mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-29 07:14:20 +00:00
weaviate fixes, test now passes
This commit is contained in:
parent
f21ad1173e
commit
f8752ab8dc
3 changed files with 56 additions and 8 deletions
|
@ -3,6 +3,7 @@
|
|||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
import json
|
||||
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
|
@ -36,7 +37,7 @@ class WeaviateIndex(EmbeddingIndex):
|
|||
data_objects.append(
|
||||
wvc.data.DataObject(
|
||||
properties={
|
||||
"chunk_content": chunk,
|
||||
"chunk_content": chunk.json(),
|
||||
},
|
||||
vector=embeddings[i].tolist(),
|
||||
)
|
||||
|
@ -44,7 +45,9 @@ class WeaviateIndex(EmbeddingIndex):
|
|||
|
||||
# Inserting chunks into a prespecified Weaviate collection
|
||||
collection = self.client.collections.get(self.collection_name)
|
||||
await collection.data.insert_many(data_objects)
|
||||
|
||||
# TODO: make this async friendly
|
||||
collection.data.insert_many(data_objects)
|
||||
|
||||
async def query(self, embedding: NDArray, k: int) -> QueryDocumentsResponse:
|
||||
collection = self.client.collections.get(self.collection_name)
|
||||
|
@ -52,13 +55,23 @@ class WeaviateIndex(EmbeddingIndex):
|
|||
results = collection.query.near_vector(
|
||||
near_vector=embedding.tolist(),
|
||||
limit=k,
|
||||
return_meta_data=wvc.query.MetadataQuery(distance=True),
|
||||
return_metadata=wvc.query.MetadataQuery(distance=True),
|
||||
)
|
||||
|
||||
chunks = []
|
||||
scores = []
|
||||
for doc in results.objects:
|
||||
chunk = doc.properties["chunk_content"]
|
||||
chunk_json = doc.properties["chunk_content"]
|
||||
try:
|
||||
chunk_dict = json.loads(chunk_json)
|
||||
chunk = Chunk(**chunk_dict)
|
||||
except Exception:
|
||||
import traceback
|
||||
|
||||
traceback.print_exc()
|
||||
print(f"Failed to parse document: {chunk_json}")
|
||||
continue
|
||||
|
||||
chunks.append(chunk)
|
||||
scores.append(1.0 / doc.metadata.distance)
|
||||
|
||||
|
@ -102,12 +115,12 @@ class WeaviateMemoryAdapter(Memory, NeedsRequestProviderData):
|
|||
memory_bank.type == MemoryBankType.vector.value
|
||||
), f"Only vector banks are supported {memory_bank.type}"
|
||||
|
||||
client = await self._get_client()
|
||||
client = self._get_client()
|
||||
|
||||
# Create collection if it doesn't exist
|
||||
if not client.collections.exists(memory_bank.identifier):
|
||||
client.collections.create(
|
||||
name=smemory_bank.identifier,
|
||||
name=memory_bank.identifier,
|
||||
vectorizer_config=wvc.config.Configure.Vectorizer.none(),
|
||||
properties=[
|
||||
wvc.config.Property(
|
||||
|
@ -121,7 +134,7 @@ class WeaviateMemoryAdapter(Memory, NeedsRequestProviderData):
|
|||
bank=memory_bank,
|
||||
index=WeaviateIndex(client=client, collection_name=memory_bank.identifier),
|
||||
)
|
||||
self.cache[bank_id] = index
|
||||
self.cache[memory_bank.identifier] = index
|
||||
|
||||
async def _get_and_cache_bank_index(self, bank_id: str) -> Optional[BankWithIndex]:
|
||||
if bank_id in self.cache:
|
||||
|
@ -131,7 +144,7 @@ class WeaviateMemoryAdapter(Memory, NeedsRequestProviderData):
|
|||
if not bank:
|
||||
raise ValueError(f"Bank {bank_id} not found")
|
||||
|
||||
client = await self._get_client()
|
||||
client = self._get_client()
|
||||
if not client.collections.exists(bank_id):
|
||||
raise ValueError(f"Collection with name `{bank_id}` not found")
|
||||
|
||||
|
@ -146,6 +159,7 @@ class WeaviateMemoryAdapter(Memory, NeedsRequestProviderData):
|
|||
self,
|
||||
bank_id: str,
|
||||
documents: List[MemoryBankDocument],
|
||||
ttl_seconds: Optional[int] = None,
|
||||
) -> None:
|
||||
index = await self._get_and_cache_bank_index(bank_id)
|
||||
if not index:
|
||||
|
|
|
@ -15,6 +15,23 @@ from llama_stack.apis.inference import * # noqa: F403
|
|||
from llama_stack.distribution.datatypes import * # noqa: F403
|
||||
from llama_stack.providers.tests.resolver import resolve_impls_for_test
|
||||
|
||||
# How to run this test:
|
||||
#
|
||||
# 1. Ensure you have a conda with the right dependencies installed. This is a bit tricky
|
||||
# since it depends on the provider you are testing. On top of that you need
|
||||
# `pytest` and `pytest-asyncio` installed.
|
||||
#
|
||||
# 2. Copy and modify the provider_config_example.yaml depending on the provider you are testing.
|
||||
#
|
||||
# 3. Run:
|
||||
#
|
||||
# ```bash
|
||||
# PROVIDER_ID=<your_provider> \
|
||||
# PROVIDER_CONFIG=provider_config.yaml \
|
||||
# pytest -s llama_stack/providers/tests/memory/test_inference.py \
|
||||
# --tb=short --disable-warnings
|
||||
# ```
|
||||
|
||||
|
||||
def group_chunks(response):
|
||||
return {
|
||||
|
|
|
@ -11,6 +11,23 @@ from llama_stack.apis.memory import * # noqa: F403
|
|||
from llama_stack.distribution.datatypes import * # noqa: F403
|
||||
from llama_stack.providers.tests.resolver import resolve_impls_for_test
|
||||
|
||||
# How to run this test:
|
||||
#
|
||||
# 1. Ensure you have a conda with the right dependencies installed. This is a bit tricky
|
||||
# since it depends on the provider you are testing. On top of that you need
|
||||
# `pytest` and `pytest-asyncio` installed.
|
||||
#
|
||||
# 2. Copy and modify the provider_config_example.yaml depending on the provider you are testing.
|
||||
#
|
||||
# 3. Run:
|
||||
#
|
||||
# ```bash
|
||||
# PROVIDER_ID=<your_provider> \
|
||||
# PROVIDER_CONFIG=provider_config.yaml \
|
||||
# pytest -s llama_stack/providers/tests/memory/test_memory.py \
|
||||
# --tb=short --disable-warnings
|
||||
# ```
|
||||
|
||||
|
||||
@pytest_asyncio.fixture(scope="session")
|
||||
async def memory_impl():
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue