chore: remove /v1/inference/completion and implementations (#3622)

# What does this PR do?

the /inference/completion route is gone. this removes the
implementations.

## Test Plan

ci
This commit is contained in:
Matthew Farrellee 2025-10-01 11:36:53 -04:00 committed by GitHub
parent ea15f2a270
commit f7c5ef4ec0
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
75 changed files with 16141 additions and 17056 deletions

View file

@ -1008,28 +1008,6 @@ class InferenceProvider(Protocol):
model_store: ModelStore | None = None
async def completion(
self,
model_id: str,
content: InterleavedContent,
sampling_params: SamplingParams | None = None,
response_format: ResponseFormat | None = None,
stream: bool | None = False,
logprobs: LogProbConfig | None = None,
) -> CompletionResponse | AsyncIterator[CompletionResponseStreamChunk]:
"""Generate a completion for the given content using the specified model.
:param model_id: The identifier of the model to use. The model must be registered with Llama Stack and available via the /models endpoint.
:param content: The content to generate a completion for.
:param sampling_params: (Optional) Parameters to control the sampling strategy.
:param response_format: (Optional) Grammar specification for guided (structured) decoding.
:param stream: (Optional) If True, generate an SSE event stream of the response. Defaults to False.
:param logprobs: (Optional) If specified, log probabilities for each token position will be returned.
:returns: If stream=False, returns a CompletionResponse with the full completion.
If stream=True, returns an SSE event stream of CompletionResponseStreamChunk.
"""
...
async def chat_completion(
self,
model_id: str,

View file

@ -267,47 +267,6 @@ class InferenceRouter(Inference):
)
return response
async def completion(
self,
model_id: str,
content: InterleavedContent,
sampling_params: SamplingParams | None = None,
response_format: ResponseFormat | None = None,
stream: bool | None = False,
logprobs: LogProbConfig | None = None,
) -> AsyncGenerator:
if sampling_params is None:
sampling_params = SamplingParams()
logger.debug(
f"InferenceRouter.completion: {model_id=}, {stream=}, {content=}, {sampling_params=}, {response_format=}",
)
model = await self._get_model(model_id, ModelType.llm)
provider = await self.routing_table.get_provider_impl(model_id)
params = dict(
model_id=model_id,
content=content,
sampling_params=sampling_params,
response_format=response_format,
stream=stream,
logprobs=logprobs,
)
prompt_tokens = await self._count_tokens(content)
response = await provider.completion(**params)
if stream:
return self.stream_tokens_and_compute_metrics(
response=response,
prompt_tokens=prompt_tokens,
model=model,
)
metrics = await self.count_tokens_and_compute_metrics(
response=response, prompt_tokens=prompt_tokens, model=model
)
response.metrics = metrics if response.metrics is None else response.metrics + metrics
return response
async def openai_completion(
self,
model: str,

View file

@ -24,11 +24,7 @@ from llama_stack.apis.inference import (
ChatCompletionResponseEventType,
ChatCompletionResponseStreamChunk,
CompletionMessage,
CompletionRequest,
CompletionResponse,
CompletionResponseStreamChunk,
InferenceProvider,
InterleavedContent,
LogProbConfig,
Message,
ResponseFormat,
@ -59,10 +55,8 @@ from llama_stack.providers.utils.inference.model_registry import (
)
from llama_stack.providers.utils.inference.openai_compat import (
OpenAIChatCompletionToLlamaStackMixin,
OpenAICompletionToLlamaStackMixin,
)
from llama_stack.providers.utils.inference.prompt_adapter import (
augment_content_with_response_format_prompt,
chat_completion_request_to_messages,
convert_request_to_raw,
)
@ -82,7 +76,6 @@ def llama_builder_fn(config: MetaReferenceInferenceConfig, model_id: str, llama_
class MetaReferenceInferenceImpl(
OpenAICompletionToLlamaStackMixin,
OpenAIChatCompletionToLlamaStackMixin,
SentenceTransformerEmbeddingMixin,
InferenceProvider,
@ -100,6 +93,9 @@ class MetaReferenceInferenceImpl(
if self.config.create_distributed_process_group:
self.generator.stop()
async def openai_completion(self, *args, **kwargs):
raise NotImplementedError("OpenAI completion not supported by meta reference provider")
async def should_refresh_models(self) -> bool:
return False
@ -165,11 +161,6 @@ class MetaReferenceInferenceImpl(
self.llama_model = llama_model
log.info("Warming up...")
await self.completion(
model_id=model_id,
content="Hello, world!",
sampling_params=SamplingParams(max_tokens=10),
)
await self.chat_completion(
model_id=model_id,
messages=[UserMessage(content="Hi how are you?")],
@ -185,137 +176,6 @@ class MetaReferenceInferenceImpl(
elif request.model != self.model_id:
raise RuntimeError(f"Model mismatch: request model: {request.model} != loaded model: {self.model_id}")
async def completion(
self,
model_id: str,
content: InterleavedContent,
sampling_params: SamplingParams | None = None,
response_format: ResponseFormat | None = None,
stream: bool | None = False,
logprobs: LogProbConfig | None = None,
) -> CompletionResponse | CompletionResponseStreamChunk:
if sampling_params is None:
sampling_params = SamplingParams()
if logprobs:
assert logprobs.top_k == 1, f"Unexpected top_k={logprobs.top_k}"
content = augment_content_with_response_format_prompt(response_format, content)
request = CompletionRequest(
model=model_id,
content=content,
sampling_params=sampling_params,
response_format=response_format,
stream=stream,
logprobs=logprobs,
)
self.check_model(request)
request = await convert_request_to_raw(request)
if request.stream:
return self._stream_completion(request)
else:
results = await self._nonstream_completion([request])
return results[0]
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
tokenizer = self.generator.formatter.tokenizer
def impl():
stop_reason = None
for token_results in self.generator.completion([request]):
token_result = token_results[0]
if token_result.token == tokenizer.eot_id:
stop_reason = StopReason.end_of_turn
text = ""
elif token_result.token == tokenizer.eom_id:
stop_reason = StopReason.end_of_message
text = ""
else:
text = token_result.text
logprobs = None
if stop_reason is None:
if request.logprobs:
assert len(token_result.logprobs) == 1
logprobs = [TokenLogProbs(logprobs_by_token={token_result.text: token_result.logprobs[0]})]
yield CompletionResponseStreamChunk(
delta=text,
stop_reason=stop_reason,
logprobs=logprobs if request.logprobs else None,
)
if stop_reason is None:
yield CompletionResponseStreamChunk(
delta="",
stop_reason=StopReason.out_of_tokens,
)
if self.config.create_distributed_process_group:
async with SEMAPHORE:
for x in impl():
yield x
else:
for x in impl():
yield x
async def _nonstream_completion(self, request_batch: list[CompletionRequest]) -> list[CompletionResponse]:
tokenizer = self.generator.formatter.tokenizer
first_request = request_batch[0]
class ItemState(BaseModel):
tokens: list[int] = []
logprobs: list[TokenLogProbs] = []
stop_reason: StopReason | None = None
finished: bool = False
def impl():
states = [ItemState() for _ in request_batch]
results = []
for token_results in self.generator.completion(request_batch):
for result in token_results:
idx = result.batch_idx
state = states[idx]
if state.finished or result.ignore_token:
continue
state.finished = result.finished
if first_request.logprobs:
state.logprobs.append(TokenLogProbs(logprobs_by_token={result.text: result.logprobs[0]}))
state.tokens.append(result.token)
if result.token == tokenizer.eot_id:
state.stop_reason = StopReason.end_of_turn
elif result.token == tokenizer.eom_id:
state.stop_reason = StopReason.end_of_message
for state in states:
if state.stop_reason is None:
state.stop_reason = StopReason.out_of_tokens
if state.tokens[-1] in self.generator.formatter.tokenizer.stop_tokens:
state.tokens = state.tokens[:-1]
content = self.generator.formatter.tokenizer.decode(state.tokens)
results.append(
CompletionResponse(
content=content,
stop_reason=state.stop_reason,
logprobs=state.logprobs if first_request.logprobs else None,
)
)
return results
if self.config.create_distributed_process_group:
async with SEMAPHORE:
return impl()
else:
return impl()
async def chat_completion(
self,
model_id: str,

View file

@ -27,8 +27,6 @@ class ModelRunner:
def __call__(self, task: Any):
if task[0] == "chat_completion":
return self.llama.chat_completion(task[1])
elif task[0] == "completion":
return self.llama.completion(task[1])
else:
raise ValueError(f"Unexpected task type {task[0]}")

View file

@ -5,9 +5,9 @@
# the root directory of this source tree.
from collections.abc import AsyncGenerator
from typing import Any
from llama_stack.apis.inference import (
CompletionResponse,
InferenceProvider,
LogProbConfig,
Message,
@ -18,6 +18,7 @@ from llama_stack.apis.inference import (
ToolDefinition,
ToolPromptFormat,
)
from llama_stack.apis.inference.inference import OpenAICompletion
from llama_stack.apis.models import ModelType
from llama_stack.log import get_logger
from llama_stack.providers.datatypes import Model, ModelsProtocolPrivate
@ -26,7 +27,6 @@ from llama_stack.providers.utils.inference.embedding_mixin import (
)
from llama_stack.providers.utils.inference.openai_compat import (
OpenAIChatCompletionToLlamaStackMixin,
OpenAICompletionToLlamaStackMixin,
)
from .config import SentenceTransformersInferenceConfig
@ -36,7 +36,6 @@ log = get_logger(name=__name__, category="inference")
class SentenceTransformersInferenceImpl(
OpenAIChatCompletionToLlamaStackMixin,
OpenAICompletionToLlamaStackMixin,
SentenceTransformerEmbeddingMixin,
InferenceProvider,
ModelsProtocolPrivate,
@ -74,17 +73,6 @@ class SentenceTransformersInferenceImpl(
async def unregister_model(self, model_id: str) -> None:
pass
async def completion(
self,
model_id: str,
content: str,
sampling_params: SamplingParams | None = None,
response_format: ResponseFormat | None = None,
stream: bool | None = False,
logprobs: LogProbConfig | None = None,
) -> CompletionResponse | AsyncGenerator:
raise ValueError("Sentence transformers don't support completion")
async def chat_completion(
self,
model_id: str,
@ -99,3 +87,31 @@ class SentenceTransformersInferenceImpl(
tool_config: ToolConfig | None = None,
) -> AsyncGenerator:
raise ValueError("Sentence transformers don't support chat completion")
async def openai_completion(
self,
# Standard OpenAI completion parameters
model: str,
prompt: str | list[str] | list[int] | list[list[int]],
best_of: int | None = None,
echo: bool | None = None,
frequency_penalty: float | None = None,
logit_bias: dict[str, float] | None = None,
logprobs: bool | None = None,
max_tokens: int | None = None,
n: int | None = None,
presence_penalty: float | None = None,
seed: int | None = None,
stop: str | list[str] | None = None,
stream: bool | None = None,
stream_options: dict[str, Any] | None = None,
temperature: float | None = None,
top_p: float | None = None,
user: str | None = None,
# vLLM-specific parameters
guided_choice: list[str] | None = None,
prompt_logprobs: int | None = None,
# for fill-in-the-middle type completion
suffix: str | None = None,
) -> OpenAICompletion:
raise NotImplementedError("OpenAI completion not supported by sentence transformers provider")

View file

@ -6,12 +6,10 @@
import json
from collections.abc import AsyncGenerator, AsyncIterator
from typing import Any
from botocore.client import BaseClient
from llama_stack.apis.common.content_types import (
InterleavedContent,
)
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
@ -27,6 +25,7 @@ from llama_stack.apis.inference import (
ToolDefinition,
ToolPromptFormat,
)
from llama_stack.apis.inference.inference import OpenAICompletion
from llama_stack.providers.remote.inference.bedrock.config import BedrockConfig
from llama_stack.providers.utils.bedrock.client import create_bedrock_client
from llama_stack.providers.utils.inference.model_registry import (
@ -36,7 +35,6 @@ from llama_stack.providers.utils.inference.openai_compat import (
OpenAIChatCompletionToLlamaStackMixin,
OpenAICompatCompletionChoice,
OpenAICompatCompletionResponse,
OpenAICompletionToLlamaStackMixin,
get_sampling_strategy_options,
process_chat_completion_response,
process_chat_completion_stream_response,
@ -89,7 +87,6 @@ class BedrockInferenceAdapter(
ModelRegistryHelper,
Inference,
OpenAIChatCompletionToLlamaStackMixin,
OpenAICompletionToLlamaStackMixin,
):
def __init__(self, config: BedrockConfig) -> None:
ModelRegistryHelper.__init__(self, model_entries=MODEL_ENTRIES)
@ -109,17 +106,6 @@ class BedrockInferenceAdapter(
if self._client is not None:
self._client.close()
async def completion(
self,
model_id: str,
content: InterleavedContent,
sampling_params: SamplingParams | None = None,
response_format: ResponseFormat | None = None,
stream: bool | None = False,
logprobs: LogProbConfig | None = None,
) -> AsyncGenerator:
raise NotImplementedError()
async def chat_completion(
self,
model_id: str,
@ -221,3 +207,31 @@ class BedrockInferenceAdapter(
user: str | None = None,
) -> OpenAIEmbeddingsResponse:
raise NotImplementedError()
async def openai_completion(
self,
# Standard OpenAI completion parameters
model: str,
prompt: str | list[str] | list[int] | list[list[int]],
best_of: int | None = None,
echo: bool | None = None,
frequency_penalty: float | None = None,
logit_bias: dict[str, float] | None = None,
logprobs: bool | None = None,
max_tokens: int | None = None,
n: int | None = None,
presence_penalty: float | None = None,
seed: int | None = None,
stop: str | list[str] | None = None,
stream: bool | None = None,
stream_options: dict[str, Any] | None = None,
temperature: float | None = None,
top_p: float | None = None,
user: str | None = None,
# vLLM-specific parameters
guided_choice: list[str] | None = None,
prompt_logprobs: int | None = None,
# for fill-in-the-middle type completion
suffix: str | None = None,
) -> OpenAICompletion:
raise NotImplementedError("OpenAI completion not supported by the Bedrock provider")

View file

@ -9,9 +9,6 @@ from urllib.parse import urljoin
from cerebras.cloud.sdk import AsyncCerebras
from llama_stack.apis.common.content_types import (
InterleavedContent,
)
from llama_stack.apis.inference import (
ChatCompletionRequest,
CompletionRequest,
@ -35,8 +32,6 @@ from llama_stack.providers.utils.inference.openai_compat import (
get_sampling_options,
process_chat_completion_response,
process_chat_completion_stream_response,
process_completion_response,
process_completion_stream_response,
)
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
from llama_stack.providers.utils.inference.prompt_adapter import (
@ -73,48 +68,6 @@ class CerebrasInferenceAdapter(
async def shutdown(self) -> None:
pass
async def completion(
self,
model_id: str,
content: InterleavedContent,
sampling_params: SamplingParams | None = None,
response_format: ResponseFormat | None = None,
stream: bool | None = False,
logprobs: LogProbConfig | None = None,
) -> AsyncGenerator:
if sampling_params is None:
sampling_params = SamplingParams()
model = await self.model_store.get_model(model_id)
request = CompletionRequest(
model=model.provider_resource_id,
content=content,
sampling_params=sampling_params,
response_format=response_format,
stream=stream,
logprobs=logprobs,
)
if stream:
return self._stream_completion(
request,
)
else:
return await self._nonstream_completion(request)
async def _nonstream_completion(self, request: CompletionRequest) -> CompletionResponse:
params = await self._get_params(request)
r = await self._cerebras_client.completions.create(**params)
return process_completion_response(r)
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
params = await self._get_params(request)
stream = await self._cerebras_client.completions.create(**params)
async for chunk in process_completion_stream_response(stream):
yield chunk
async def chat_completion(
self,
model_id: str,

View file

@ -9,14 +9,9 @@ from typing import Any
from databricks.sdk import WorkspaceClient
from llama_stack.apis.common.content_types import (
InterleavedContent,
)
from llama_stack.apis.inference import (
ChatCompletionResponse,
ChatCompletionResponseStreamChunk,
CompletionResponse,
CompletionResponseStreamChunk,
Inference,
LogProbConfig,
Message,
@ -63,17 +58,6 @@ class DatabricksInferenceAdapter(
async def shutdown(self) -> None:
pass
async def completion(
self,
model_id: str,
content: InterleavedContent,
sampling_params: SamplingParams | None = None,
response_format: ResponseFormat | None = None,
stream: bool | None = False,
logprobs: LogProbConfig | None = None,
) -> CompletionResponse | AsyncIterator[CompletionResponseStreamChunk]:
raise NotImplementedError()
async def openai_completion(
self,
model: str,

View file

@ -8,14 +8,9 @@ from collections.abc import AsyncGenerator
from fireworks.client import Fireworks
from llama_stack.apis.common.content_types import (
InterleavedContent,
)
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
CompletionRequest,
CompletionResponse,
Inference,
LogProbConfig,
Message,
@ -37,13 +32,10 @@ from llama_stack.providers.utils.inference.openai_compat import (
get_sampling_options,
process_chat_completion_response,
process_chat_completion_stream_response,
process_completion_response,
process_completion_stream_response,
)
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
from llama_stack.providers.utils.inference.prompt_adapter import (
chat_completion_request_to_prompt,
completion_request_to_prompt,
request_has_media,
)
@ -94,79 +86,6 @@ class FireworksInferenceAdapter(OpenAIMixin, ModelRegistryHelper, Inference, Nee
return prompt[len("<|begin_of_text|>") :]
return prompt
async def completion(
self,
model_id: str,
content: InterleavedContent,
sampling_params: SamplingParams | None = None,
response_format: ResponseFormat | None = None,
stream: bool | None = False,
logprobs: LogProbConfig | None = None,
) -> AsyncGenerator:
if sampling_params is None:
sampling_params = SamplingParams()
model = await self.model_store.get_model(model_id)
request = CompletionRequest(
model=model.provider_resource_id,
content=content,
sampling_params=sampling_params,
response_format=response_format,
stream=stream,
logprobs=logprobs,
)
if stream:
return self._stream_completion(request)
else:
return await self._nonstream_completion(request)
async def _nonstream_completion(self, request: CompletionRequest) -> CompletionResponse:
params = await self._get_params(request)
r = await self._get_client().completion.acreate(**params)
return process_completion_response(r)
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
params = await self._get_params(request)
# Wrapper for async generator similar
async def _to_async_generator():
stream = self._get_client().completion.create(**params)
for chunk in stream:
yield chunk
stream = _to_async_generator()
async for chunk in process_completion_stream_response(stream):
yield chunk
def _build_options(
self,
sampling_params: SamplingParams | None,
fmt: ResponseFormat,
logprobs: LogProbConfig | None,
) -> dict:
options = get_sampling_options(sampling_params)
options.setdefault("max_tokens", 512)
if fmt:
if fmt.type == ResponseFormatType.json_schema.value:
options["response_format"] = {
"type": "json_object",
"schema": fmt.json_schema,
}
elif fmt.type == ResponseFormatType.grammar.value:
options["response_format"] = {
"type": "grammar",
"grammar": fmt.bnf,
}
else:
raise ValueError(f"Unknown response format {fmt.type}")
if logprobs and logprobs.top_k:
options["logprobs"] = logprobs.top_k
if options["logprobs"] <= 0 or options["logprobs"] >= 5:
raise ValueError("Required range: 0 < top_k < 5")
return options
async def chat_completion(
self,
model_id: str,
@ -222,22 +141,46 @@ class FireworksInferenceAdapter(OpenAIMixin, ModelRegistryHelper, Inference, Nee
async for chunk in process_chat_completion_stream_response(stream, request):
yield chunk
async def _get_params(self, request: ChatCompletionRequest | CompletionRequest) -> dict:
def _build_options(
self,
sampling_params: SamplingParams | None,
fmt: ResponseFormat | None,
logprobs: LogProbConfig | None,
) -> dict:
options = get_sampling_options(sampling_params)
options.setdefault("max_tokens", 512)
if fmt:
if fmt.type == ResponseFormatType.json_schema.value:
options["response_format"] = {
"type": "json_object",
"schema": fmt.json_schema,
}
elif fmt.type == ResponseFormatType.grammar.value:
options["response_format"] = {
"type": "grammar",
"grammar": fmt.bnf,
}
else:
raise ValueError(f"Unknown response format {fmt.type}")
if logprobs and logprobs.top_k:
options["logprobs"] = logprobs.top_k
if options["logprobs"] <= 0 or options["logprobs"] >= 5:
raise ValueError("Required range: 0 < top_k < 5")
return options
async def _get_params(self, request: ChatCompletionRequest) -> dict:
input_dict = {}
media_present = request_has_media(request)
llama_model = self.get_llama_model(request.model)
if isinstance(request, ChatCompletionRequest):
# TODO: tools are never added to the request, so we need to add them here
if media_present or not llama_model:
input_dict["messages"] = [
await convert_message_to_openai_dict(m, download=True) for m in request.messages
]
else:
input_dict["prompt"] = await chat_completion_request_to_prompt(request, llama_model)
# TODO: tools are never added to the request, so we need to add them here
if media_present or not llama_model:
input_dict["messages"] = [await convert_message_to_openai_dict(m, download=True) for m in request.messages]
else:
assert not media_present, "Fireworks does not support media for Completion requests"
input_dict["prompt"] = await completion_request_to_prompt(request)
input_dict["prompt"] = await chat_completion_request_to_prompt(request, llama_model)
# Fireworks always prepends with BOS
if "prompt" in input_dict:

View file

@ -9,16 +9,10 @@ from collections.abc import AsyncIterator
from openai import NOT_GIVEN, APIConnectionError
from llama_stack.apis.common.content_types import (
InterleavedContent,
)
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseStreamChunk,
CompletionRequest,
CompletionResponse,
CompletionResponseStreamChunk,
Inference,
LogProbConfig,
Message,
@ -37,14 +31,10 @@ from llama_stack.providers.utils.inference.openai_compat import (
convert_openai_chat_completion_stream,
)
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
from llama_stack.providers.utils.inference.prompt_adapter import content_has_media
from . import NVIDIAConfig
from .openai_utils import (
convert_chat_completion_request,
convert_completion_request,
convert_openai_completion_choice,
convert_openai_completion_stream,
)
from .utils import _is_nvidia_hosted
@ -109,48 +99,6 @@ class NVIDIAInferenceAdapter(OpenAIMixin, Inference):
"""
return f"{self._config.url}/v1" if self._config.append_api_version else self._config.url
async def completion(
self,
model_id: str,
content: InterleavedContent,
sampling_params: SamplingParams | None = None,
response_format: ResponseFormat | None = None,
stream: bool | None = False,
logprobs: LogProbConfig | None = None,
) -> CompletionResponse | AsyncIterator[CompletionResponseStreamChunk]:
if sampling_params is None:
sampling_params = SamplingParams()
if content_has_media(content):
raise NotImplementedError("Media is not supported")
# ToDo: check health of NeMo endpoints and enable this
# removing this health check as NeMo customizer endpoint health check is returning 404
# await check_health(self._config) # this raises errors
provider_model_id = await self._get_provider_model_id(model_id)
request = convert_completion_request(
request=CompletionRequest(
model=provider_model_id,
content=content,
sampling_params=sampling_params,
response_format=response_format,
stream=stream,
logprobs=logprobs,
),
n=1,
)
try:
response = await self.client.completions.create(**request)
except APIConnectionError as e:
raise ConnectionError(f"Failed to connect to NVIDIA NIM at {self._config.url}: {e}") from e
if stream:
return convert_openai_completion_stream(response)
else:
# we pass n=1 to get only one completion
return convert_openai_completion_choice(response.choices[0])
async def openai_embeddings(
self,
model: str,

View file

@ -13,7 +13,6 @@ from ollama import AsyncClient as AsyncOllamaClient
from llama_stack.apis.common.content_types import (
ImageContentItem,
InterleavedContent,
TextContentItem,
)
from llama_stack.apis.common.errors import UnsupportedModelError
@ -21,9 +20,6 @@ from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseStreamChunk,
CompletionRequest,
CompletionResponse,
CompletionResponseStreamChunk,
GrammarResponseFormat,
InferenceProvider,
JsonSchemaResponseFormat,
@ -55,13 +51,10 @@ from llama_stack.providers.utils.inference.openai_compat import (
get_sampling_options,
process_chat_completion_response,
process_chat_completion_stream_response,
process_completion_response,
process_completion_stream_response,
)
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
from llama_stack.providers.utils.inference.prompt_adapter import (
chat_completion_request_to_prompt,
completion_request_to_prompt,
convert_image_content_to_url,
request_has_media,
)
@ -168,67 +161,6 @@ class OllamaInferenceAdapter(
raise ValueError("Model store not set")
return await self.model_store.get_model(model_id)
async def completion(
self,
model_id: str,
content: InterleavedContent,
sampling_params: SamplingParams | None = None,
response_format: ResponseFormat | None = None,
stream: bool | None = False,
logprobs: LogProbConfig | None = None,
) -> CompletionResponse | AsyncGenerator[CompletionResponseStreamChunk, None]:
if sampling_params is None:
sampling_params = SamplingParams()
model = await self._get_model(model_id)
if model.provider_resource_id is None:
raise ValueError(f"Model {model_id} has no provider_resource_id set")
request = CompletionRequest(
model=model.provider_resource_id,
content=content,
sampling_params=sampling_params,
response_format=response_format,
stream=stream,
logprobs=logprobs,
)
if stream:
return self._stream_completion(request)
else:
return await self._nonstream_completion(request)
async def _stream_completion(
self, request: CompletionRequest
) -> AsyncGenerator[CompletionResponseStreamChunk, None]:
params = await self._get_params(request)
async def _generate_and_convert_to_openai_compat():
s = await self.ollama_client.generate(**params)
async for chunk in s:
choice = OpenAICompatCompletionChoice(
finish_reason=chunk["done_reason"] if chunk["done"] else None,
text=chunk["response"],
)
yield OpenAICompatCompletionResponse(
choices=[choice],
)
stream = _generate_and_convert_to_openai_compat()
async for chunk in process_completion_stream_response(stream):
yield chunk
async def _nonstream_completion(self, request: CompletionRequest) -> CompletionResponse:
params = await self._get_params(request)
r = await self.ollama_client.generate(**params)
choice = OpenAICompatCompletionChoice(
finish_reason=r["done_reason"] if r["done"] else None,
text=r["response"],
)
response = OpenAICompatCompletionResponse(
choices=[choice],
)
return process_completion_response(response)
async def chat_completion(
self,
model_id: str,
@ -262,7 +194,7 @@ class OllamaInferenceAdapter(
else:
return await self._nonstream_chat_completion(request)
async def _get_params(self, request: ChatCompletionRequest | CompletionRequest) -> dict:
async def _get_params(self, request: ChatCompletionRequest) -> dict:
sampling_options = get_sampling_options(request.sampling_params)
# This is needed since the Ollama API expects num_predict to be set
# for early truncation instead of max_tokens.
@ -272,21 +204,16 @@ class OllamaInferenceAdapter(
input_dict: dict[str, Any] = {}
media_present = request_has_media(request)
llama_model = self.get_llama_model(request.model)
if isinstance(request, ChatCompletionRequest):
if media_present or not llama_model:
contents = [await convert_message_to_openai_dict_for_ollama(m) for m in request.messages]
# flatten the list of lists
input_dict["messages"] = [item for sublist in contents for item in sublist]
else:
input_dict["raw"] = True
input_dict["prompt"] = await chat_completion_request_to_prompt(
request,
llama_model,
)
if media_present or not llama_model:
contents = [await convert_message_to_openai_dict_for_ollama(m) for m in request.messages]
# flatten the list of lists
input_dict["messages"] = [item for sublist in contents for item in sublist]
else:
assert not media_present, "Ollama does not support media for Completion requests"
input_dict["prompt"] = await completion_request_to_prompt(request)
input_dict["raw"] = True
input_dict["prompt"] = await chat_completion_request_to_prompt(
request,
llama_model,
)
if fmt := request.response_format:
if isinstance(fmt, JsonSchemaResponseFormat):

View file

@ -9,7 +9,6 @@ from typing import Any
from llama_stack_client import AsyncLlamaStackClient
from llama_stack.apis.common.content_types import InterleavedContent
from llama_stack.apis.inference import (
ChatCompletionResponse,
ChatCompletionResponseStreamChunk,
@ -86,37 +85,6 @@ class PassthroughInferenceAdapter(Inference):
provider_data=provider_data,
)
async def completion(
self,
model_id: str,
content: InterleavedContent,
sampling_params: SamplingParams | None = None,
response_format: ResponseFormat | None = None,
stream: bool | None = False,
logprobs: LogProbConfig | None = None,
) -> AsyncGenerator:
if sampling_params is None:
sampling_params = SamplingParams()
client = self._get_client()
model = await self.model_store.get_model(model_id)
request_params = {
"model_id": model.provider_resource_id,
"content": content,
"sampling_params": sampling_params,
"response_format": response_format,
"stream": stream,
"logprobs": logprobs,
}
request_params = {key: value for key, value in request_params.items() if value is not None}
# cast everything to json dict
json_params = self.cast_value_to_json_dict(request_params)
# only pass through the not None params
return await client.inference.completion(**json_params)
async def chat_completion(
self,
model_id: str,

View file

@ -14,7 +14,6 @@ from llama_stack.apis.inference import OpenAIEmbeddingsResponse
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper, build_hf_repo_model_entry
from llama_stack.providers.utils.inference.openai_compat import (
OpenAIChatCompletionToLlamaStackMixin,
OpenAICompletionToLlamaStackMixin,
get_sampling_options,
process_chat_completion_response,
process_chat_completion_stream_response,
@ -55,7 +54,6 @@ class RunpodInferenceAdapter(
ModelRegistryHelper,
Inference,
OpenAIChatCompletionToLlamaStackMixin,
OpenAICompletionToLlamaStackMixin,
):
def __init__(self, config: RunpodImplConfig) -> None:
ModelRegistryHelper.__init__(self, stack_to_provider_models_map=RUNPOD_SUPPORTED_MODELS)
@ -67,17 +65,6 @@ class RunpodInferenceAdapter(
async def shutdown(self) -> None:
pass
async def completion(
self,
model: str,
content: InterleavedContent,
sampling_params: SamplingParams | None = None,
response_format: ResponseFormat | None = None,
stream: bool | None = False,
logprobs: LogProbConfig | None = None,
) -> AsyncGenerator:
raise NotImplementedError()
async def chat_completion(
self,
model: str,

View file

@ -10,13 +10,9 @@ from collections.abc import AsyncGenerator
from huggingface_hub import AsyncInferenceClient, HfApi
from pydantic import SecretStr
from llama_stack.apis.common.content_types import (
InterleavedContent,
)
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
CompletionRequest,
Inference,
LogProbConfig,
Message,
@ -44,13 +40,10 @@ from llama_stack.providers.utils.inference.openai_compat import (
get_sampling_options,
process_chat_completion_response,
process_chat_completion_stream_response,
process_completion_response,
process_completion_stream_response,
)
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
from llama_stack.providers.utils.inference.prompt_adapter import (
chat_completion_request_to_model_input_info,
completion_request_to_prompt_model_input_info,
)
from .config import InferenceAPIImplConfig, InferenceEndpointImplConfig, TGIImplConfig
@ -122,31 +115,6 @@ class _HfAdapter(
async def unregister_model(self, model_id: str) -> None:
pass
async def completion(
self,
model_id: str,
content: InterleavedContent,
sampling_params: SamplingParams | None = None,
response_format: ResponseFormat | None = None,
stream: bool | None = False,
logprobs: LogProbConfig | None = None,
) -> AsyncGenerator:
if sampling_params is None:
sampling_params = SamplingParams()
model = await self.model_store.get_model(model_id)
request = CompletionRequest(
model=model.provider_resource_id,
content=content,
sampling_params=sampling_params,
response_format=response_format,
stream=stream,
logprobs=logprobs,
)
if stream:
return self._stream_completion(request)
else:
return await self._nonstream_completion(request)
def _get_max_new_tokens(self, sampling_params, input_tokens):
return min(
sampling_params.max_tokens or (self.max_tokens - input_tokens),
@ -180,53 +148,6 @@ class _HfAdapter(
return options
async def _get_params_for_completion(self, request: CompletionRequest) -> dict:
prompt, input_tokens = await completion_request_to_prompt_model_input_info(request)
return dict(
prompt=prompt,
stream=request.stream,
details=True,
max_new_tokens=self._get_max_new_tokens(request.sampling_params, input_tokens),
stop_sequences=["<|eom_id|>", "<|eot_id|>"],
**self._build_options(request.sampling_params, request.response_format),
)
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
params = await self._get_params_for_completion(request)
async def _generate_and_convert_to_openai_compat():
s = await self.hf_client.text_generation(**params)
async for chunk in s:
token_result = chunk.token
finish_reason = None
if chunk.details:
finish_reason = chunk.details.finish_reason
choice = OpenAICompatCompletionChoice(text=token_result.text, finish_reason=finish_reason)
yield OpenAICompatCompletionResponse(
choices=[choice],
)
stream = _generate_and_convert_to_openai_compat()
async for chunk in process_completion_stream_response(stream):
yield chunk
async def _nonstream_completion(self, request: CompletionRequest) -> AsyncGenerator:
params = await self._get_params_for_completion(request)
r = await self.hf_client.text_generation(**params)
choice = OpenAICompatCompletionChoice(
finish_reason=r.details.finish_reason,
text="".join(t.text for t in r.details.tokens),
)
response = OpenAICompatCompletionResponse(
choices=[choice],
)
return process_completion_response(response)
async def chat_completion(
self,
model_id: str,

View file

@ -10,13 +10,9 @@ from openai import AsyncOpenAI
from together import AsyncTogether
from together.constants import BASE_URL
from llama_stack.apis.common.content_types import (
InterleavedContent,
)
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
CompletionRequest,
Inference,
LogProbConfig,
Message,
@ -39,13 +35,10 @@ from llama_stack.providers.utils.inference.openai_compat import (
get_sampling_options,
process_chat_completion_response,
process_chat_completion_stream_response,
process_completion_response,
process_completion_stream_response,
)
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
from llama_stack.providers.utils.inference.prompt_adapter import (
chat_completion_request_to_prompt,
completion_request_to_prompt,
request_has_media,
)
@ -81,31 +74,6 @@ class TogetherInferenceAdapter(OpenAIMixin, ModelRegistryHelper, Inference, Need
async def shutdown(self) -> None:
pass
async def completion(
self,
model_id: str,
content: InterleavedContent,
sampling_params: SamplingParams | None = None,
response_format: ResponseFormat | None = None,
stream: bool | None = False,
logprobs: LogProbConfig | None = None,
) -> AsyncGenerator:
if sampling_params is None:
sampling_params = SamplingParams()
model = await self.model_store.get_model(model_id)
request = CompletionRequest(
model=model.provider_resource_id,
content=content,
sampling_params=sampling_params,
response_format=response_format,
stream=stream,
logprobs=logprobs,
)
if stream:
return self._stream_completion(request)
else:
return await self._nonstream_completion(request)
def _get_client(self) -> AsyncTogether:
together_api_key = None
config_api_key = self.config.api_key.get_secret_value() if self.config.api_key else None
@ -127,19 +95,6 @@ class TogetherInferenceAdapter(OpenAIMixin, ModelRegistryHelper, Inference, Need
api_key=together_client.api_key,
)
async def _nonstream_completion(self, request: CompletionRequest) -> ChatCompletionResponse:
params = await self._get_params(request)
client = self._get_client()
r = await client.completions.create(**params)
return process_completion_response(r)
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
params = await self._get_params(request)
client = self._get_client()
stream = await client.completions.create(**params)
async for chunk in process_completion_stream_response(stream):
yield chunk
def _build_options(
self,
sampling_params: SamplingParams | None,
@ -219,18 +174,14 @@ class TogetherInferenceAdapter(OpenAIMixin, ModelRegistryHelper, Inference, Need
async for chunk in process_chat_completion_stream_response(stream, request):
yield chunk
async def _get_params(self, request: ChatCompletionRequest | CompletionRequest) -> dict:
async def _get_params(self, request: ChatCompletionRequest) -> dict:
input_dict = {}
media_present = request_has_media(request)
llama_model = self.get_llama_model(request.model)
if isinstance(request, ChatCompletionRequest):
if media_present or not llama_model:
input_dict["messages"] = [await convert_message_to_openai_dict(m) for m in request.messages]
else:
input_dict["prompt"] = await chat_completion_request_to_prompt(request, llama_model)
if media_present or not llama_model:
input_dict["messages"] = [await convert_message_to_openai_dict(m) for m in request.messages]
else:
assert not media_present, "Together does not support media for Completion requests"
input_dict["prompt"] = await completion_request_to_prompt(request)
input_dict["prompt"] = await chat_completion_request_to_prompt(request, llama_model)
params = {
"model": request.model,

View file

@ -15,7 +15,6 @@ from openai.types.chat.chat_completion_chunk import (
)
from llama_stack.apis.common.content_types import (
InterleavedContent,
TextDelta,
ToolCallDelta,
ToolCallParseStatus,
@ -27,9 +26,6 @@ from llama_stack.apis.inference import (
ChatCompletionResponseEventType,
ChatCompletionResponseStreamChunk,
CompletionMessage,
CompletionRequest,
CompletionResponse,
CompletionResponseStreamChunk,
GrammarResponseFormat,
Inference,
JsonSchemaResponseFormat,
@ -64,14 +60,8 @@ from llama_stack.providers.utils.inference.openai_compat import (
convert_tool_call,
get_sampling_options,
process_chat_completion_stream_response,
process_completion_response,
process_completion_stream_response,
)
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
from llama_stack.providers.utils.inference.prompt_adapter import (
completion_request_to_prompt,
request_has_media,
)
from .config import VLLMInferenceAdapterConfig
@ -363,33 +353,6 @@ class VLLMInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin, Inference, ModelsPro
def get_extra_client_params(self):
return {"http_client": httpx.AsyncClient(verify=self.config.tls_verify)}
async def completion( # type: ignore[override] # Return type more specific than base class which is allows for both streaming and non-streaming responses.
self,
model_id: str,
content: InterleavedContent,
sampling_params: SamplingParams | None = None,
response_format: ResponseFormat | None = None,
stream: bool | None = False,
logprobs: LogProbConfig | None = None,
) -> CompletionResponse | AsyncGenerator[CompletionResponseStreamChunk, None]:
if sampling_params is None:
sampling_params = SamplingParams()
model = await self._get_model(model_id)
if model.provider_resource_id is None:
raise ValueError(f"Model {model_id} has no provider_resource_id set")
request = CompletionRequest(
model=model.provider_resource_id,
content=content,
sampling_params=sampling_params,
response_format=response_format,
stream=stream,
logprobs=logprobs,
)
if stream:
return self._stream_completion(request)
else:
return await self._nonstream_completion(request)
async def chat_completion(
self,
model_id: str,
@ -474,24 +437,6 @@ class VLLMInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin, Inference, ModelsPro
async for chunk in res:
yield chunk
async def _nonstream_completion(self, request: CompletionRequest) -> CompletionResponse:
if self.client is None:
raise RuntimeError("Client is not initialized")
params = await self._get_params(request)
r = await self.client.completions.create(**params)
return process_completion_response(r)
async def _stream_completion(
self, request: CompletionRequest
) -> AsyncGenerator[CompletionResponseStreamChunk, None]:
if self.client is None:
raise RuntimeError("Client is not initialized")
params = await self._get_params(request)
stream = await self.client.completions.create(**params)
async for chunk in process_completion_stream_response(stream):
yield chunk
async def register_model(self, model: Model) -> Model:
try:
model = await self.register_helper.register_model(model)
@ -511,7 +456,7 @@ class VLLMInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin, Inference, ModelsPro
)
return model
async def _get_params(self, request: ChatCompletionRequest | CompletionRequest) -> dict:
async def _get_params(self, request: ChatCompletionRequest) -> dict:
options = get_sampling_options(request.sampling_params)
if "max_tokens" not in options:
options["max_tokens"] = self.config.max_tokens
@ -521,11 +466,7 @@ class VLLMInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin, Inference, ModelsPro
if isinstance(request, ChatCompletionRequest) and request.tools:
input_dict = {"tools": _convert_to_vllm_tools_in_request(request.tools)}
if isinstance(request, ChatCompletionRequest):
input_dict["messages"] = [await convert_message_to_openai_dict(m, download=True) for m in request.messages]
else:
assert not request_has_media(request), "vLLM does not support media for Completion requests"
input_dict["prompt"] = await completion_request_to_prompt(request)
input_dict["messages"] = [await convert_message_to_openai_dict(m, download=True) for m in request.messages]
if fmt := request.response_format:
if isinstance(fmt, JsonSchemaResponseFormat):

View file

@ -11,7 +11,6 @@ from ibm_watsonx_ai.foundation_models import Model
from ibm_watsonx_ai.metanames import GenTextParamsMetaNames as GenParams
from openai import AsyncOpenAI
from llama_stack.apis.common.content_types import InterleavedContent
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
@ -43,8 +42,6 @@ from llama_stack.providers.utils.inference.openai_compat import (
prepare_openai_completion_params,
process_chat_completion_response,
process_chat_completion_stream_response,
process_completion_response,
process_completion_stream_response,
)
from llama_stack.providers.utils.inference.prompt_adapter import (
chat_completion_request_to_prompt,
@ -87,31 +84,6 @@ class WatsonXInferenceAdapter(Inference, ModelRegistryHelper):
async def shutdown(self) -> None:
pass
async def completion(
self,
model_id: str,
content: InterleavedContent,
sampling_params: SamplingParams | None = None,
response_format: ResponseFormat | None = None,
stream: bool | None = False,
logprobs: LogProbConfig | None = None,
) -> AsyncGenerator:
if sampling_params is None:
sampling_params = SamplingParams()
model = await self.model_store.get_model(model_id)
request = CompletionRequest(
model=model.provider_resource_id,
content=content,
sampling_params=sampling_params,
response_format=response_format,
stream=stream,
logprobs=logprobs,
)
if stream:
return self._stream_completion(request)
else:
return await self._nonstream_completion(request)
def _get_client(self, model_id) -> Model:
config_api_key = self._config.api_key.get_secret_value() if self._config.api_key else None
config_url = self._config.url
@ -128,40 +100,6 @@ class WatsonXInferenceAdapter(Inference, ModelRegistryHelper):
)
return self._openai_client
async def _nonstream_completion(self, request: CompletionRequest) -> ChatCompletionResponse:
params = await self._get_params(request)
r = self._get_client(request.model).generate(**params)
choices = []
if "results" in r:
for result in r["results"]:
choice = OpenAICompatCompletionChoice(
finish_reason=result["stop_reason"] if result["stop_reason"] else None,
text=result["generated_text"],
)
choices.append(choice)
response = OpenAICompatCompletionResponse(
choices=choices,
)
return process_completion_response(response)
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
params = await self._get_params(request)
async def _generate_and_convert_to_openai_compat():
s = self._get_client(request.model).generate_text_stream(**params)
for chunk in s:
choice = OpenAICompatCompletionChoice(
finish_reason=None,
text=chunk,
)
yield OpenAICompatCompletionResponse(
choices=[choice],
)
stream = _generate_and_convert_to_openai_compat()
async for chunk in process_completion_stream_response(stream):
yield chunk
async def chat_completion(
self,
model_id: str,

View file

@ -4,14 +4,11 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from collections.abc import AsyncGenerator, AsyncIterator
from collections.abc import AsyncIterator
from typing import Any
import litellm
from llama_stack.apis.common.content_types import (
InterleavedContent,
)
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
@ -108,17 +105,6 @@ class LiteLLMOpenAIMixin(
else model_id
)
async def completion(
self,
model_id: str,
content: InterleavedContent,
sampling_params: SamplingParams | None = None,
response_format: ResponseFormat | None = None,
stream: bool | None = False,
logprobs: LogProbConfig | None = None,
) -> AsyncGenerator:
raise NotImplementedError("LiteLLM does not support completion requests")
async def chat_completion(
self,
model_id: str,

View file

@ -103,8 +103,6 @@ from llama_stack.apis.inference import (
JsonSchemaResponseFormat,
Message,
OpenAIChatCompletion,
OpenAICompletion,
OpenAICompletionChoice,
OpenAIEmbeddingData,
OpenAIMessageParam,
OpenAIResponseFormatParam,
@ -1281,76 +1279,6 @@ async def prepare_openai_completion_params(**params):
return completion_params
class OpenAICompletionToLlamaStackMixin:
async def openai_completion(
self,
model: str,
prompt: str | list[str] | list[int] | list[list[int]],
best_of: int | None = None,
echo: bool | None = None,
frequency_penalty: float | None = None,
logit_bias: dict[str, float] | None = None,
logprobs: bool | None = None,
max_tokens: int | None = None,
n: int | None = None,
presence_penalty: float | None = None,
seed: int | None = None,
stop: str | list[str] | None = None,
stream: bool | None = None,
stream_options: dict[str, Any] | None = None,
temperature: float | None = None,
top_p: float | None = None,
user: str | None = None,
guided_choice: list[str] | None = None,
prompt_logprobs: int | None = None,
suffix: str | None = None,
) -> OpenAICompletion:
if stream:
raise ValueError(f"{self.__class__.__name__} doesn't support streaming openai completions")
# This is a pretty hacky way to do emulate completions -
# basically just de-batches them...
prompts = [prompt] if not isinstance(prompt, list) else prompt
sampling_params = _convert_openai_sampling_params(
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
)
choices = []
# "n" is the number of completions to generate per prompt
n = n or 1
for _i in range(0, n):
# and we may have multiple prompts, if batching was used
for prompt in prompts:
result = self.completion(
model_id=model,
content=prompt,
sampling_params=sampling_params,
)
index = len(choices)
text = result.content
finish_reason = _convert_stop_reason_to_openai_finish_reason(result.stop_reason)
choice = OpenAICompletionChoice(
index=index,
text=text,
finish_reason=finish_reason,
)
choices.append(choice)
return OpenAICompletion(
id=f"cmpl-{uuid.uuid4()}",
choices=choices,
created=int(time.time()),
model=model,
object="text_completion",
)
class OpenAIChatCompletionToLlamaStackMixin:
async def openai_chat_completion(
self,

View file

@ -229,28 +229,6 @@ async def convert_image_content_to_url(
return base64.b64encode(content).decode("utf-8")
async def completion_request_to_prompt(request: CompletionRequest) -> str:
content = augment_content_with_response_format_prompt(request.response_format, request.content)
request.content = content
request = await convert_request_to_raw(request)
formatter = ChatFormat(tokenizer=Tokenizer.get_instance())
model_input = formatter.encode_content(request.content)
return formatter.tokenizer.decode(model_input.tokens)
async def completion_request_to_prompt_model_input_info(
request: CompletionRequest,
) -> tuple[str, int]:
content = augment_content_with_response_format_prompt(request.response_format, request.content)
request.content = content
request = await convert_request_to_raw(request)
formatter = ChatFormat(tokenizer=Tokenizer.get_instance())
model_input = formatter.encode_content(request.content)
return (formatter.tokenizer.decode(model_input.tokens), len(model_input.tokens))
def augment_content_with_response_format_prompt(response_format, content):
if fmt_prompt := response_format_prompt(response_format):
if isinstance(content, list):