASE_DIR / template_name
build_file_path = build_dir / f"{template_name}-build.yaml"
if distro_name:
build_dir = DISTRIBS_BASE_DIR / distro_name
build_file_path = build_dir / f"{distro_name}-build.yaml"
else:
if image_name is None:
raise ValueError("image_name cannot be None")
@ -398,7 +387,7 @@ def _run_stack_build_command_from_build_config(
run_config_file = None
# Generate the run.yaml so it can be included in the container image with the proper entrypoint
# Only do this if we're building a container image and we're not using a template
if build_config.image_type == LlamaStackImageType.CONTAINER.value and not template_name and config_path:
if build_config.image_type == LlamaStackImageType.CONTAINER.value and not distro_name and config_path:
cprint("Generating run.yaml file", color="yellow", file=sys.stderr)
run_config_file = _generate_run_config(build_config, build_dir, image_name)
@ -431,48 +420,46 @@ def _run_stack_build_command_from_build_config(
return_code = build_image(
build_config,
build_file_path,
image_name,
template_or_config=template_name or config_path or str(build_file_path),
distro_or_config=distro_name or config_path or str(build_file_path),
run_config=run_config_file.as_posix() if run_config_file else None,
)
if return_code != 0:
raise RuntimeError(f"Failed to build image {image_name}")
if template_name:
# copy run.yaml from template to build_dir instead of generating it again
template_path = importlib.resources.files("llama_stack") / f"templates/{template_name}/run.yaml"
run_config_file = build_dir / f"{template_name}-run.yaml"
if distro_name:
# copy run.yaml from distribution to build_dir instead of generating it again
distro_path = importlib.resources.files("llama_stack") / f"distributions/{distro_name}/run.yaml"
run_config_file = build_dir / f"{distro_name}-run.yaml"
with importlib.resources.as_file(template_path) as path:
with importlib.resources.as_file(distro_path) as path:
shutil.copy(path, run_config_file)
cprint("Build Successful!", color="green", file=sys.stderr)
cprint(f"You can find the newly-built template here: {run_config_file}", color="blue", file=sys.stderr)
cprint(f"You can find the newly-built distribution here: {run_config_file}", color="blue", file=sys.stderr)
cprint(
"You can run the new Llama Stack distro via: "
+ colored(f"llama stack run {run_config_file} --image-type {build_config.image_type}", "blue"),
color="green",
file=sys.stderr,
)
return template_path
return distro_path
else:
return _generate_run_config(build_config, build_dir, image_name)
def _run_template_list_cmd() -> None:
# eventually, this should query a registry at llama.meta.com/llamastack/distributions
def _run_distro_list_cmd() -> None:
headers = [
"Template Name",
"Distribution Name",
# "Providers",
"Description",
]
rows = []
for template_name, spec in available_templates_specs().items():
for distro_name, spec in available_distros_specs().items():
rows.append(
[
template_name,
distro_name,
# json.dumps(spec.distribution_spec.providers, indent=2),
spec.distribution_spec.description,
]

View file

@ -27,21 +27,31 @@ class StackBuild(Subcommand):
"--config",
type=str,
default=None,
help="Path to a config file to use for the build. You can find example configs in llama_stack/distributions/**/build.yaml. If this argument is not provided, you will be prompted to enter information interactively",
help="Path to a config file to use for the build. You can find example configs in llama_stack.cores/**/build.yaml. If this argument is not provided, you will be prompted to enter information interactively",
)
self.parser.add_argument(
"--template",
type=str,
default=None,
help="Name of the example template config to use for build. You may use `llama stack build --list-templates` to check out the available templates",
help="""(deprecated) Name of the example template config to use for build. You may use `llama stack build --list-distros` to check out the available distributions""",
)
self.parser.add_argument(
"--distro",
"--distribution",
dest="distribution",
type=str,
default=None,
help="""Name of the distribution to use for build. You may use `llama stack build --list-distros` to check out the available distributions""",
)
self.parser.add_argument(
"--list-templates",
"--list-distros",
"--list-distributions",
action="store_true",
dest="list_distros",
default=False,
help="Show the available templates for building a Llama Stack distribution",
help="Show the available distributions for building a Llama Stack distribution",
)
self.parser.add_argument(
@ -56,7 +66,7 @@ class StackBuild(Subcommand):
"--image-name",
type=str,
help=textwrap.dedent(
f"""[for image-type={"|".join(e.value for e in ImageType)}] Name of the conda or virtual environment to use for
f"""[for image-type={"|".join(e.value for e in ImageType)}] Name of the virtual environment to use for
the build. If not specified, currently active environment will be used if found.
"""
),

View file

@ -26,7 +26,7 @@ class StackListApis(Subcommand):
def _run_apis_list_cmd(self, args: argparse.Namespace) -> None:
from llama_stack.cli.table import print_table
from llama_stack.distribution.distribution import stack_apis
from llama_stack.core.distribution import stack_apis
# eventually, this should query a registry at llama.meta.com/llamastack/distributions
headers = [

View file

@ -23,7 +23,7 @@ class StackListProviders(Subcommand):
@property
def providable_apis(self):
from llama_stack.distribution.distribution import providable_apis
from llama_stack.core.distribution import providable_apis
return [api.value for api in providable_apis()]
@ -38,7 +38,7 @@ class StackListProviders(Subcommand):
def _run_providers_list_cmd(self, args: argparse.Namespace) -> None:
from llama_stack.cli.table import print_table
from llama_stack.distribution.distribution import Api, get_provider_registry
from llama_stack.core.distribution import Api, get_provider_registry
all_providers = get_provider_registry()
if args.api:

View file

@ -35,8 +35,8 @@ class StackRun(Subcommand):
"config",
type=str,
nargs="?", # Make it optional
metavar="config | template",
help="Path to config file to use for the run or name of known template (`llama stack list` for a list).",
metavar="config | distro",
help="Path to config file to use for the run or name of known distro (`llama stack list` for a list).",
)
self.parser.add_argument(
"--port",
@ -47,7 +47,8 @@ class StackRun(Subcommand):
self.parser.add_argument(
"--image-name",
type=str,
help="Name of the image to run.",
default=None,
help="Name of the image to run. Defaults to the current environment",
)
self.parser.add_argument(
"--env",
@ -58,7 +59,7 @@ class StackRun(Subcommand):
self.parser.add_argument(
"--image-type",
type=str,
help="Image Type used during the build. This can be either conda or container or venv.",
help="Image Type used during the build. This can be only venv.",
choices=[e.value for e in ImageType if e.value != ImageType.CONTAINER.value],
)
self.parser.add_argument(
@ -67,44 +68,62 @@ class StackRun(Subcommand):
help="Start the UI server",
)
# If neither image type nor image name is provided, but at the same time
# the current environment has conda breadcrumbs, then assume what the user
# wants to use conda mode and not the usual default mode (using
# pre-installed system packages).
#
# Note: yes, this is hacky. It's implemented this way to keep the existing
# conda users unaffected by the switch of the default behavior to using
# system packages.
def _get_image_type_and_name(self, args: argparse.Namespace) -> tuple[str, str]:
conda_env = os.environ.get("CONDA_DEFAULT_ENV")
if conda_env and args.image_name == conda_env:
logger.warning(f"Conda detected. Using conda environment {conda_env} for the run.")
return ImageType.CONDA.value, args.image_name
return args.image_type, args.image_name
def _resolve_config_and_distro(self, args: argparse.Namespace) -> tuple[Path | None, str | None]:
"""Resolve config file path and distribution name from args.config"""
from llama_stack.core.utils.config_dirs import DISTRIBS_BASE_DIR
if not args.config:
return None, None
config_file = Path(args.config)
has_yaml_suffix = args.config.endswith(".yaml")
distro_name = None
if not config_file.exists() and not has_yaml_suffix:
# check if this is a distribution
config_file = Path(REPO_ROOT) / "llama_stack" / "distributions" / args.config / "run.yaml"
if config_file.exists():
distro_name = args.config
if not config_file.exists() and not has_yaml_suffix:
# check if it's a build config saved to ~/.llama dir
config_file = Path(DISTRIBS_BASE_DIR / f"llamastack-{args.config}" / f"{args.config}-run.yaml")
if not config_file.exists():
self.parser.error(
f"File {str(config_file)} does not exist.\n\nPlease run `llama stack build` to generate (and optionally edit) a run.yaml file"
)
if not config_file.is_file():
self.parser.error(
f"Config file must be a valid file path, '{config_file}' is not a file: type={type(config_file)}"
)
return config_file, distro_name
def _run_stack_run_cmd(self, args: argparse.Namespace) -> None:
import yaml
from llama_stack.distribution.configure import parse_and_maybe_upgrade_config
from llama_stack.distribution.utils.exec import formulate_run_args, run_command
from llama_stack.core.configure import parse_and_maybe_upgrade_config
from llama_stack.core.utils.exec import formulate_run_args, run_command
if args.enable_ui:
self._start_ui_development_server(args.port)
image_type, image_name = self._get_image_type_and_name(args)
image_type, image_name = args.image_type, args.image_name
if args.config:
try:
from llama_stack.distribution.utils.config_resolution import Mode, resolve_config_or_template
from llama_stack.core.utils.config_resolution import Mode, resolve_config_or_distro
config_file = resolve_config_or_template(args.config, Mode.RUN)
config_file = resolve_config_or_distro(args.config, Mode.RUN)
except ValueError as e:
self.parser.error(str(e))
else:
config_file = None
# Check if config is required based on image type
if (image_type in [ImageType.CONDA.value, ImageType.VENV.value]) and not config_file:
self.parser.error("Config file is required for venv and conda environments")
if image_type == ImageType.VENV.value and not config_file:
self.parser.error("Config file is required for venv environment")
if config_file:
logger.info(f"Using run configuration: {config_file}")
@ -127,7 +146,7 @@ class StackRun(Subcommand):
# using the current environment packages.
if not image_type and not image_name:
logger.info("No image type or image name provided. Assuming environment packages.")
from llama_stack.distribution.server.server import main as server_main
from llama_stack.core.server.server import main as server_main
# Build the server args from the current args passed to the CLI
server_args = argparse.Namespace()

View file

@ -8,7 +8,6 @@ from enum import Enum
class ImageType(Enum):
CONDA = "conda"
CONTAINER = "container"
VENV = "venv"

View file

@ -11,38 +11,19 @@ from llama_stack.log import get_logger
logger = get_logger(name=__name__, category="cli")
def add_config_template_args(parser: argparse.ArgumentParser):
"""Add unified config/template arguments with backward compatibility."""
# TODO: this can probably just be inlined now?
def add_config_distro_args(parser: argparse.ArgumentParser):
"""Add unified config/distro arguments."""
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument(
"config",
nargs="?",
help="Configuration file path or template name",
)
# Backward compatibility arguments (deprecated)
group.add_argument(
"--config",
dest="config_deprecated",
help="(DEPRECATED) Use positional argument [config] instead. Configuration file path",
)
group.add_argument(
"--template",
dest="template_deprecated",
help="(DEPRECATED) Use positional argument [config] instead. Template name",
help="Configuration file path or distribution name",
)
def get_config_from_args(args: argparse.Namespace) -> str | None:
"""Extract config value from parsed arguments, handling both new and deprecated forms."""
if args.config is not None:
return str(args.config)
elif hasattr(args, "config_deprecated") and args.config_deprecated is not None:
logger.warning("Using deprecated --config argument. Use positional argument [config] instead.")
return str(args.config_deprecated)
elif hasattr(args, "template_deprecated") and args.template_deprecated is not None:
logger.warning("Using deprecated --template argument. Use positional argument [config] instead.")
return str(args.template_deprecated)
return None

View file

@ -107,7 +107,7 @@ def verify_files(model_dir: Path, checksums: dict[str, str], console: Console) -
def run_verify_cmd(args: argparse.Namespace, parser: argparse.ArgumentParser):
from llama_stack.distribution.utils.model_utils import model_local_dir
from llama_stack.core.utils.model_utils import model_local_dir
console = Console()
model_dir = Path(model_local_dir(args.model_id))

View file

@ -6,7 +6,7 @@
from typing import Any
from llama_stack.distribution.datatypes import User
from llama_stack.core.datatypes import User
from .conditions import (
Condition,

View file

@ -7,18 +7,17 @@
import importlib.resources
import logging
import sys
from pathlib import Path
from pydantic import BaseModel
from termcolor import cprint
from llama_stack.distribution.datatypes import BuildConfig
from llama_stack.distribution.distribution import get_provider_registry
from llama_stack.distribution.external import load_external_apis
from llama_stack.distribution.utils.exec import run_command
from llama_stack.distribution.utils.image_types import LlamaStackImageType
from llama_stack.core.datatypes import BuildConfig
from llama_stack.core.distribution import get_provider_registry
from llama_stack.core.external import load_external_apis
from llama_stack.core.utils.exec import run_command
from llama_stack.core.utils.image_types import LlamaStackImageType
from llama_stack.distributions.template import DistributionTemplate
from llama_stack.providers.datatypes import Api
from llama_stack.templates.template import DistributionTemplate
log = logging.getLogger(__name__)
@ -106,9 +105,8 @@ def print_pip_install_help(config: BuildConfig):
def build_image(
build_config: BuildConfig,
build_file_path: Path,
image_name: str,
template_or_config: str,
distro_or_config: str,
run_config: str | None = None,
):
container_base = build_config.distribution_spec.container_image or "python:3.12-slim"
@ -122,11 +120,11 @@ def build_image(
normal_deps.extend(api_spec.pip_packages)
if build_config.image_type == LlamaStackImageType.CONTAINER.value:
script = str(importlib.resources.files("llama_stack") / "distribution/build_container.sh")
script = str(importlib.resources.files("llama_stack") / "core/build_container.sh")
args = [
script,
"--template-or-config",
template_or_config,
"--distro-or-config",
distro_or_config,
"--image-name",
image_name,
"--container-base",
@ -138,19 +136,8 @@ def build_image(
# build arguments
if run_config is not None:
args.extend(["--run-config", run_config])
elif build_config.image_type == LlamaStackImageType.CONDA.value:
script = str(importlib.resources.files("llama_stack") / "distribution/build_conda_env.sh")
args = [
script,
"--env-name",
str(image_name),
"--build-file-path",
str(build_file_path),
"--normal-deps",
" ".join(normal_deps),
]
elif build_config.image_type == LlamaStackImageType.VENV.value:
script = str(importlib.resources.files("llama_stack") / "distribution/build_venv.sh")
else:
script = str(importlib.resources.files("llama_stack") / "core/build_venv.sh")
args = [
script,
"--env-name",

View file

@ -18,10 +18,6 @@ UV_HTTP_TIMEOUT=${UV_HTTP_TIMEOUT:-500}
# mounting is not supported by docker buildx, so we use COPY instead
USE_COPY_NOT_MOUNT=${USE_COPY_NOT_MOUNT:-}
# Mount command for cache container .cache, can be overridden by the user if needed
MOUNT_CACHE=${MOUNT_CACHE:-"--mount=type=cache,id=llama-stack-cache,target=/root/.cache"}
# Path to the run.yaml file in the container
RUN_CONFIG_PATH=/app/run.yaml
@ -47,7 +43,7 @@ normal_deps=""
external_provider_deps=""
optional_deps=""
run_config=""
template_or_config=""
distro_or_config=""
while [[ $# -gt 0 ]]; do
key="$1"
@ -100,12 +96,12 @@ while [[ $# -gt 0 ]]; do
run_config="$2"
shift 2
;;
--template-or-config)
--distro-or-config)
if [[ -z "$2" || "$2" == --* ]]; then
echo "Error: --template-or-config requires a string value" >&2
echo "Error: --distro-or-config requires a string value" >&2
usage
fi
template_or_config="$2"
distro_or_config="$2"
shift 2
;;
*)
@ -176,18 +172,13 @@ RUN pip install uv
EOF
fi
# Set the link mode to copy so that uv doesn't attempt to symlink to the cache directory
add_to_container << EOF
ENV UV_LINK_MODE=copy
EOF
# Add pip dependencies first since llama-stack is what will change most often
# so we can reuse layers.
if [ -n "$normal_deps" ]; then
read -ra pip_args <<< "$normal_deps"
quoted_deps=$(printf " %q" "${pip_args[@]}")
add_to_container << EOF
RUN $MOUNT_CACHE uv pip install $quoted_deps
RUN uv pip install --no-cache $quoted_deps
EOF
fi
@ -197,7 +188,7 @@ if [ -n "$optional_deps" ]; then
read -ra pip_args <<< "$part"
quoted_deps=$(printf " %q" "${pip_args[@]}")
add_to_container <<EOF
RUN $MOUNT_CACHE uv pip install $quoted_deps
RUN uv pip install --no-cache $quoted_deps
EOF
done
fi
@ -208,10 +199,10 @@ if [ -n "$external_provider_deps" ]; then
read -ra pip_args <<< "$part"
quoted_deps=$(printf " %q" "${pip_args[@]}")
add_to_container <<EOF
RUN $MOUNT_CACHE uv pip install $quoted_deps
RUN uv pip install --no-cache $quoted_deps
EOF
add_to_container <<EOF
RUN python3 - <<PYTHON | $MOUNT_CACHE uv pip install -r -
RUN python3 - <<PYTHON | uv pip install --no-cache -r -
import importlib
import sys
@ -293,7 +284,7 @@ COPY $dir $mount_point
EOF
fi
add_to_container << EOF
RUN $MOUNT_CACHE uv pip install -e $mount_point
RUN uv pip install --no-cache -e $mount_point
EOF
}
@ -308,10 +299,10 @@ else
if [ -n "$TEST_PYPI_VERSION" ]; then
# these packages are damaged in test-pypi, so install them first
add_to_container << EOF
RUN $MOUNT_CACHE uv pip install fastapi libcst
RUN uv pip install --no-cache fastapi libcst
EOF
add_to_container << EOF
RUN $MOUNT_CACHE uv pip install --extra-index-url https://test.pypi.org/simple/ \
RUN uv pip install --no-cache --extra-index-url https://test.pypi.org/simple/ \
--index-strategy unsafe-best-match \
llama-stack==$TEST_PYPI_VERSION
@ -323,7 +314,7 @@ EOF
SPEC_VERSION="llama-stack"
fi
add_to_container << EOF
RUN $MOUNT_CACHE uv pip install $SPEC_VERSION
RUN uv pip install --no-cache $SPEC_VERSION
EOF
fi
fi
@ -336,12 +327,11 @@ EOF
# If a run config is provided, we use the --config flag
if [[ -n "$run_config" ]]; then
add_to_container << EOF
ENTRYPOINT ["python", "-m", "llama_stack.distribution.server.server", "--config", "$RUN_CONFIG_PATH"]
ENTRYPOINT ["python", "-m", "llama_stack.core.server.server", "$RUN_CONFIG_PATH"]
EOF
# If a template is provided (not a yaml file), we use the --template flag
elif [[ "$template_or_config" != *.yaml ]]; then
elif [[ "$distro_or_config" != *.yaml ]]; then
add_to_container << EOF
ENTRYPOINT ["python", "-m", "llama_stack.distribution.server.server", "--template", "$template_or_config"]
ENTRYPOINT ["python", "-m", "llama_stack.core.server.server", "$distro_or_config"]
EOF
fi

View file

@ -6,9 +6,6 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
# TODO: combine this with build_conda_env.sh since it is almost identical
# the only difference is that we don't do any conda-specific setup
LLAMA_STACK_DIR=${LLAMA_STACK_DIR:-}
LLAMA_STACK_CLIENT_DIR=${LLAMA_STACK_CLIENT_DIR:-}
TEST_PYPI_VERSION=${TEST_PYPI_VERSION:-}
@ -95,6 +92,8 @@ if [ -n "$LLAMA_STACK_CLIENT_DIR" ]; then
echo "Using llama-stack-client-dir=$LLAMA_STACK_CLIENT_DIR"
fi
ENVNAME=""
# pre-run checks to make sure we can proceed with the installation
pre_run_checks() {
local env_name="$1"

View file

@ -7,12 +7,10 @@
# the root directory of this source tree.
cleanup() {
envname="$1"
set +x
echo "Cleaning up..."
conda deactivate
conda env remove --name "$envname" -y
# For venv environments, no special cleanup is needed
# This function exists to avoid "function not found" errors
local env_name="$1"
echo "Cleanup called for environment: $env_name"
}
handle_int() {
@ -31,19 +29,7 @@ handle_exit() {
fi
}
setup_cleanup_handlers() {
trap handle_int INT
trap handle_exit EXIT
if is_command_available conda; then
__conda_setup="$('conda' 'shell.bash' 'hook' 2>/dev/null)"
eval "$__conda_setup"
conda deactivate
else
echo "conda is not available"
exit 1
fi
}
# check if a command is present
is_command_available() {

View file

@ -7,20 +7,20 @@ import logging
import textwrap
from typing import Any
from llama_stack.distribution.datatypes import (
from llama_stack.core.datatypes import (
LLAMA_STACK_RUN_CONFIG_VERSION,
DistributionSpec,
Provider,
StackRunConfig,
)
from llama_stack.distribution.distribution import (
from llama_stack.core.distribution import (
builtin_automatically_routed_apis,
get_provider_registry,
)
from llama_stack.distribution.stack import cast_image_name_to_string, replace_env_vars
from llama_stack.distribution.utils.config_dirs import EXTERNAL_PROVIDERS_DIR
from llama_stack.distribution.utils.dynamic import instantiate_class_type
from llama_stack.distribution.utils.prompt_for_config import prompt_for_config
from llama_stack.core.stack import cast_image_name_to_string, replace_env_vars
from llama_stack.core.utils.config_dirs import EXTERNAL_PROVIDERS_DIR
from llama_stack.core.utils.dynamic import instantiate_class_type
from llama_stack.core.utils.prompt_for_config import prompt_for_config
from llama_stack.providers.datatypes import Api, ProviderSpec
logger = logging.getLogger(__name__)

View file

@ -24,7 +24,7 @@ from llama_stack.apis.shields import Shield, ShieldInput
from llama_stack.apis.tools import Tool, ToolGroup, ToolGroupInput, ToolRuntime
from llama_stack.apis.vector_dbs import VectorDB, VectorDBInput
from llama_stack.apis.vector_io import VectorIO
from llama_stack.distribution.access_control.datatypes import AccessRule
from llama_stack.core.access_control.datatypes import AccessRule
from llama_stack.providers.datatypes import Api, ProviderSpec
from llama_stack.providers.utils.kvstore.config import KVStoreConfig, SqliteKVStoreConfig
from llama_stack.providers.utils.sqlstore.sqlstore import SqlStoreConfig
@ -432,8 +432,8 @@ class BuildConfig(BaseModel):
distribution_spec: DistributionSpec = Field(description="The distribution spec to build including API providers. ")
image_type: str = Field(
default="conda",
description="Type of package to build (conda | container | venv)",
default="venv",
description="Type of package to build (container | venv)",
)
image_name: str | None = Field(
default=None,

View file

@ -12,8 +12,8 @@ from typing import Any
import yaml
from pydantic import BaseModel
from llama_stack.distribution.datatypes import BuildConfig, DistributionSpec
from llama_stack.distribution.external import load_external_apis
from llama_stack.core.datatypes import BuildConfig, DistributionSpec
from llama_stack.core.external import load_external_apis
from llama_stack.log import get_logger
from llama_stack.providers.datatypes import (
AdapterSpec,

View file

@ -8,7 +8,7 @@
import yaml
from llama_stack.apis.datatypes import Api, ExternalApiSpec
from llama_stack.distribution.datatypes import BuildConfig, StackRunConfig
from llama_stack.core.datatypes import BuildConfig, StackRunConfig
from llama_stack.log import get_logger
logger = get_logger(name=__name__, category="core")

View file

@ -15,9 +15,9 @@ from llama_stack.apis.inspect import (
RouteInfo,
VersionInfo,
)
from llama_stack.distribution.datatypes import StackRunConfig
from llama_stack.distribution.external import load_external_apis
from llama_stack.distribution.server.routes import get_all_api_routes
from llama_stack.core.datatypes import StackRunConfig
from llama_stack.core.external import load_external_apis
from llama_stack.core.server.routes import get_all_api_routes
from llama_stack.providers.datatypes import HealthStatus

View file

@ -31,23 +31,23 @@ from pydantic import BaseModel, TypeAdapter
from rich.console import Console
from termcolor import cprint
from llama_stack.distribution.build import print_pip_install_help
from llama_stack.distribution.configure import parse_and_maybe_upgrade_config
from llama_stack.distribution.datatypes import Api, BuildConfig, BuildProvider, DistributionSpec
from llama_stack.distribution.request_headers import (
from llama_stack.core.build import print_pip_install_help
from llama_stack.core.configure import parse_and_maybe_upgrade_config
from llama_stack.core.datatypes import Api, BuildConfig, BuildProvider, DistributionSpec
from llama_stack.core.request_headers import (
PROVIDER_DATA_VAR,
request_provider_data_context,
)
from llama_stack.distribution.resolver import ProviderRegistry
from llama_stack.distribution.server.routes import find_matching_route, initialize_route_impls
from llama_stack.distribution.stack import (
from llama_stack.core.resolver import ProviderRegistry
from llama_stack.core.server.routes import RouteImpls, find_matching_route, initialize_route_impls
from llama_stack.core.stack import (
construct_stack,
get_stack_run_config_from_template,
get_stack_run_config_from_distro,
replace_env_vars,
)
from llama_stack.distribution.utils.config import redact_sensitive_fields
from llama_stack.distribution.utils.context import preserve_contexts_async_generator
from llama_stack.distribution.utils.exec import in_notebook
from llama_stack.core.utils.config import redact_sensitive_fields
from llama_stack.core.utils.context import preserve_contexts_async_generator
from llama_stack.core.utils.exec import in_notebook
from llama_stack.providers.utils.telemetry.tracing import (
CURRENT_TRACE_CONTEXT,
end_trace,
@ -138,14 +138,14 @@ class LibraryClientHttpxResponse:
class LlamaStackAsLibraryClient(LlamaStackClient):
def __init__(
self,
config_path_or_template_name: str,
config_path_or_distro_name: str,
skip_logger_removal: bool = False,
custom_provider_registry: ProviderRegistry | None = None,
provider_data: dict[str, Any] | None = None,
):
super().__init__()
self.async_client = AsyncLlamaStackAsLibraryClient(
config_path_or_template_name, custom_provider_registry, provider_data
config_path_or_distro_name, custom_provider_registry, provider_data
)
self.pool_executor = ThreadPoolExecutor(max_workers=4)
self.skip_logger_removal = skip_logger_removal
@ -212,7 +212,7 @@ class LlamaStackAsLibraryClient(LlamaStackClient):
class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
def __init__(
self,
config_path_or_template_name: str,
config_path_or_distro_name: str,
custom_provider_registry: ProviderRegistry | None = None,
provider_data: dict[str, Any] | None = None,
):
@ -222,20 +222,21 @@ class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
current_sinks = os.environ.get("TELEMETRY_SINKS", "sqlite").split(",")
os.environ["TELEMETRY_SINKS"] = ",".join(sink for sink in current_sinks if sink != "console")
if config_path_or_template_name.endswith(".yaml"):
config_path = Path(config_path_or_template_name)
if config_path_or_distro_name.endswith(".yaml"):
config_path = Path(config_path_or_distro_name)
if not config_path.exists():
raise ValueError(f"Config file {config_path} does not exist")
config_dict = replace_env_vars(yaml.safe_load(config_path.read_text()))
config = parse_and_maybe_upgrade_config(config_dict)
else:
# template
config = get_stack_run_config_from_template(config_path_or_template_name)
# distribution
config = get_stack_run_config_from_distro(config_path_or_distro_name)
self.config_path_or_template_name = config_path_or_template_name
self.config_path_or_distro_name = config_path_or_distro_name
self.config = config
self.custom_provider_registry = custom_provider_registry
self.provider_data = provider_data
self.route_impls: RouteImpls | None = None # Initialize to None to prevent AttributeError
async def initialize(self) -> bool:
try:
@ -244,11 +245,11 @@ class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
except ModuleNotFoundError as _e:
cprint(_e.msg, color="red", file=sys.stderr)
cprint(
"Using llama-stack as a library requires installing dependencies depending on the template (providers) you choose.\n",
"Using llama-stack as a library requires installing dependencies depending on the distribution (providers) you choose.\n",
color="yellow",
file=sys.stderr,
)
if self.config_path_or_template_name.endswith(".yaml"):
if self.config_path_or_distro_name.endswith(".yaml"):
providers: dict[str, list[BuildProvider]] = {}
for api, run_providers in self.config.providers.items():
for provider in run_providers:
@ -266,7 +267,7 @@ class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
else:
prefix = "!" if in_notebook() else ""
cprint(
f"Please run:\n\n{prefix}llama stack build --template {self.config_path_or_template_name} --image-type venv\n\n",
f"Please run:\n\n{prefix}llama stack build --distro {self.config_path_or_distro_name} --image-type venv\n\n",
"yellow",
file=sys.stderr,
)
@ -282,7 +283,7 @@ class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
if not os.environ.get("PYTEST_CURRENT_TEST"):
console = Console()
console.print(f"Using config [blue]{self.config_path_or_template_name}[/blue]:")
console.print(f"Using config [blue]{self.config_path_or_distro_name}[/blue]:")
safe_config = redact_sensitive_fields(self.config.model_dump())
console.print(yaml.dump(safe_config, indent=2))
@ -297,8 +298,8 @@ class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
stream=False,
stream_cls=None,
):
if not self.route_impls:
raise ValueError("Client not initialized")
if self.route_impls is None:
raise ValueError("Client not initialized. Please call initialize() first.")
# Create headers with provider data if available
headers = options.headers or {}
@ -353,9 +354,7 @@ class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
cast_to: Any,
options: Any,
):
if self.route_impls is None:
raise ValueError("Client not initialized")
assert self.route_impls is not None # Should be guaranteed by request() method, assertion for mypy
path = options.url
body = options.params or {}
body |= options.json_data or {}
@ -412,9 +411,7 @@ class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
options: Any,
stream_cls: Any,
):
if self.route_impls is None:
raise ValueError("Client not initialized")
assert self.route_impls is not None # Should be guaranteed by request() method, assertion for mypy
path = options.url
body = options.params or {}
body |= options.json_data or {}
@ -474,9 +471,7 @@ class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
if not body:
return {}
if self.route_impls is None:
raise ValueError("Client not initialized")
assert self.route_impls is not None # Should be guaranteed by request() method, assertion for mypy
exclude_params = exclude_params or set()
func, _, _, _ = find_matching_route(method, path, self.route_impls)

View file

@ -10,7 +10,7 @@ import logging
from contextlib import AbstractContextManager
from typing import Any
from llama_stack.distribution.datatypes import User
from llama_stack.core.datatypes import User
from .utils.dynamic import instantiate_class_type

View file

@ -27,18 +27,18 @@ from llama_stack.apis.telemetry import Telemetry
from llama_stack.apis.tools import ToolGroups, ToolRuntime
from llama_stack.apis.vector_dbs import VectorDBs
from llama_stack.apis.vector_io import VectorIO
from llama_stack.distribution.client import get_client_impl
from llama_stack.distribution.datatypes import (
from llama_stack.core.client import get_client_impl
from llama_stack.core.datatypes import (
AccessRule,
AutoRoutedProviderSpec,
Provider,
RoutingTableProviderSpec,
StackRunConfig,
)
from llama_stack.distribution.distribution import builtin_automatically_routed_apis
from llama_stack.distribution.external import load_external_apis
from llama_stack.distribution.store import DistributionRegistry
from llama_stack.distribution.utils.dynamic import instantiate_class_type
from llama_stack.core.distribution import builtin_automatically_routed_apis
from llama_stack.core.external import load_external_apis
from llama_stack.core.store import DistributionRegistry
from llama_stack.core.utils.dynamic import instantiate_class_type
from llama_stack.log import get_logger
from llama_stack.providers.datatypes import (
Api,
@ -183,7 +183,7 @@ def specs_for_autorouted_apis(apis_to_serve: list[str] | set[str]) -> dict[str,
spec=RoutingTableProviderSpec(
api=info.routing_table_api,
router_api=info.router_api,
module="llama_stack.distribution.routers",
module="llama_stack.core.routers",
api_dependencies=[],
deps__=[f"inner-{info.router_api.value}"],
),
@ -197,7 +197,7 @@ def specs_for_autorouted_apis(apis_to_serve: list[str] | set[str]) -> dict[str,
config={},
spec=AutoRoutedProviderSpec(
api=info.router_api,
module="llama_stack.distribution.routers",
module="llama_stack.core.routers",
routing_table_api=info.routing_table_api,
api_dependencies=[info.routing_table_api],
# Add telemetry as an optional dependency to all auto-routed providers

View file

@ -6,9 +6,9 @@
from typing import Any
from llama_stack.distribution.datatypes import AccessRule, RoutedProtocol
from llama_stack.distribution.stack import StackRunConfig
from llama_stack.distribution.store import DistributionRegistry
from llama_stack.core.datatypes import AccessRule, RoutedProtocol
from llama_stack.core.stack import StackRunConfig
from llama_stack.core.store import DistributionRegistry
from llama_stack.providers.datatypes import Api, RoutingTable
from llama_stack.providers.utils.inference.inference_store import InferenceStore

View file

@ -17,6 +17,7 @@ from llama_stack.apis.common.content_types import (
InterleavedContent,
InterleavedContentItem,
)
from llama_stack.apis.common.errors import ModelNotFoundError
from llama_stack.apis.inference import (
BatchChatCompletionResponse,
BatchCompletionResponse,
@ -79,11 +80,9 @@ class InferenceRouter(Inference):
async def initialize(self) -> None:
logger.debug("InferenceRouter.initialize")
pass
async def shutdown(self) -> None:
logger.debug("InferenceRouter.shutdown")
pass
async def register_model(
self,
@ -190,7 +189,7 @@ class InferenceRouter(Inference):
sampling_params = SamplingParams()
model = await self.routing_table.get_model(model_id)
if model is None:
raise ValueError(f"Model '{model_id}' not found")
raise ModelNotFoundError(model_id)
if model.model_type == ModelType.embedding:
raise ValueError(f"Model '{model_id}' is an embedding model and does not support chat completions")
if tool_config:
@ -319,7 +318,7 @@ class InferenceRouter(Inference):
)
model = await self.routing_table.get_model(model_id)
if model is None:
raise ValueError(f"Model '{model_id}' not found")
raise ModelNotFoundError(model_id)
if model.model_type == ModelType.embedding:
raise ValueError(f"Model '{model_id}' is an embedding model and does not support chat completions")
provider = await self.routing_table.get_provider_impl(model_id)
@ -392,7 +391,7 @@ class InferenceRouter(Inference):
logger.debug(f"InferenceRouter.embeddings: {model_id}")
model = await self.routing_table.get_model(model_id)
if model is None:
raise ValueError(f"Model '{model_id}' not found")
raise ModelNotFoundError(model_id)
if model.model_type == ModelType.llm:
raise ValueError(f"Model '{model_id}' is an LLM model and does not support embeddings")
provider = await self.routing_table.get_provider_impl(model_id)
@ -432,7 +431,7 @@ class InferenceRouter(Inference):
)
model_obj = await self.routing_table.get_model(model)
if model_obj is None:
raise ValueError(f"Model '{model}' not found")
raise ModelNotFoundError(model)
if model_obj.model_type == ModelType.embedding:
raise ValueError(f"Model '{model}' is an embedding model and does not support completions")
@ -493,7 +492,7 @@ class InferenceRouter(Inference):
)
model_obj = await self.routing_table.get_model(model)
if model_obj is None:
raise ValueError(f"Model '{model}' not found")
raise ModelNotFoundError(model)
if model_obj.model_type == ModelType.embedding:
raise ValueError(f"Model '{model}' is an embedding model and does not support chat completions")
@ -564,7 +563,7 @@ class InferenceRouter(Inference):
)
model_obj = await self.routing_table.get_model(model)
if model_obj is None:
raise ValueError(f"Model '{model}' not found")
raise ModelNotFoundError(model)
if model_obj.model_type != ModelType.embedding:
raise ValueError(f"Model '{model}' is not an embedding model")

View file

@ -43,6 +43,10 @@ class SafetyRouter(Safety):
logger.debug(f"SafetyRouter.register_shield: {shield_id}")
return await self.routing_table.register_shield(shield_id, provider_shield_id, provider_id, params)
async def unregister_shield(self, identifier: str) -> None:
logger.debug(f"SafetyRouter.unregister_shield: {identifier}")
return await self.routing_table.unregister_shield(identifier)
async def run_shield(
self,
shield_id: str,

View file

@ -7,7 +7,7 @@
from typing import Any
from llama_stack.apis.benchmarks import Benchmark, Benchmarks, ListBenchmarksResponse
from llama_stack.distribution.datatypes import (
from llama_stack.core.datatypes import (
BenchmarkWithOwner,
)
from llama_stack.log import get_logger

View file

@ -6,19 +6,20 @@
from typing import Any
from llama_stack.apis.common.errors import ModelNotFoundError
from llama_stack.apis.models import Model
from llama_stack.apis.resource import ResourceType
from llama_stack.apis.scoring_functions import ScoringFn
from llama_stack.distribution.access_control.access_control import AccessDeniedError, is_action_allowed
from llama_stack.distribution.access_control.datatypes import Action
from llama_stack.distribution.datatypes import (
from llama_stack.core.access_control.access_control import AccessDeniedError, is_action_allowed
from llama_stack.core.access_control.datatypes import Action
from llama_stack.core.datatypes import (
AccessRule,
RoutableObject,
RoutableObjectWithProvider,
RoutedProtocol,
)
from llama_stack.distribution.request_headers import get_authenticated_user
from llama_stack.distribution.store import DistributionRegistry
from llama_stack.core.request_headers import get_authenticated_user
from llama_stack.core.store import DistributionRegistry
from llama_stack.log import get_logger
from llama_stack.providers.datatypes import Api, RoutingTable
@ -59,6 +60,8 @@ async def unregister_object_from_provider(obj: RoutableObject, p: Any) -> None:
return await p.unregister_vector_db(obj.identifier)
elif api == Api.inference:
return await p.unregister_model(obj.identifier)
elif api == Api.safety:
return await p.unregister_shield(obj.identifier)
elif api == Api.datasetio:
return await p.unregister_dataset(obj.identifier)
elif api == Api.tool_runtime:
@ -257,7 +260,7 @@ async def lookup_model(routing_table: CommonRoutingTableImpl, model_id: str) ->
models = await routing_table.get_all_with_type("model")
matching_models = [m for m in models if m.provider_resource_id == model_id]
if len(matching_models) == 0:
raise ValueError(f"Model '{model_id}' not found")
raise ModelNotFoundError(model_id)
if len(matching_models) > 1:
raise ValueError(f"Multiple providers found for '{model_id}': {[m.provider_id for m in matching_models]}")

View file

@ -7,6 +7,7 @@
import uuid
from typing import Any
from llama_stack.apis.common.errors import DatasetNotFoundError
from llama_stack.apis.datasets import (
Dataset,
DatasetPurpose,
@ -18,7 +19,7 @@ from llama_stack.apis.datasets import (
URIDataSource,
)
from llama_stack.apis.resource import ResourceType
from llama_stack.distribution.datatypes import (
from llama_stack.core.datatypes import (
DatasetWithOwner,
)
from llama_stack.log import get_logger
@ -35,7 +36,7 @@ class DatasetsRoutingTable(CommonRoutingTableImpl, Datasets):
async def get_dataset(self, dataset_id: str) -> Dataset:
dataset = await self.get_object_by_identifier("dataset", dataset_id)
if dataset is None:
raise ValueError(f"Dataset '{dataset_id}' not found")
raise DatasetNotFoundError(dataset_id)
return dataset
async def register_dataset(
@ -87,6 +88,4 @@ class DatasetsRoutingTable(CommonRoutingTableImpl, Datasets):
async def unregister_dataset(self, dataset_id: str) -> None:
dataset = await self.get_dataset(dataset_id)
if dataset is None:
raise ValueError(f"Dataset {dataset_id} not found")
await self.unregister_object(dataset)

View file

@ -7,8 +7,9 @@
import time
from typing import Any
from llama_stack.apis.common.errors import ModelNotFoundError
from llama_stack.apis.models import ListModelsResponse, Model, Models, ModelType, OpenAIListModelsResponse, OpenAIModel
from llama_stack.distribution.datatypes import (
from llama_stack.core.datatypes import (
ModelWithOwner,
RegistryEntrySource,
)
@ -111,7 +112,7 @@ class ModelsRoutingTable(CommonRoutingTableImpl, Models):
async def unregister_model(self, model_id: str) -> None:
existing_model = await self.get_model(model_id)
if existing_model is None:
raise ValueError(f"Model {model_id} not found")
raise ModelNotFoundError(model_id)
await self.unregister_object(existing_model)
async def update_registered_models(

View file

@ -12,7 +12,7 @@ from llama_stack.apis.scoring_functions import (
ScoringFnParams,
ScoringFunctions,
)
from llama_stack.distribution.datatypes import (
from llama_stack.core.datatypes import (
ScoringFnWithOwner,
)
from llama_stack.log import get_logger

View file

@ -8,7 +8,7 @@ from typing import Any
from llama_stack.apis.resource import ResourceType
from llama_stack.apis.shields import ListShieldsResponse, Shield, Shields
from llama_stack.distribution.datatypes import (
from llama_stack.core.datatypes import (
ShieldWithOwner,
)
from llama_stack.log import get_logger
@ -55,3 +55,7 @@ class ShieldsRoutingTable(CommonRoutingTableImpl, Shields):
)
await self.register_object(shield)
return shield
async def unregister_shield(self, identifier: str) -> None:
existing_shield = await self.get_shield(identifier)
await self.unregister_object(existing_shield)

View file

@ -7,8 +7,9 @@
from typing import Any
from llama_stack.apis.common.content_types import URL
from llama_stack.apis.common.errors import ToolGroupNotFoundError
from llama_stack.apis.tools import ListToolGroupsResponse, ListToolsResponse, Tool, ToolGroup, ToolGroups
from llama_stack.distribution.datatypes import ToolGroupWithOwner
from llama_stack.core.datatypes import ToolGroupWithOwner
from llama_stack.log import get_logger
from .common import CommonRoutingTableImpl
@ -87,7 +88,7 @@ class ToolGroupsRoutingTable(CommonRoutingTableImpl, ToolGroups):
async def get_tool_group(self, toolgroup_id: str) -> ToolGroup:
tool_group = await self.get_object_by_identifier("tool_group", toolgroup_id)
if tool_group is None:
raise ValueError(f"Tool group '{toolgroup_id}' not found")
raise ToolGroupNotFoundError(toolgroup_id)
return tool_group
async def get_tool(self, tool_name: str) -> Tool:
@ -125,7 +126,7 @@ class ToolGroupsRoutingTable(CommonRoutingTableImpl, ToolGroups):
async def unregister_toolgroup(self, toolgroup_id: str) -> None:
tool_group = await self.get_tool_group(toolgroup_id)
if tool_group is None:
raise ValueError(f"Tool group {toolgroup_id} not found")
raise ToolGroupNotFoundError(toolgroup_id)
await self.unregister_object(tool_group)
async def shutdown(self) -> None:

View file

@ -8,6 +8,7 @@ from typing import Any
from pydantic import TypeAdapter
from llama_stack.apis.common.errors import ModelNotFoundError, VectorStoreNotFoundError
from llama_stack.apis.models import ModelType
from llama_stack.apis.resource import ResourceType
from llama_stack.apis.vector_dbs import ListVectorDBsResponse, VectorDB, VectorDBs
@ -22,7 +23,7 @@ from llama_stack.apis.vector_io.vector_io import (
VectorStoreObject,
VectorStoreSearchResponsePage,
)
from llama_stack.distribution.datatypes import (
from llama_stack.core.datatypes import (
VectorDBWithOwner,
)
from llama_stack.log import get_logger
@ -39,7 +40,7 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl, VectorDBs):
async def get_vector_db(self, vector_db_id: str) -> VectorDB:
vector_db = await self.get_object_by_identifier("vector_db", vector_db_id)
if vector_db is None:
raise ValueError(f"Vector DB '{vector_db_id}' not found")
raise VectorStoreNotFoundError(vector_db_id)
return vector_db
async def register_vector_db(
@ -63,7 +64,7 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl, VectorDBs):
raise ValueError("No provider available. Please configure a vector_io provider.")
model = await lookup_model(self, embedding_model)
if model is None:
raise ValueError(f"Model {embedding_model} not found")
raise ModelNotFoundError(embedding_model)
if model.model_type != ModelType.embedding:
raise ValueError(f"Model {embedding_model} is not an embedding model")
if "embedding_dimension" not in model.metadata:
@ -83,8 +84,6 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl, VectorDBs):
async def unregister_vector_db(self, vector_db_id: str) -> None:
existing_vector_db = await self.get_vector_db(vector_db_id)
if existing_vector_db is None:
raise ValueError(f"Vector DB {vector_db_id} not found")
await self.unregister_object(existing_vector_db)
async def openai_retrieve_vector_store(

View file

@ -9,10 +9,10 @@ import json
import httpx
from aiohttp import hdrs
from llama_stack.distribution.datatypes import AuthenticationConfig, User
from llama_stack.distribution.request_headers import user_from_scope
from llama_stack.distribution.server.auth_providers import create_auth_provider
from llama_stack.distribution.server.routes import find_matching_route, initialize_route_impls
from llama_stack.core.datatypes import AuthenticationConfig, User
from llama_stack.core.request_headers import user_from_scope
from llama_stack.core.server.auth_providers import create_auth_provider
from llama_stack.core.server.routes import find_matching_route, initialize_route_impls
from llama_stack.log import get_logger
logger = get_logger(name=__name__, category="auth")

View file

@ -14,7 +14,7 @@ import httpx
from jose import jwt
from pydantic import BaseModel, Field
from llama_stack.distribution.datatypes import (
from llama_stack.core.datatypes import (
AuthenticationConfig,
CustomAuthConfig,
GitHubTokenAuthConfig,

View file

@ -15,7 +15,7 @@ from starlette.routing import Route
from llama_stack.apis.datatypes import Api, ExternalApiSpec
from llama_stack.apis.tools import RAGToolRuntime, SpecialToolGroup
from llama_stack.apis.version import LLAMA_STACK_API_VERSION
from llama_stack.distribution.resolver import api_protocol_map
from llama_stack.core.resolver import api_protocol_map
from llama_stack.schema_utils import WebMethod
EndpointFunc = Callable[..., Any]

View file

@ -32,36 +32,36 @@ from openai import BadRequestError
from pydantic import BaseModel, ValidationError
from llama_stack.apis.common.responses import PaginatedResponse
from llama_stack.cli.utils import add_config_template_args, get_config_from_args
from llama_stack.distribution.access_control.access_control import AccessDeniedError
from llama_stack.distribution.datatypes import (
from llama_stack.cli.utils import add_config_distro_args, get_config_from_args
from llama_stack.core.access_control.access_control import AccessDeniedError
from llama_stack.core.datatypes import (
AuthenticationRequiredError,
LoggingConfig,
StackRunConfig,
)
from llama_stack.distribution.distribution import builtin_automatically_routed_apis
from llama_stack.distribution.external import ExternalApiSpec, load_external_apis
from llama_stack.distribution.request_headers import (
from llama_stack.core.distribution import builtin_automatically_routed_apis
from llama_stack.core.external import ExternalApiSpec, load_external_apis
from llama_stack.core.request_headers import (
PROVIDER_DATA_VAR,
request_provider_data_context,
user_from_scope,
)
from llama_stack.distribution.resolver import InvalidProviderError
from llama_stack.distribution.server.routes import (
from llama_stack.core.resolver import InvalidProviderError
from llama_stack.core.server.routes import (
find_matching_route,
get_all_api_routes,
initialize_route_impls,
)
from llama_stack.distribution.stack import (
from llama_stack.core.stack import (
cast_image_name_to_string,
construct_stack,
replace_env_vars,
shutdown_stack,
validate_env_pair,
)
from llama_stack.distribution.utils.config import redact_sensitive_fields
from llama_stack.distribution.utils.config_resolution import Mode, resolve_config_or_template
from llama_stack.distribution.utils.context import preserve_contexts_async_generator
from llama_stack.core.utils.config import redact_sensitive_fields
from llama_stack.core.utils.config_resolution import Mode, resolve_config_or_distro
from llama_stack.core.utils.context import preserve_contexts_async_generator
from llama_stack.log import get_logger
from llama_stack.providers.datatypes import Api
from llama_stack.providers.inline.telemetry.meta_reference.config import TelemetryConfig
@ -377,7 +377,7 @@ def main(args: argparse.Namespace | None = None):
"""Start the LlamaStack server."""
parser = argparse.ArgumentParser(description="Start the LlamaStack server.")
add_config_template_args(parser)
add_config_distro_args(parser)
parser.add_argument(
"--port",
type=int,
@ -396,8 +396,8 @@ def main(args: argparse.Namespace | None = None):
if args is None:
args = parser.parse_args()
config_or_template = get_config_from_args(args)
config_file = resolve_config_or_template(config_or_template, Mode.RUN)
config_or_distro = get_config_from_args(args)
config_file = resolve_config_or_distro(config_or_distro, Mode.RUN)
logger_config = None
with open(config_file) as fp:

View file

@ -34,14 +34,14 @@ from llama_stack.apis.telemetry import Telemetry
from llama_stack.apis.tools import RAGToolRuntime, ToolGroups, ToolRuntime
from llama_stack.apis.vector_dbs import VectorDBs
from llama_stack.apis.vector_io import VectorIO
from llama_stack.distribution.datatypes import Provider, StackRunConfig
from llama_stack.distribution.distribution import get_provider_registry
from llama_stack.distribution.inspect import DistributionInspectConfig, DistributionInspectImpl
from llama_stack.distribution.providers import ProviderImpl, ProviderImplConfig
from llama_stack.distribution.resolver import ProviderRegistry, resolve_impls
from llama_stack.distribution.routing_tables.common import CommonRoutingTableImpl
from llama_stack.distribution.store.registry import create_dist_registry
from llama_stack.distribution.utils.dynamic import instantiate_class_type
from llama_stack.core.datatypes import Provider, StackRunConfig
from llama_stack.core.distribution import get_provider_registry
from llama_stack.core.inspect import DistributionInspectConfig, DistributionInspectImpl
from llama_stack.core.providers import ProviderImpl, ProviderImplConfig
from llama_stack.core.resolver import ProviderRegistry, resolve_impls
from llama_stack.core.routing_tables.common import CommonRoutingTableImpl
from llama_stack.core.store.registry import create_dist_registry
from llama_stack.core.utils.dynamic import instantiate_class_type
from llama_stack.log import get_logger
from llama_stack.providers.datatypes import Api
@ -94,6 +94,7 @@ RESOURCES = [
REGISTRY_REFRESH_INTERVAL_SECONDS = 300
REGISTRY_REFRESH_TASK = None
TEST_RECORDING_CONTEXT = None
async def register_resources(run_config: StackRunConfig, impls: dict[Api, Any]):
@ -307,6 +308,15 @@ def add_internal_implementations(impls: dict[Api, Any], run_config: StackRunConf
async def construct_stack(
run_config: StackRunConfig, provider_registry: ProviderRegistry | None = None
) -> dict[Api, Any]:
if "LLAMA_STACK_TEST_INFERENCE_MODE" in os.environ:
from llama_stack.testing.inference_recorder import setup_inference_recording
global TEST_RECORDING_CONTEXT
TEST_RECORDING_CONTEXT = setup_inference_recording()
if TEST_RECORDING_CONTEXT:
TEST_RECORDING_CONTEXT.__enter__()
logger.info(f"Inference recording enabled: mode={os.environ.get('LLAMA_STACK_TEST_INFERENCE_MODE')}")
dist_registry, _ = await create_dist_registry(run_config.metadata_store, run_config.image_name)
policy = run_config.server.auth.access_policy if run_config.server.auth else []
impls = await resolve_impls(
@ -352,13 +362,20 @@ async def shutdown_stack(impls: dict[Api, Any]):
except (Exception, asyncio.CancelledError) as e:
logger.exception(f"Failed to shutdown {impl_name}: {e}")
global TEST_RECORDING_CONTEXT
if TEST_RECORDING_CONTEXT:
try:
TEST_RECORDING_CONTEXT.__exit__(None, None, None)
except Exception as e:
logger.error(f"Error during inference recording cleanup: {e}")
global REGISTRY_REFRESH_TASK
if REGISTRY_REFRESH_TASK:
REGISTRY_REFRESH_TASK.cancel()
async def refresh_registry_once(impls: dict[Api, Any]):
logger.info("refreshing registry")
logger.debug("refreshing registry")
routing_tables = [v for v in impls.values() if isinstance(v, CommonRoutingTableImpl)]
for routing_table in routing_tables:
await routing_table.refresh()
@ -372,12 +389,12 @@ async def refresh_registry_task(impls: dict[Api, Any]):
await asyncio.sleep(REGISTRY_REFRESH_INTERVAL_SECONDS)
def get_stack_run_config_from_template(template: str) -> StackRunConfig:
template_path = importlib.resources.files("llama_stack") / f"templates/{template}/run.yaml"
def get_stack_run_config_from_distro(distro: str) -> StackRunConfig:
distro_path = importlib.resources.files("llama_stack") / f"distributions/{distro}/run.yaml"
with importlib.resources.as_file(template_path) as path:
with importlib.resources.as_file(distro_path) as path:
if not path.exists():
raise ValueError(f"Template '{template}' not found at {template_path}")
raise ValueError(f"Distribution '{distro}' not found at {distro_path}")
run_config = yaml.safe_load(path.open())
return StackRunConfig(**replace_env_vars(run_config))

View file

@ -40,7 +40,6 @@ port="$1"
shift
SCRIPT_DIR=$(dirname "$(readlink -f "$0")")
source "$SCRIPT_DIR/common.sh"
# Initialize variables
yaml_config=""
@ -75,9 +74,9 @@ while [[ $# -gt 0 ]]; do
esac
done
# Check if yaml_config is required based on env_type
if [[ "$env_type" == "venv" || "$env_type" == "conda" ]] && [ -z "$yaml_config" ]; then
echo -e "${RED}Error: --config is required for venv and conda environments${NC}" >&2
# Check if yaml_config is required
if [[ "$env_type" == "venv" ]] && [ -z "$yaml_config" ]; then
echo -e "${RED}Error: --config is required for venv environment${NC}" >&2
exit 1
fi
@ -101,19 +100,14 @@ case "$env_type" in
source "$env_path_or_name/bin/activate"
fi
;;
"conda")
if ! is_command_available conda; then
echo -e "${RED}Error: conda not found" >&2
exit 1
fi
eval "$(conda shell.bash hook)"
conda deactivate && conda activate "$env_path_or_name"
PYTHON_BINARY="$CONDA_PREFIX/bin/python"
;;
*)
# Handle unsupported env_types here
echo -e "${RED}Error: Unsupported environment type '$env_type'. Only 'venv' is supported.${NC}" >&2
exit 1
;;
esac
if [[ "$env_type" == "venv" || "$env_type" == "conda" ]]; then
if [[ "$env_type" == "venv" ]]; then
set -x
if [ -n "$yaml_config" ]; then
@ -122,7 +116,7 @@ if [[ "$env_type" == "venv" || "$env_type" == "conda" ]]; then
yaml_config_arg=""
fi
$PYTHON_BINARY -m llama_stack.distribution.server.server \
$PYTHON_BINARY -m llama_stack.core.server.server \
$yaml_config_arg \
--port "$port" \
$env_vars \

View file

@ -10,8 +10,8 @@ from typing import Protocol
import pydantic
from llama_stack.distribution.datatypes import RoutableObjectWithProvider
from llama_stack.distribution.utils.config_dirs import DISTRIBS_BASE_DIR
from llama_stack.core.datatypes import RoutableObjectWithProvider
from llama_stack.core.utils.config_dirs import DISTRIBS_BASE_DIR
from llama_stack.log import get_logger
from llama_stack.providers.utils.kvstore import KVStore, kvstore_impl
from llama_stack.providers.utils.kvstore.config import KVStoreConfig, SqliteKVStoreConfig

View file

@ -9,7 +9,7 @@
1. Start up Llama Stack API server. More details [here](https://llama-stack.readthedocs.io/en/latest/getting_started/index.html).
```
llama stack build --template together --image-type conda
llama stack build --distro together --image-type venv
llama stack run together
```
@ -36,7 +36,7 @@ llama-stack-client benchmarks register \
3. Start Streamlit UI
```bash
uv run --with ".[ui]" streamlit run llama_stack/distribution/ui/app.py
uv run --with ".[ui]" streamlit run llama_stack.core/ui/app.py
```
## Environment Variables

View file

@ -6,7 +6,7 @@
import streamlit as st
from llama_stack.distribution.ui.modules.api import llama_stack_api
from llama_stack.core.ui.modules.api import llama_stack_api
def datasets():

View file

@ -6,7 +6,7 @@
import streamlit as st
from llama_stack.distribution.ui.modules.api import llama_stack_api
from llama_stack.core.ui.modules.api import llama_stack_api
def benchmarks():

View file

@ -6,7 +6,7 @@
import streamlit as st
from llama_stack.distribution.ui.modules.api import llama_stack_api
from llama_stack.core.ui.modules.api import llama_stack_api
def models():

View file

@ -6,7 +6,7 @@
import streamlit as st
from llama_stack.distribution.ui.modules.api import llama_stack_api
from llama_stack.core.ui.modules.api import llama_stack_api
def providers():

View file

@ -6,12 +6,12 @@
from streamlit_option_menu import option_menu
from llama_stack.distribution.ui.page.distribution.datasets import datasets
from llama_stack.distribution.ui.page.distribution.eval_tasks import benchmarks
from llama_stack.distribution.ui.page.distribution.models import models
from llama_stack.distribution.ui.page.distribution.scoring_functions import scoring_functions
from llama_stack.distribution.ui.page.distribution.shields import shields
from llama_stack.distribution.ui.page.distribution.vector_dbs import vector_dbs
from llama_stack.core.ui.page.distribution.datasets import datasets
from llama_stack.core.ui.page.distribution.eval_tasks import benchmarks
from llama_stack.core.ui.page.distribution.models import models
from llama_stack.core.ui.page.distribution.scoring_functions import scoring_functions
from llama_stack.core.ui.page.distribution.shields import shields
from llama_stack.core.ui.page.distribution.vector_dbs import vector_dbs
def resources_page():

View file

@ -6,7 +6,7 @@
import streamlit as st
from llama_stack.distribution.ui.modules.api import llama_stack_api
from llama_stack.core.ui.modules.api import llama_stack_api
def scoring_functions():

Some files were not shown because too many files have changed in this diff Show more