Update cli_reference.md

This commit is contained in:
Hardik Shah 2024-08-06 18:55:31 -07:00 committed by GitHub
parent 2a9bdb208b
commit f83b97992c
No known key found for this signature in database
GPG key ID: B5690EEEBB952194

View file

@ -5,54 +5,83 @@ The `llama` CLI tool helps you setup and use the Llama toolchain & agentic syste
``` ```
$ llama --help $ llama --help
usage: llama [-h] {download,model,distribution} ...
Welcome to the Llama CLI Welcome to the Llama CLI
Usage: llama [-h] {download,inference,model} ... options:
-h, --help show this help message and exit
subcommands:
Options: {download,model,distribution}
-h, --help Show this help message and exit
Subcommands:
{download,inference,model}
``` ```
## Step 1. Get the models ## Step 1. Get the models
First, you need models locally. You can get the models from [HuggingFace](https://huggingface.co/meta-llama) or [directly from Meta](https://llama.meta.com/llama-downloads/). The download command streamlines the process. You first need to have models downloaded locally.
To download any model you need the **Model Descriptor**.
This can be obtained by running the command
`llama model list`
You should see a table like this
``` ```
$ llama download --help > llama model list
usage: llama download [-h] [--hf-token HF_TOKEN] [--ignore-patterns IGNORE_PATTERNS] repo_id
Download a model from the Hugging Face Hub +---------------------------------------+---------------------------------------------+----------------+----------------------------+
| Model Descriptor | HuggingFace Repo | Context Length | Hardware Requirements |
positional arguments: +---------------------------------------+---------------------------------------------+----------------+----------------------------+
repo_id Name of the repository on Hugging Face Hub eg. llhf/Meta-Llama-3.1-70B-Instruct | Meta-Llama3.1-8B | meta-llama/Meta-Llama-3.1-8B | 128K | 1 GPU, each >= 20GB VRAM |
+---------------------------------------+---------------------------------------------+----------------+----------------------------+
options: | Meta-Llama3.1-70B | meta-llama/Meta-Llama-3.1-70B | 128K | 8 GPUs, each >= 20GB VRAM |
-h, --help show this help message and exit +---------------------------------------+---------------------------------------------+----------------+----------------------------+
--hf-token HF_TOKEN Hugging Face API token. Needed for gated models like Llama2. Will also try to read environment variable `HF_TOKEN` as default. | Meta-Llama3.1-405B:bf16-mp8 | | 128K | 8 GPUs, each >= 120GB VRAM |
--ignore-patterns IGNORE_PATTERNS +---------------------------------------+---------------------------------------------+----------------+----------------------------+
If provided, files matching any of the patterns are not downloaded. Defaults to ignoring safetensors files to avoid downloading duplicate weights. | Meta-Llama3.1-405B | meta-llama/Meta-Llama-3.1-405B-FP8 | 128K | 8 GPUs, each >= 70GB VRAM |
+---------------------------------------+---------------------------------------------+----------------+----------------------------+
# Here are some examples on how to use this command: | Meta-Llama3.1-405B:bf16-mp16 | meta-llama/Meta-Llama-3.1-405B | 128K | 16 GPUs, each >= 70GB VRAM |
+---------------------------------------+---------------------------------------------+----------------+----------------------------+
llama download --repo-id meta-llama/Llama-2-7b-hf --hf-token <HF_TOKEN> | Meta-Llama3.1-8B-Instruct | meta-llama/Meta-Llama-3.1-8B-Instruct | 128K | 1 GPU, each >= 20GB VRAM |
llama download --repo-id meta-llama/Llama-2-7b-hf --output-dir /data/my_custom_dir --hf-token <HF_TOKEN> +---------------------------------------+---------------------------------------------+----------------+----------------------------+
HF_TOKEN=<HF_TOKEN> llama download --repo-id meta-llama/Llama-2-7b-hf | Meta-Llama3.1-70B-Instruct | meta-llama/Meta-Llama-3.1-70B-Instruct | 128K | 8 GPUs, each >= 20GB VRAM |
+---------------------------------------+---------------------------------------------+----------------+----------------------------+
The output directory will be used to load models and tokenizers for inference. | Meta-Llama3.1-405B-Instruct:bf16-mp8 | | 128K | 8 GPUs, each >= 120GB VRAM |
+---------------------------------------+---------------------------------------------+----------------+----------------------------+
| Meta-Llama3.1-405B-Instruct | meta-llama/Meta-Llama-3.1-405B-Instruct-FP8 | 128K | 8 GPUs, each >= 70GB VRAM |
+---------------------------------------+---------------------------------------------+----------------+----------------------------+
| Meta-Llama3.1-405B-Instruct:bf16-mp16 | meta-llama/Meta-Llama-3.1-405B-Instruct | 128K | 16 GPUs, each >= 70GB VRAM |
+---------------------------------------+---------------------------------------------+----------------+----------------------------+
| Llama-Guard-3-8B | meta-llama/Llama-Guard-3-8B | 128K | 1 GPU, each >= 20GB VRAM |
+---------------------------------------+---------------------------------------------+----------------+----------------------------+
| Llama-Guard-3-8B:int8-mp1 | meta-llama/Llama-Guard-3-8B-INT8 | 128K | 1 GPU, each >= 10GB VRAM |
+---------------------------------------+---------------------------------------------+----------------+----------------------------+
| Prompt-Guard-86M | meta-llama/Prompt-Guard-86M | 128K | 1 GPU, each >= 1GB VRAM |
+---------------------------------------+---------------------------------------------+----------------+----------------------------+
``` ```
1. Create and get a Hugging Face access token [here](https://huggingface.co/settings/tokens) To download models, you can use the llama download command.
2. Set the `HF_TOKEN` environment variable
Here is an example downnload command to get the 8B/70B Instruct model
you will need a meta url which can be obtained from --
https://llama.meta.com/docs/getting_the_models/meta/
``` ```
export HF_TOKEN=YOUR_TOKEN_HERE llama download --source meta --model-id Meta-Llama3.1-8B-Instruct --meta-url "<META_URL>"
llama download meta-llama/Meta-Llama-3.1-70B-Instruct llama download --source meta --model-id Meta-Llama3.1-70B-Instruct --meta-url "<META_URL>"
```
You can download from HuggingFace using these commands
Set your environment variable HF_TOKEN or pass in --hf-token to the command to validate your access.
You can find your token at https://huggingface.co/settings/tokens
```
llama download --source huggingface --model-id Meta-Llama3.1-8B-Instruct --hf-token <HF_TOKEN>
llama download --source huggingface --model-id Meta-Llama3.1-70B-Instruct --hf-token <HF_TOKEN>
```
You can also download safety models from HF
```
llama download --source huggingface --model-id Llama-Guard-3-8B --ignore-patterns *original*
llama download --source huggingface --model-id Prompt-Guard-86M --ignore-patterns *original*
``` ```
## Step 2: Understand the models ## Step 2: Understand the models
@ -77,13 +106,50 @@ model_subcommands:
Example: llama model <subcommand> <options> Example: llama model <subcommand> <options>
``` ```
You can run `llama model template` see all of the templates and their tokens: You can use the describe command to know more about a model
```
$ llama model describe -m Meta-Llama3.1-8B-Instruct
+-----------------------------+---------------------------------------+
| Model | Meta-Llama3.1-8B-Instruct |
+-----------------------------+---------------------------------------+
| HuggingFace ID | meta-llama/Meta-Llama-3.1-8B-Instruct |
+-----------------------------+---------------------------------------+
| Description | Llama 3.1 8b instruct model |
+-----------------------------+---------------------------------------+
| Context Length | 128K tokens |
+-----------------------------+---------------------------------------+
| Weights format | bf16 |
+-----------------------------+---------------------------------------+
| Model params.json | { |
| | "dim": 4096, |
| | "n_layers": 32, |
| | "n_heads": 32, |
| | "n_kv_heads": 8, |
| | "vocab_size": 128256, |
| | "ffn_dim_multiplier": 1.3, |
| | "multiple_of": 1024, |
| | "norm_eps": 1e-05, |
| | "rope_theta": 500000.0, |
| | "use_scaled_rope": true |
| | } |
+-----------------------------+---------------------------------------+
| Recommended sampling params | { |
| | "strategy": "top_p", |
| | "temperature": 1.0, |
| | "top_p": 0.9, |
| | "top_k": 0 |
| | } |
+-----------------------------+---------------------------------------+
```
You can even run `llama model template` see all of the templates and their tokens:
``` ```
$ llama model template $ llama model template
system-message-builtin-and-custom-tools system-message-builtin-and-custom-tools
system-message-builtin-tools-only system-message-builtin-tools-only
system-message-custom-tools-only system-message-custom-tools-only
@ -110,56 +176,165 @@ completed
[stdout]{"results":["something something"]}[/stdout]<|eot_id|> [stdout]{"results":["something something"]}[/stdout]<|eot_id|>
``` ```
## Step 3. Start the inference server These commands can help understand the model interface and how prompts / messages are formatted for various scenarios.
Once you have a model, the magic begins with inference. The `llama inference` command can help you configure and launch the Llama Stack inference server. #NOTE: Outputs in terminal are color printed to show speacial tokens.
## Step 3: Installing and Configuring Distributions
A distribution is a collection of APIs that are part of the Llama Stack. Currently we support APIs for inference, safety and agentic_system ( more to be added soon ). A distributions behavior can be configured by defining a specification or “spec”. The specification lays out the different API “Providers” that constitute this distribution. Each “Provider” is an implementation of an API and you can group different providers to form a distribution.
Lets install, configure and start a distribution to understand more !
Lets start with listing available distributions
```
$ llama distribution list
+---------------+---------------------------------------------+----------------------------------------------------------------------+
| Spec ID | ProviderSpecs | Description |
+---------------+---------------------------------------------+----------------------------------------------------------------------+
| inline | { | Use code from `llama_toolchain` itself to serve all llama stack APIs |
| | "inference": "meta-reference", | |
| | "safety": "meta-reference", | |
| | "agentic_system": "meta-reference" | |
| | } | |
+---------------+---------------------------------------------+----------------------------------------------------------------------+
| remote | { | Point to remote services for all llama stack APIs |
| | "inference": "inference-remote", | |
| | "safety": "safety-remote", | |
| | "agentic_system": "agentic_system-remote" | |
| | } | |
+---------------+---------------------------------------------+----------------------------------------------------------------------+
| ollama-inline | { | Like local-source, but use ollama for running LLM inference |
| | "inference": "meta-ollama", | |
| | "safety": "meta-reference", | |
| | "agentic_system": "meta-reference" | |
| | } | |
+---------------+---------------------------------------------+----------------------------------------------------------------------+
``` ```
$ llama inference --help
As you can see above, each “spec” details the “providers” that make up that spec. For eg. The inline uses the “meta-reference” provider for inference while the ollama-inline relies on a different provider ( ollama ) for inference.
usage: llama inference [-h] {start,configure} ... Lets install the fully local impl of the llama-stack aka inline.
To install a distro, we run a simple command providing 2 inputs
Run inference on a llama model - Spec Id of the distribution that we want to install ( as obtained from the list command )
- A custom name for the specific instance of the distribution that we are going to install.
options:
-h, --help show this help message and exit
inference_subcommands:
{start,configure}
Example: llama inference start <options>
```
Run `llama inference configure` to setup your configuration at `~/.llama/configs/inference.yaml`. Youll set up variables like:
* the directory where you stored the models you downloaded from step 1
* the model parallel size (1 for 8B models, 8 for 70B/405B)
Once youve configured the inference server, run `llama inference start`. The model will load into GPU and youll be able to send requests once you see the server ready.
If you want to use a different model, re-run `llama inference configure` to update the model path and llama inference start to start again.
Run `llama inference --help` for more information.
## Step 4. Start the agentic system
The `llama agentic_system` command sets up the configuration file the agentic client code expects.
For example, lets run the included chat app:
``` ```
llama agentic_system configure llama distribution install --spec inline --name inline_llama_8b
mesop app/main.py
``` ```
For more information run `llama agentic_system --help`. This will create a new conda environment (name can be passed optionally) and install dependencies (via pip) as required by the distro.
Once it runs successfully , you should see some outputs in the form
```
$ llama distribution install --spec inline --name inline_llama_8b
....
....
Successfully installed cfgv-3.4.0 distlib-0.3.8 identify-2.6.0 libcst-1.4.0 llama_toolchain-0.0.2 moreorless-0.4.0 nodeenv-1.9.1 pre-commit-3.8.0 stdlibs-2024.5.15 toml-0.10.2 tomlkit-0.13.0 trailrunner-1.4.0 ufmt-2.7.0 usort-1.0.8 virtualenv-20.26.3
Distribution `inline_llama_8b` (with spec inline) has been installed successfully!
Update your conda environment and configure this distribution by running:
conda deactivate && conda activate inline_llama_8b
llama distribution configure --name inline_llama_8b
```
Next step is to configure the distribution that you just installed. We provide a simple CLI tool to enable simple configuration.
This command will walk you through the configuration process.
It will ask for some details like model name, paths to models, etc.
NOTE: You will have to download the models if not done already. Follow instructions here on how to download using the llama cli
```
llama distribution configure --name inline_llama_8b
```
Here is an example screenshot of how the cli will guide you to fill the configuration
```
$ llama distribution configure --name inline_llama_8b
Configuring API surface: inference
Enter value for model (required): Meta-Llama3.1-8B-Instruct
Enter value for quantization (optional):
Enter value for torch_seed (optional):
Enter value for max_seq_len (required): 4096
Enter value for max_batch_size (default: 1): 1
Configuring API surface: safety
Do you want to configure llama_guard_shield? (y/n): n
Do you want to configure prompt_guard_shield? (y/n): n
Configuring API surface: agentic_system
YAML configuration has been written to ~/.llama/distributions/inline0/config.yaml
```
As you can see, we did basic configuration above and configured inference to run on model Meta-Llama3.1-8B-Instruct ( obtained from the llama model list command ).
For this initial setup we did not set up safety.
For how these configurations are stored as yaml, checkout the file printed at the end of the configuration.
## Step 4: Starting a Distribution and Testing it
Now lets start the distribution using the cli.
```
llama distribution start --name inline_llama_8b
```
You should see the distribution start and print the APIs that it is supporting,
```
$ llama distribution start --name inline_llama_8b
> initializing model parallel with size 1
> initializing ddp with size 1
> initializing pipeline with size 1
Loaded in 19.28 seconds
NCCL version 2.20.5+cuda12.4
Finished model load YES READY
Serving POST /inference/batch_chat_completion
Serving POST /inference/batch_completion
Serving POST /inference/chat_completion
Serving POST /inference/completion
Serving POST /safety/run_shields
Serving POST /agentic_system/memory_bank/attach
Serving POST /agentic_system/create
Serving POST /agentic_system/session/create
Serving POST /agentic_system/turn/create
Serving POST /agentic_system/delete
Serving POST /agentic_system/session/delete
Serving POST /agentic_system/memory_bank/detach
Serving POST /agentic_system/session/get
Serving POST /agentic_system/step/get
Serving POST /agentic_system/turn/get
Listening on :::5000
INFO: Started server process [453333]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://[::]:5000 (Press CTRL+C to quit)
```
Lets test with a client
```
cd /path/to/llama-toolchain
conda activate <env-for-distro> # ( Eg. local_inline in above example )
python -m llama_toolchain.inference.client localhost 5000
```
This will run the chat completion client and query the distributions /inference/chat_completion API.
Here is an example output
```
python -m llama_toolchain.inference.client localhost 5000
Initializing client for http://localhost:5000
User>hello world, troll me in two-paragraphs about 42
Assistant> You think you're so smart, don't you? You think you can just waltz in here and ask about 42, like it's some kind of trivial matter. Well, let me tell you, 42 is not just a number, it's a way of life. It's the answer to the ultimate question of life, the universe, and everything, according to Douglas Adams' magnum opus, "The Hitchhiker's Guide to the Galaxy". But do you know what's even more interesting about 42? It's that it's not actually the answer to anything, it's just a number that some guy made up to sound profound.
You know what's even more hilarious? People like you who think they can just Google "42" and suddenly become experts on the subject. Newsflash: you're not a supercomputer, you're just a human being with a fragile ego and a penchant for thinking you're smarter than you actually are. 42 is just a number, a meaningless collection of digits that holds no significance whatsoever. So go ahead, keep thinking you're so clever, but deep down, you're just a pawn in the grand game of life, and 42 is just a silly little number that's been used to make you feel like you're part of something bigger than yourself. Ha!
```