docs(tests): Add a bunch of documentation for our testing systems (#3139)

# What does this PR do?

Creates a structured testing documentation section with multiple detailed pages:

- Testing overview explaining the record-replay architecture
- Integration testing guide with practical usage examples
- Record-replay system technical documentation
- Guide for writing effective tests
- Troubleshooting guide for common testing issues

Hopefully this makes things a bit easier.
This commit is contained in:
ashwinb 2025-08-15 17:45:30 +00:00
parent 81ecaf6221
commit f66ae3b3b1
No known key found for this signature in database
GPG key ID: A7318BD657B83EA8
5 changed files with 456 additions and 89 deletions

View file

@ -1,9 +1,86 @@
# Llama Stack Tests
There are two obvious types of tests:
Llama Stack has multiple layers of testing done to ensure continuous functionality and prevent regressions to the codebase.
| Type | Location | Purpose |
|------|----------|---------|
| **Unit** | [`tests/unit/`](unit/README.md) | Fast, isolated component testing |
| **Integration** | [`tests/integration/`](integration/README.md) | End-to-end workflows with record-replay |
| Testing Type | Details |
|--------------|---------|
| Unit | [unit/README.md](unit/README.md) |
| Integration | [integration/README.md](integration/README.md) |
| Verification | [verifications/README.md](verifications/README.md) |
Both have their place. For unit tests, it is important to create minimal mocks and instead rely more on "fakes". Mocks are too brittle. In either case, tests must be very fast and reliable.
### Record-replay for integration tests
Testing AI applications end-to-end creates some challenges:
- **API costs** accumulate quickly during development and CI
- **Non-deterministic responses** make tests unreliable
- **Multiple providers** require testing the same logic across different APIs
Our solution: **Record real API responses once, replay them for fast, deterministic tests.** This is better than mocking because AI APIs have complex response structures and streaming behavior. Mocks can miss edge cases that real APIs exhibit. A single test can exercise underlying APIs in multiple complex ways making it really hard to mock.
This gives you:
- Cost control - No repeated API calls during development
- Speed - Instant test execution with cached responses
- Reliability - Consistent results regardless of external service state
- Provider coverage - Same tests work across OpenAI, Anthropic, local models, etc.
### Testing Quick Start
You can run the unit tests with:
```bash
uv run --group unit pytest -sv tests/unit/
```
For running integration tests, you must provide a few things:
- A stack config. This is a pointer to a stack. You have a few ways to point to a stack:
- **`server:<config>`** - automatically start a server with the given config (e.g., `server:starter`). This provides one-step testing by auto-starting the server if the port is available, or reusing an existing server if already running.
- **`server:<config>:<port>`** - same as above but with a custom port (e.g., `server:starter:8322`)
- a URL which points to a Llama Stack distribution server
- a distribution name (e.g., `starter`) or a path to a `run.yaml` file
- a comma-separated list of api=provider pairs, e.g. `inference=fireworks,safety=llama-guard,agents=meta-reference`. This is most useful for testing a single API surface.
- Whether you are using replay or live mode for inference. This is specified with the LLAMA_STACK_TEST_INFERENCE_MODE environment variable. The default mode currently is "live" -- that is certainly surprising, but we will fix this soon.
- Any API keys you need to use should be set in the environment, or can be passed in with the --env option.
You can run the integration tests in replay mode with:
```bash
# Run all tests with existing recordings
LLAMA_STACK_TEST_INFERENCE_MODE=replay \
LLAMA_STACK_TEST_RECORDING_DIR=tests/integration/recordings \
uv run --group test \
pytest -sv tests/integration/ --stack-config=starter
```
If you don't specify LLAMA_STACK_TEST_INFERENCE_MODE, by default it will be in "live" mode -- that is, it will make real API calls.
```bash
# Test against live APIs
FIREWORKS_API_KEY=your_key pytest -sv tests/integration/inference --stack-config=starter
```
### Re-recording tests
If you want to re-record tests, you can do so with:
```bash
LLAMA_STACK_TEST_INFERENCE_MODE=record \
LLAMA_STACK_TEST_RECORDING_DIR=tests/integration/recordings \
uv run --group test \
pytest -sv tests/integration/ --stack-config=starter -k "<appropriate test name>"
```
This will record new API responses and overwrite the existing recordings.
```{warning}
You must be careful when re-recording. CI workflows assume a specific setup for running the replay-mode tests. You must re-record the tests in the same way as the CI workflows. This means
- you need Ollama running and serving some specific models.
- you are using the `starter` distribution.
```
### Next Steps
- [Integration Testing Guide](integration/README.md) - Detailed usage and configuration
- [Unit Testing Guide](unit/README.md) - Fast component testing

View file

@ -1,6 +1,20 @@
# Llama Stack Integration Tests
# Integration Testing Guide
We use `pytest` for parameterizing and running tests. You can see all options with:
Integration tests verify complete workflows across different providers using Llama Stack's record-replay system.
## Quick Start
```bash
# Run all integration tests with existing recordings
LLAMA_STACK_TEST_INFERENCE_MODE=replay \
LLAMA_STACK_TEST_RECORDING_DIR=tests/integration/recordings \
uv run --group test \
pytest -sv tests/integration/ --stack-config=starter
```
## Configuration Options
You can see all options with:
```bash
cd tests/integration
@ -10,11 +24,11 @@ pytest --help
Here are the most important options:
- `--stack-config`: specify the stack config to use. You have four ways to point to a stack:
- **`server:<config>`** - automatically start a server with the given config (e.g., `server:fireworks`). This provides one-step testing by auto-starting the server if the port is available, or reusing an existing server if already running.
- **`server:<config>:<port>`** - same as above but with a custom port (e.g., `server:together:8322`)
- **`server:<config>`** - automatically start a server with the given config (e.g., `server:starter`). This provides one-step testing by auto-starting the server if the port is available, or reusing an existing server if already running.
- **`server:<config>:<port>`** - same as above but with a custom port (e.g., `server:starter:8322`)
- a URL which points to a Llama Stack distribution server
- a template (e.g., `starter`) or a path to a `run.yaml` file
- a comma-separated list of api=provider pairs, e.g. `inference=fireworks,safety=llama-guard,agents=meta-reference`. This is most useful for testing a single API surface.
- a distribution name (e.g., `starter`) or a path to a `run.yaml` file
- a comma-separated list of api=provider pairs, e.g. `inference=ollama,safety=llama-guard,agents=meta-reference`. This is most useful for testing a single API surface.
- `--env`: set environment variables, e.g. --env KEY=value. this is a utility option to set environment variables required by various providers.
Model parameters can be influenced by the following options:
@ -32,85 +46,130 @@ if no model is specified.
### Testing against a Server
Run all text inference tests by auto-starting a server with the `fireworks` config:
Run all text inference tests by auto-starting a server with the `starter` config:
```bash
pytest -s -v tests/integration/inference/test_text_inference.py \
--stack-config=server:fireworks \
--text-model=meta-llama/Llama-3.1-8B-Instruct
OLLAMA_URL=http://localhost:11434 \
pytest -s -v tests/integration/inference/test_text_inference.py \
--stack-config=server:starter \
--text-model=ollama/llama3.2:3b-instruct-fp16 \
--embedding-model=sentence-transformers/all-MiniLM-L6-v2
```
Run tests with auto-server startup on a custom port:
```bash
pytest -s -v tests/integration/inference/ \
--stack-config=server:together:8322 \
--text-model=meta-llama/Llama-3.1-8B-Instruct
```
Run multiple test suites with auto-server (eliminates manual server management):
```bash
# Auto-start server and run all integration tests
export FIREWORKS_API_KEY=<your_key>
pytest -s -v tests/integration/inference/ tests/integration/safety/ tests/integration/agents/ \
--stack-config=server:fireworks \
--text-model=meta-llama/Llama-3.1-8B-Instruct
OLLAMA_URL=http://localhost:11434 \
pytest -s -v tests/integration/inference/ \
--stack-config=server:starter:8322 \
--text-model=ollama/llama3.2:3b-instruct-fp16 \
--embedding-model=sentence-transformers/all-MiniLM-L6-v2
```
### Testing with Library Client
Run all text inference tests with the `starter` distribution using the `together` provider:
The library client constructs the Stack "in-process" instead of using a server. This is useful during the iterative development process since you don't need to constantly start and stop servers.
You can do this by simply using `--stack-config=starter` instead of `--stack-config=server:starter`.
### Using ad-hoc distributions
Sometimes, you may want to make up a distribution on the fly. This is useful for testing a single provider or a single API or a small combination of providers. You can do so by specifying a comma-separated list of api=provider pairs to the `--stack-config` option, e.g. `inference=remote::ollama,safety=inline::llama-guard,agents=inline::meta-reference`.
```bash
ENABLE_TOGETHER=together pytest -s -v tests/integration/inference/test_text_inference.py \
--stack-config=starter \
--text-model=meta-llama/Llama-3.1-8B-Instruct
```
Run all text inference tests with the `starter` distribution using the `together` provider and `meta-llama/Llama-3.1-8B-Instruct`:
```bash
ENABLE_TOGETHER=together pytest -s -v tests/integration/inference/test_text_inference.py \
--stack-config=starter \
--text-model=meta-llama/Llama-3.1-8B-Instruct
```
Running all inference tests for a number of models using the `together` provider:
```bash
TEXT_MODELS=meta-llama/Llama-3.1-8B-Instruct,meta-llama/Llama-3.1-70B-Instruct
VISION_MODELS=meta-llama/Llama-3.2-11B-Vision-Instruct
EMBEDDING_MODELS=all-MiniLM-L6-v2
ENABLE_TOGETHER=together
export TOGETHER_API_KEY=<together_api_key>
pytest -s -v tests/integration/inference/ \
--stack-config=together \
--stack-config=inference=remote::ollama,safety=inline::llama-guard,agents=inline::meta-reference \
--text-model=$TEXT_MODELS \
--vision-model=$VISION_MODELS \
--embedding-model=$EMBEDDING_MODELS
```
Same thing but instead of using the distribution, use an adhoc stack with just one provider (`fireworks` for inference):
Another example: Running Vector IO tests for embedding models:
```bash
export FIREWORKS_API_KEY=<fireworks_api_key>
pytest -s -v tests/integration/inference/ \
--stack-config=inference=fireworks \
--text-model=$TEXT_MODELS \
--vision-model=$VISION_MODELS \
--embedding-model=$EMBEDDING_MODELS
```
Running Vector IO tests for a number of embedding models:
```bash
EMBEDDING_MODELS=all-MiniLM-L6-v2
pytest -s -v tests/integration/vector_io/ \
--stack-config=inference=sentence-transformers,vector_io=sqlite-vec \
--embedding-model=$EMBEDDING_MODELS
--stack-config=inference=inline::sentence-transformers,vector_io=inline::sqlite-vec \
--embedding-model=sentence-transformers/all-MiniLM-L6-v2
```
## Recording Modes
The testing system supports three modes controlled by environment variables:
### LIVE Mode (Default)
Tests make real API calls:
```bash
LLAMA_STACK_TEST_INFERENCE_MODE=live pytest tests/integration/
```
### RECORD Mode
Captures API interactions for later replay:
```bash
LLAMA_STACK_TEST_INFERENCE_MODE=record \
LLAMA_STACK_TEST_RECORDING_DIR=tests/integration/recordings \
pytest tests/integration/inference/test_new_feature.py
```
### REPLAY Mode
Uses cached responses instead of making API calls:
```bash
LLAMA_STACK_TEST_INFERENCE_MODE=replay \
LLAMA_STACK_TEST_RECORDING_DIR=tests/integration/recordings \
pytest tests/integration/
```
Note that right now you must specify the recording directory. This is because different tests use different recording directories and we don't (yet) have a fool-proof way to map a test to a recording directory. We are working on this.
## Managing Recordings
### Viewing Recordings
```bash
# See what's recorded
sqlite3 recordings/index.sqlite "SELECT endpoint, model, timestamp FROM recordings;"
# Inspect specific response
cat recordings/responses/abc123.json | jq '.'
```
### Re-recording Tests
```bash
# Re-record specific tests
LLAMA_STACK_TEST_INFERENCE_MODE=record \
LLAMA_STACK_TEST_RECORDING_DIR=tests/integration/recordings \
pytest -s -v --stack-config=server:starter tests/integration/inference/test_modified.py
```
Note that when re-recording tests, you must use a Stack pointing to a server (i.e., `server:starter`). This subtlety exists because the set of tests run in server are a superset of the set of tests run in the library client.
## Writing Tests
### Basic Test Pattern
```python
def test_basic_completion(llama_stack_client, text_model_id):
response = llama_stack_client.inference.completion(
model_id=text_model_id,
content=CompletionMessage(role="user", content="Hello"),
)
# Test structure, not AI output quality
assert response.completion_message is not None
assert isinstance(response.completion_message.content, str)
assert len(response.completion_message.content) > 0
```
### Provider-Specific Tests
```python
def test_asymmetric_embeddings(llama_stack_client, embedding_model_id):
if embedding_model_id not in MODELS_SUPPORTING_TASK_TYPE:
pytest.skip(f"Model {embedding_model_id} doesn't support task types")
query_response = llama_stack_client.inference.embeddings(
model_id=embedding_model_id,
contents=["What is machine learning?"],
task_type="query",
)
assert query_response.embeddings is not None
```