mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-29 15:23:51 +00:00
Delete agents_gemini.py
This commit is contained in:
parent
88af03829c
commit
f822495ab0
1 changed files with 0 additions and 659 deletions
|
@ -1,659 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from collections.abc import AsyncIterator
|
||||
from datetime import datetime
|
||||
from enum import StrEnum
|
||||
from typing import Annotated, Any, Literal, Protocol, runtime_checkable
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field
|
||||
|
||||
from llama_stack.apis.common.content_types import URL, ContentDelta, InterleavedContent
|
||||
from llama_stack.apis.common.responses import Order, PaginatedResponse
|
||||
from llama_stack.apis.inference import (
|
||||
CompletionMessage,
|
||||
ResponseFormat,
|
||||
SamplingParams,
|
||||
ToolCall,
|
||||
ToolChoice,
|
||||
ToolConfig,
|
||||
ToolPromptFormat,
|
||||
ToolResponse,
|
||||
ToolResponseMessage,
|
||||
UserMessage,
|
||||
)
|
||||
from llama_stack.apis.safety import SafetyViolation
|
||||
from llama_stack.apis.tools import ToolDef
|
||||
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod
|
||||
|
||||
from .openai_responses import (
|
||||
ListOpenAIResponseInputItem,
|
||||
ListOpenAIResponseObject,
|
||||
OpenAIDeleteResponseObject,
|
||||
OpenAIResponseInput,
|
||||
OpenAIResponseInputTool,
|
||||
OpenAIResponseObject,
|
||||
OpenAIResponseObjectStream,
|
||||
OpenAIResponseText,
|
||||
)
|
||||
|
||||
|
||||
class Attachment(BaseModel):
|
||||
"""An attachment to an agent turn.
|
||||
|
||||
:param content: The content of the attachment.
|
||||
:param mime_type: The MIME type of the attachment.
|
||||
"""
|
||||
|
||||
content: InterleavedContent | URL = Field(description="The content of the attachment, which can be either interleaved content (text and images) or a URL pointing to the content.")
|
||||
mime_type: str = Field(description="The MIME type of the attachment, specifying the format of the content (e.g., 'image/jpeg', 'text/plain').")
|
||||
|
||||
|
||||
class Document(BaseModel):
|
||||
"""A document to be used by an agent.
|
||||
|
||||
:param content: The content of the document.
|
||||
:param mime_type: The MIME type of the document.
|
||||
"""
|
||||
|
||||
content: InterleavedContent | URL = Field(description="The content of the document, which can be either interleaved content (text and images) or a URL pointing to the content.")
|
||||
mime_type: str = Field(description="The MIME type of the document, specifying the format of the content (e.g., 'application/pdf', 'text/plain').")
|
||||
|
||||
|
||||
class StepCommon(BaseModel):
|
||||
"""A common step in an agent turn.
|
||||
|
||||
:param turn_id: The ID of the turn.
|
||||
:param step_id: The ID of the step.
|
||||
:param started_at: The time the step started.
|
||||
:param completed_at: The time the step completed.
|
||||
"""
|
||||
|
||||
turn_id: str = Field(description="Unique identifier for the turn within a session.")
|
||||
step_id: str = Field(description="Unique identifier for the step within a turn.")
|
||||
started_at: datetime | None = Field(default=None, description="Timestamp when the operation began.")
|
||||
completed_at: datetime | None = Field(default=None, description="Timestamp when the operation finished, if completed.")
|
||||
|
||||
|
||||
class StepType(StrEnum):
|
||||
"""Type of the step in an agent turn.
|
||||
|
||||
:cvar inference: The step is an inference step that calls an LLM.
|
||||
:cvar tool_execution: The step is a tool execution step that executes a tool call.
|
||||
:cvar shield_call: The step is a shield call step that checks for safety violations.
|
||||
:cvar memory_retrieval: The step is a memory retrieval step that retrieves context for vector dbs.
|
||||
"""
|
||||
|
||||
inference = "inference"
|
||||
tool_execution = "tool_execution"
|
||||
shield_call = "shield_call"
|
||||
memory_retrieval = "memory_retrieval"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class InferenceStep(StepCommon):
|
||||
"""An inference step in an agent turn.
|
||||
|
||||
:param model_response: The response from the LLM.
|
||||
"""
|
||||
|
||||
model_config = ConfigDict(protected_namespaces=())
|
||||
|
||||
step_type: Literal[StepType.inference] = Field(StepType.inference, description="The type of the step, which is 'inference' for this model.")
|
||||
model_response: CompletionMessage = Field(description="The response message from the language model for this inference step.")
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ToolExecutionStep(StepCommon):
|
||||
"""A tool execution step in an agent turn.
|
||||
|
||||
:param tool_calls: The tool calls to execute.
|
||||
:param tool_responses: The tool responses from the tool calls.
|
||||
"""
|
||||
|
||||
step_type: Literal[StepType.tool_execution] = Field(StepType.tool_execution, description="The type of the step, which is 'tool_execution' for this model.")
|
||||
tool_calls: list[ToolCall] = Field(description="A list of tool calls that were requested by the model during this step.")
|
||||
tool_responses: list[ToolResponse] = Field(description="A list of responses obtained from executing the tool calls.")
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ShieldCallStep(StepCommon):
|
||||
"""A shield call step in an agent turn.
|
||||
|
||||
:param violation: The violation from the shield call.
|
||||
"""
|
||||
|
||||
step_type: Literal[StepType.shield_call] = Field(StepType.shield_call, description="The type of the step, which is 'shield_call' for this model.")
|
||||
violation: SafetyViolation | None = Field(description="If a safety violation was detected by the shield, this field contains details about the violation.")
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class MemoryRetrievalStep(StepCommon):
|
||||
"""A memory retrieval step in an agent turn.
|
||||
|
||||
:param vector_db_ids: The IDs of the vector databases to retrieve context from.
|
||||
:param inserted_context: The context retrieved from the vector databases.
|
||||
"""
|
||||
|
||||
step_type: Literal[StepType.memory_retrieval] = Field(StepType.memory_retrieval, description="The type of the step, which is 'memory_retrieval' for this model.")
|
||||
# TODO: should this be List[str]?
|
||||
vector_db_ids: str = Field(description="The ID of the vector database used for retrieving context.")
|
||||
inserted_context: InterleavedContent = Field(description="The context that was retrieved from the vector database and inserted into the conversation.")
|
||||
|
||||
|
||||
Step = Annotated[
|
||||
InferenceStep | ToolExecutionStep | ShieldCallStep | MemoryRetrievalStep,
|
||||
Field(discriminator="step_type"),
|
||||
]
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class Turn(BaseModel):
|
||||
"""A single turn in an interaction with an Agentic System."""
|
||||
|
||||
turn_id: str = Field(description="Unique identifier for the turn within a session.")
|
||||
session_id: str = Field(description="Unique identifier for the conversation session.")
|
||||
input_messages: list[UserMessage | ToolResponseMessage] = Field(description="The list of input messages that initiated the turn, which can be from a user or a tool.")
|
||||
steps: list[Step] = Field(description="An ordered list of processing steps (e.g., inference, tool execution) that occurred during this turn.")
|
||||
output_message: CompletionMessage = Field(description="The final message generated by the agent at the end of the turn.")
|
||||
output_attachments: list[Attachment] | None = Field(default_factory=lambda: [], description="A list of optional files or media attached to the agent's response.")
|
||||
|
||||
started_at: datetime = Field(description="Timestamp when the operation began.")
|
||||
completed_at: datetime | None = Field(default=None, description="Timestamp when the operation finished, if completed.")
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class Session(BaseModel):
|
||||
"""A single session of an interaction with an Agentic System."""
|
||||
|
||||
session_id: str = Field(description="Unique identifier for the conversation session.")
|
||||
session_name: str = Field(description="A user-defined name for the session for easier identification.")
|
||||
turns: list[Turn] = Field(description="A list of all the turns that have occurred within this session.")
|
||||
started_at: datetime = Field(description="Timestamp when the resource was created.")
|
||||
|
||||
|
||||
class AgentToolGroupWithArgs(BaseModel):
|
||||
name: str = Field(description="The name of the tool group.")
|
||||
args: dict[str, Any] = Field(description="A dictionary of arguments to be passed to the tool group.")
|
||||
|
||||
|
||||
AgentToolGroup = str | AgentToolGroupWithArgs
|
||||
register_schema(AgentToolGroup, name="AgentTool")
|
||||
|
||||
|
||||
class AgentConfigCommon(BaseModel):
|
||||
sampling_params: SamplingParams | None = Field(default_factory=SamplingParams, description="Parameters to control the sampling behavior of the model during generation.")
|
||||
|
||||
input_shields: list[str] | None = Field(default_factory=lambda: [], description="A list of shield identifiers to be applied to the input.")
|
||||
output_shields: list[str] | None = Field(default_factory=lambda: [], description="A list of shield identifiers to be applied to the output.")
|
||||
toolgroups: list[AgentToolGroup] | None = Field(default_factory=lambda: [], description="A list of tool groups available to the agent.")
|
||||
client_tools: list[ToolDef] | None = Field(default_factory=lambda: [], description="A list of tool definitions provided by the client.")
|
||||
tool_choice: ToolChoice | None = Field(default=None, deprecated="use tool_config instead", description="(Deprecated) The method for choosing which tools to use.")
|
||||
tool_prompt_format: ToolPromptFormat | None = Field(default=None, deprecated="use tool_config instead", description="(Deprecated) The format for presenting tool prompts to the model.")
|
||||
tool_config: ToolConfig | None = Field(default=None, description="Configuration for tool usage, including tool choice and prompt format.")
|
||||
|
||||
max_infer_iters: int | None = Field(10, description="The maximum number of inference iterations allowed per turn.")
|
||||
|
||||
def model_post_init(self, __context):
|
||||
if self.tool_config:
|
||||
if self.tool_choice and self.tool_config.tool_choice != self.tool_choice:
|
||||
raise ValueError("tool_choice is deprecated. Use tool_choice in tool_config instead.")
|
||||
if self.tool_prompt_format and self.tool_config.tool_prompt_format != self.tool_prompt_format:
|
||||
raise ValueError("tool_prompt_format is deprecated. Use tool_prompt_format in tool_config instead.")
|
||||
else:
|
||||
params = {}
|
||||
if self.tool_choice:
|
||||
params["tool_choice"] = self.tool_choice
|
||||
if self.tool_prompt_format:
|
||||
params["tool_prompt_format"] = self.tool_prompt_format
|
||||
self.tool_config = ToolConfig(**params)
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class AgentConfig(AgentConfigCommon):
|
||||
"""Configuration for an agent.
|
||||
|
||||
:param model: The model identifier to use for the agent
|
||||
:param instructions: The system instructions for the agent
|
||||
:param name: Optional name for the agent, used in telemetry and identification
|
||||
:param enable_session_persistence: Optional flag indicating whether session data has to be persisted
|
||||
:param response_format: Optional response format configuration
|
||||
"""
|
||||
|
||||
model: str = Field(description="The model identifier to use for the agent.")
|
||||
instructions: str = Field(description="The system instructions for the agent.")
|
||||
name: str | None = Field(default=None, description="An optional name for the agent, used for identification and telemetry.")
|
||||
enable_session_persistence: bool | None = Field(False, description="If true, the agent's session data will be persisted across interactions.")
|
||||
response_format: ResponseFormat | None = Field(default=None, description="The format for the response, such as JSON or text.")
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class Agent(BaseModel):
|
||||
agent_id: str = Field(description="Unique identifier for the agent.")
|
||||
agent_config: AgentConfig = Field(description="The configuration settings for this agent.")
|
||||
created_at: datetime = Field(description="Timestamp when the resource was created.")
|
||||
|
||||
|
||||
class AgentConfigOverridablePerTurn(AgentConfigCommon):
|
||||
instructions: str | None = Field(default=None, description="The system instructions for the agent, which can be overridden for a single turn.")
|
||||
|
||||
|
||||
class AgentTurnResponseEventType(StrEnum):
|
||||
step_start = "step_start"
|
||||
step_complete = "step_complete"
|
||||
step_progress = "step_progress"
|
||||
|
||||
turn_start = "turn_start"
|
||||
turn_complete = "turn_complete"
|
||||
turn_awaiting_input = "turn_awaiting_input"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class AgentTurnResponseStepStartPayload(BaseModel):
|
||||
event_type: Literal[AgentTurnResponseEventType.step_start] = Field(AgentTurnResponseEventType.step_start, description="The type of the event, which is 'step_start' for this model.")
|
||||
step_type: StepType = Field(description="The type of the step that is starting (e.g., 'inference', 'tool_execution').")
|
||||
step_id: str = Field(description="Unique identifier for the step within a turn.")
|
||||
metadata: dict[str, Any] | None = Field(default_factory=lambda: {}, description="A dictionary of metadata associated with the start of the step.")
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class AgentTurnResponseStepCompletePayload(BaseModel):
|
||||
event_type: Literal[AgentTurnResponseEventType.step_complete] = Field(AgentTurnResponseEventType.step_complete, description="The type of the event, which is 'step_complete' for this model.")
|
||||
step_type: StepType = Field(description="The type of the step that has completed (e.g., 'inference', 'tool_execution').")
|
||||
step_id: str = Field(description="Unique identifier for the step within a turn.")
|
||||
step_details: Step = Field(description="Detailed information about the step that has been completed.")
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class AgentTurnResponseStepProgressPayload(BaseModel):
|
||||
model_config = ConfigDict(protected_namespaces=())
|
||||
|
||||
event_type: Literal[AgentTurnResponseEventType.step_progress] = Field(AgentTurnResponseEventType.step_progress, description="The type of the event, which is 'step_progress' for this model.")
|
||||
step_type: StepType = Field(description="The type of the step that is in progress, typically 'inference'.")
|
||||
step_id: str = Field(description="Unique identifier for the step within a turn.")
|
||||
|
||||
delta: ContentDelta = Field(description="The incremental content delta generated during the step's progress.")
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class AgentTurnResponseTurnStartPayload(BaseModel):
|
||||
event_type: Literal[AgentTurnResponseEventType.turn_start] = Field(AgentTurnResponseEventType.turn_start, description="The type of the event, which is 'turn_start' for this model.")
|
||||
turn_id: str = Field(description="Unique identifier for the turn within a session.")
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class AgentTurnResponseTurnCompletePayload(BaseModel):
|
||||
event_type: Literal[AgentTurnResponseEventType.turn_complete] = Field(AgentTurnResponseEventType.turn_complete, description="The type of the event, which is 'turn_complete' for this model.")
|
||||
turn: Turn = Field(description="The complete turn object, containing all steps and messages for the turn.")
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class AgentTurnResponseTurnAwaitingInputPayload(BaseModel):
|
||||
event_type: Literal[AgentTurnResponseEventType.turn_awaiting_input] = Field(AgentTurnResponseEventType.turn_awaiting_input, description="The type of the event, which is 'turn_awaiting_input' for this model.")
|
||||
turn: Turn = Field(description="The turn object that is awaiting user or tool input to proceed.")
|
||||
|
||||
|
||||
AgentTurnResponseEventPayload = Annotated[
|
||||
AgentTurnResponseStepStartPayload
|
||||
| AgentTurnResponseStepProgressPayload
|
||||
| AgentTurnResponseStepCompletePayload
|
||||
| AgentTurnResponseTurnStartPayload
|
||||
| AgentTurnResponseTurnCompletePayload
|
||||
| AgentTurnResponseTurnAwaitingInputPayload,
|
||||
Field(discriminator="event_type"),
|
||||
]
|
||||
register_schema(AgentTurnResponseEventPayload, name="AgentTurnResponseEventPayload")
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class AgentTurnResponseEvent(BaseModel):
|
||||
payload: AgentTurnResponseEventPayload = Field(description="The payload of the event, containing the specific event data.")
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class AgentCreateResponse(BaseModel):
|
||||
agent_id: str = Field(description="Unique identifier for the newly created agent.")
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class AgentSessionCreateResponse(BaseModel):
|
||||
session_id: str = Field(description="Unique identifier for the newly created conversation session.")
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class AgentTurnCreateRequest(AgentConfigOverridablePerTurn):
|
||||
agent_id: str = Field(description="Unique identifier for the agent.")
|
||||
session_id: str = Field(description="Unique identifier for the conversation session.")
|
||||
|
||||
# TODO: figure out how we can simplify this and make why
|
||||
# ToolResponseMessage needs to be here (it is function call
|
||||
# execution from outside the system)
|
||||
messages: list[UserMessage | ToolResponseMessage] = Field(description="A list of messages that form the input for this turn.")
|
||||
|
||||
documents: list[Document] | None = Field(default=None, description="A list of documents to be used as context for this turn.")
|
||||
toolgroups: list[AgentToolGroup] | None = Field(default_factory=lambda: [], description="A list of tool groups to be used for this turn, in addition to the agent's default tool groups.")
|
||||
|
||||
stream: bool | None = Field(default=False, description="Whether to stream the response as a series of events.")
|
||||
tool_config: ToolConfig | None = Field(default=None, description="Configuration for tool usage for this turn, overriding the agent's default tool configuration.")
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class AgentTurnResumeRequest(BaseModel):
|
||||
agent_id: str = Field(description="Unique identifier for the agent.")
|
||||
session_id: str = Field(description="Unique identifier for the conversation session.")
|
||||
turn_id: str = Field(description="Unique identifier for the turn within a session that should be resumed.")
|
||||
tool_responses: list[ToolResponse] = Field(description="A list of tool responses required to resume the turn.")
|
||||
stream: bool | None = Field(default=False, description="Whether to stream the response as a series of events.")
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class AgentTurnResponseStreamChunk(BaseModel):
|
||||
"""streamed agent turn completion response."""
|
||||
|
||||
event: AgentTurnResponseEvent = Field(description="The event that occurred during the turn, sent as part of the stream.")
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class AgentStepResponse(BaseModel):
|
||||
step: Step = Field(description="The details of a specific step within a turn.")
|
||||
|
||||
|
||||
@runtime_checkable
|
||||
class Agents(Protocol):
|
||||
"""Agents API for creating and interacting with agentic systems.
|
||||
|
||||
Main functionalities provided by this API:
|
||||
- Create agents with specific instructions and ability to use tools.
|
||||
- Interactions with agents are grouped into sessions ("threads"), and each interaction is called a "turn".
|
||||
- Agents can be provided with various tools (see the ToolGroups and ToolRuntime APIs for more details).
|
||||
- Agents can be provided with various shields (see the Safety API for more details).
|
||||
- Agents can also use Memory to retrieve information from knowledge bases. See the RAG Tool and Vector IO APIs for more details.
|
||||
"""
|
||||
|
||||
@webmethod(route="/agents", method="POST", descriptive_name="create_agent")
|
||||
async def create_agent(
|
||||
self,
|
||||
agent_config: AgentConfig,
|
||||
) -> AgentCreateResponse:
|
||||
"""Create an agent with the given configuration.
|
||||
|
||||
:param agent_config: The configuration for the agent.
|
||||
:returns: An AgentCreateResponse with the agent ID.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(
|
||||
route="/agents/{agent_id}/session/{session_id}/turn", method="POST", descriptive_name="create_agent_turn"
|
||||
)
|
||||
async def create_agent_turn(
|
||||
self,
|
||||
agent_id: str,
|
||||
session_id: str,
|
||||
messages: list[UserMessage | ToolResponseMessage],
|
||||
stream: bool | None = False,
|
||||
documents: list[Document] | None = None,
|
||||
toolgroups: list[AgentToolGroup] | None = None,
|
||||
tool_config: ToolConfig | None = None,
|
||||
) -> Turn | AsyncIterator[AgentTurnResponseStreamChunk]:
|
||||
"""Create a new turn for an agent.
|
||||
|
||||
:param agent_id: The ID of the agent to create the turn for.
|
||||
:param session_id: The ID of the session to create the turn for.
|
||||
:param messages: List of messages to start the turn with.
|
||||
:param stream: (Optional) If True, generate an SSE event stream of the response. Defaults to False.
|
||||
:param documents: (Optional) List of documents to create the turn with.
|
||||
:param toolgroups: (Optional) List of toolgroups to create the turn with, will be used in addition to the agent's config toolgroups for the request.
|
||||
:param tool_config: (Optional) The tool configuration to create the turn with, will be used to override the agent's tool_config.
|
||||
:returns: If stream=False, returns a Turn object.
|
||||
If stream=True, returns an SSE event stream of AgentTurnResponseStreamChunk.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(
|
||||
route="/agents/{agent_id}/session/{session_id}/turn/{turn_id}/resume",
|
||||
method="POST",
|
||||
descriptive_name="resume_agent_turn",
|
||||
)
|
||||
async def resume_agent_turn(
|
||||
self,
|
||||
agent_id: str,
|
||||
session_id: str,
|
||||
turn_id: str,
|
||||
tool_responses: list[ToolResponse],
|
||||
stream: bool | None = False,
|
||||
) -> Turn | AsyncIterator[AgentTurnResponseStreamChunk]:
|
||||
"""Resume an agent turn with executed tool call responses.
|
||||
|
||||
When a Turn has the status `awaiting_input` due to pending input from client side tool calls, this endpoint can be used to submit the outputs from the tool calls once they are ready.
|
||||
|
||||
:param agent_id: The ID of the agent to resume.
|
||||
:param session_id: The ID of the session to resume.
|
||||
:param turn_id: The ID of the turn to resume.
|
||||
:param tool_responses: The tool call responses to resume the turn with.
|
||||
:param stream: Whether to stream the response.
|
||||
:returns: A Turn object if stream is False, otherwise an AsyncIterator of AgentTurnResponseStreamChunk objects.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(
|
||||
route="/agents/{agent_id}/session/{session_id}/turn/{turn_id}",
|
||||
method="GET",
|
||||
)
|
||||
async def get_agents_turn(
|
||||
self,
|
||||
agent_id: str,
|
||||
session_id: str,
|
||||
turn_id: str,
|
||||
) -> Turn:
|
||||
"""Retrieve an agent turn by its ID.
|
||||
|
||||
:param agent_id: The ID of the agent to get the turn for.
|
||||
:param session_id: The ID of the session to get the turn for.
|
||||
:param turn_id: The ID of the turn to get.
|
||||
:returns: A Turn.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(
|
||||
route="/agents/{agent_id}/session/{session_id}/turn/{turn_id}/step/{step_id}",
|
||||
method="GET",
|
||||
)
|
||||
async def get_agents_step(
|
||||
self,
|
||||
agent_id: str,
|
||||
session_id: str,
|
||||
turn_id: str,
|
||||
step_id: str,
|
||||
) -> AgentStepResponse:
|
||||
"""Retrieve an agent step by its ID.
|
||||
|
||||
:param agent_id: The ID of the agent to get the step for.
|
||||
:param session_id: The ID of the session to get the step for.
|
||||
:param turn_id: The ID of the turn to get the step for.
|
||||
:param step_id: The ID of the step to get.
|
||||
:returns: An AgentStepResponse.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/agents/{agent_id}/session", method="POST", descriptive_name="create_agent_session")
|
||||
async def create_agent_session(
|
||||
self,
|
||||
agent_id: str,
|
||||
session_name: str,
|
||||
) -> AgentSessionCreateResponse:
|
||||
"""Create a new session for an agent.
|
||||
|
||||
:param agent_id: The ID of the agent to create the session for.
|
||||
:param session_name: The name of the session to create.
|
||||
:returns: An AgentSessionCreateResponse.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/agents/{agent_id}/session/{session_id}", method="GET")
|
||||
async def get_agents_session(
|
||||
self,
|
||||
session_id: str,
|
||||
agent_id: str,
|
||||
turn_ids: list[str] | None = None,
|
||||
) -> Session:
|
||||
"""Retrieve an agent session by its ID.
|
||||
|
||||
:param session_id: The ID of the session to get.
|
||||
:param agent_id: The ID of the agent to get the session for.
|
||||
:param turn_ids: (Optional) List of turn IDs to filter the session by.
|
||||
:returns: A Session.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/agents/{agent_id}/session/{session_id}", method="DELETE")
|
||||
async def delete_agents_session(
|
||||
self,
|
||||
session_id: str,
|
||||
agent_id: str,
|
||||
) -> None:
|
||||
"""Delete an agent session by its ID and its associated turns.
|
||||
|
||||
:param session_id: The ID of the session to delete.
|
||||
:param agent_id: The ID of the agent to delete the session for.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/agents/{agent_id}", method="DELETE")
|
||||
async def delete_agent(
|
||||
self,
|
||||
agent_id: str,
|
||||
) -> None:
|
||||
"""Delete an agent by its ID and its associated sessions and turns.
|
||||
|
||||
:param agent_id: The ID of the agent to delete.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/agents", method="GET")
|
||||
async def list_agents(self, start_index: int | None = None, limit: int | None = None) -> PaginatedResponse:
|
||||
"""List all agents.
|
||||
|
||||
:param start_index: The index to start the pagination from.
|
||||
:param limit: The number of agents to return.
|
||||
:returns: A PaginatedResponse.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/agents/{agent_id}", method="GET")
|
||||
async def get_agent(self, agent_id: str) -> Agent:
|
||||
"""Describe an agent by its ID.
|
||||
|
||||
:param agent_id: ID of the agent.
|
||||
:returns: An Agent of the agent.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/agents/{agent_id}/sessions", method="GET")
|
||||
async def list_agent_sessions(
|
||||
self,
|
||||
agent_id: str,
|
||||
start_index: int | None = None,
|
||||
limit: int | None = None,
|
||||
) -> PaginatedResponse:
|
||||
"""List all session(s) of a given agent.
|
||||
|
||||
:param agent_id: The ID of the agent to list sessions for.
|
||||
:param start_index: The index to start the pagination from.
|
||||
:param limit: The number of sessions to return.
|
||||
:returns: A PaginatedResponse.
|
||||
"""
|
||||
...
|
||||
|
||||
# We situate the OpenAI Responses API in the Agents API just like we did things
|
||||
# for Inference. The Responses API, in its intent, serves the same purpose as
|
||||
# the Agents API above -- it is essentially a lightweight "agentic loop" with
|
||||
# integrated tool calling.
|
||||
#
|
||||
# Both of these APIs are inherently stateful.
|
||||
|
||||
@webmethod(route="/openai/v1/responses/{response_id}", method="GET")
|
||||
async def get_openai_response(
|
||||
self,
|
||||
response_id: str,
|
||||
) -> OpenAIResponseObject:
|
||||
"""Retrieve an OpenAI response by its ID.
|
||||
|
||||
:param response_id: The ID of the OpenAI response to retrieve.
|
||||
:returns: An OpenAIResponseObject.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/responses", method="POST")
|
||||
async def create_openai_response(
|
||||
self,
|
||||
input: str | list[OpenAIResponseInput],
|
||||
model: str,
|
||||
instructions: str | None = None,
|
||||
previous_response_id: str | None = None,
|
||||
store: bool | None = True,
|
||||
stream: bool | None = False,
|
||||
temperature: float | None = None,
|
||||
text: OpenAIResponseText | None = None,
|
||||
tools: list[OpenAIResponseInputTool] | None = None,
|
||||
max_infer_iters: int | None = 10, # this is an extension to the OpenAI API
|
||||
) -> OpenAIResponseObject | AsyncIterator[OpenAIResponseObjectStream]:
|
||||
"""Create a new OpenAI response.
|
||||
|
||||
:param input: Input message(s) to create the response.
|
||||
:param model: The underlying LLM used for completions.
|
||||
:param previous_response_id: (Optional) if specified, the new response will be a continuation of the previous response. This can be used to easily fork-off new responses from existing responses.
|
||||
:returns: An OpenAIResponseObject.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/responses", method="GET")
|
||||
async def list_openai_responses(
|
||||
self,
|
||||
after: str | None = None,
|
||||
limit: int | None = 50,
|
||||
model: str | None = None,
|
||||
order: Order | None = Order.desc,
|
||||
) -> ListOpenAIResponseObject:
|
||||
"""List all OpenAI responses.
|
||||
|
||||
:param after: The ID of the last response to return.
|
||||
:param limit: The number of responses to return.
|
||||
:param model: The model to filter responses by.
|
||||
:param order: The order to sort responses by when sorted by created_at ('asc' or 'desc').
|
||||
:returns: A ListOpenAIResponseObject.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/responses/{response_id}/input_items", method="GET")
|
||||
async def list_openai_response_input_items(
|
||||
self,
|
||||
response_id: str,
|
||||
after: str | None = None,
|
||||
before: str | None = None,
|
||||
include: list[str] | None = None,
|
||||
limit: int | None = 20,
|
||||
order: Order | None = Order.desc,
|
||||
) -> ListOpenAIResponseInputItem:
|
||||
"""List input items for a given OpenAI response.
|
||||
|
||||
:param response_id: The ID of the response to retrieve input items for.
|
||||
:param after: An item ID to list items after, used for pagination.
|
||||
:param before: An item ID to list items before, used for pagination.
|
||||
:param include: Additional fields to include in the response.
|
||||
:param limit: A limit on the number of objects to be returned. Limit can range between 1 and 100, and the default is 20.
|
||||
:param order: The order to return the input items in. Default is desc.
|
||||
:returns: An ListOpenAIResponseInputItem.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/responses/{response_id}", method="DELETE")
|
||||
async def delete_openai_response(self, response_id: str) -> OpenAIDeleteResponseObject:
|
||||
"""Delete an OpenAI response by its ID.
|
||||
|
||||
:param response_id: The ID of the OpenAI response to delete.
|
||||
:returns: An OpenAIDeleteResponseObject
|
||||
"""
|
||||
...
|
Loading…
Add table
Add a link
Reference in a new issue