diff --git a/docs/notebooks/Llama_Stack_Building_AI_Applications.ipynb b/docs/notebooks/Llama_Stack_Building_AI_Applications.ipynb index cdee46d12..b4fddf5aa 100644 --- a/docs/notebooks/Llama_Stack_Building_AI_Applications.ipynb +++ b/docs/notebooks/Llama_Stack_Building_AI_Applications.ipynb @@ -80,7 +80,11 @@ }, "collapsed": true, "id": "J2kGed0R5PSf", +<<<<<<< Updated upstream "outputId": "ff7a911f-a581-487d-fb99-5179da6ec929" +======= + "outputId": "94523702-0047-45b1-ffae-fc99cb597829" +>>>>>>> Stashed changes }, "outputs": [ { @@ -96,7 +100,11 @@ "Need to get 46.3 kB of archives.\n", "After this operation, 132 kB of additional disk space will be used.\n", "Get:1 http://archive.ubuntu.com/ubuntu jammy-updates/main amd64 bubblewrap amd64 0.6.1-1ubuntu0.1 [46.3 kB]\n", +<<<<<<< Updated upstream "Fetched 46.3 kB in 1s (64.6 kB/s)\n", +======= + "Fetched 46.3 kB in 1s (79.2 kB/s)\n", +>>>>>>> Stashed changes "Selecting previously unselected package bubblewrap.\n", "(Reading database ... 123632 files and directories currently installed.)\n", "Preparing to unpack .../bubblewrap_0.6.1-1ubuntu0.1_amd64.deb ...\n", @@ -104,8 +112,13 @@ "Setting up bubblewrap (0.6.1-1ubuntu0.1) ...\n", "Processing triggers for man-db (2.10.2-1) ...\n", "Collecting llama-stack-client@ git+https://github.com/meta-llama/llama-stack-client-python.git\n", +<<<<<<< Updated upstream " Cloning https://github.com/meta-llama/llama-stack-client-python.git to /tmp/pip-install-uvzg2prl/llama-stack-client_35620f3dee6a4b89834bde2b5fff46c0\n", " Running command git clone --filter=blob:none --quiet https://github.com/meta-llama/llama-stack-client-python.git /tmp/pip-install-uvzg2prl/llama-stack-client_35620f3dee6a4b89834bde2b5fff46c0\n", +======= + " Cloning https://github.com/meta-llama/llama-stack-client-python.git to /tmp/pip-install-27rk8utg/llama-stack-client_e7e4bd1c1431489ba79b052c8f1cbb5d\n", + " Running command git clone --filter=blob:none --quiet https://github.com/meta-llama/llama-stack-client-python.git /tmp/pip-install-27rk8utg/llama-stack-client_e7e4bd1c1431489ba79b052c8f1cbb5d\n", +>>>>>>> Stashed changes " Resolved https://github.com/meta-llama/llama-stack-client-python.git to commit db90c54d82e3c2fa6f334adcaf700940dad163a3\n", " Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n", " Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n", @@ -145,6 +158,7 @@ "Building wheels for collected packages: llama-stack-client\n", " Building wheel for llama-stack-client (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", " Created wheel for llama-stack-client: filename=llama_stack_client-0.0.63-py3-none-any.whl size=318443 sha256=212ae3a9f3d5bb8a88801e4c3e625d99c9cb1d50d978cb6b2a8f7d069f013f06\n", +<<<<<<< Updated upstream " Stored in directory: /tmp/pip-ephem-wheel-cache-8pauy0en/wheels/c9/21/63/5f6965968ab3dae8a0b1a0e43ca4991732ca03184aa158c15c\n", "Successfully built llama-stack-client\n", "Installing collected packages: pyaml, llama-stack-client\n", @@ -153,10 +167,24 @@ " Cloning https://github.com/meta-llama/llama-stack.git to /tmp/pip-install-eg1oxz01/llama-stack_fe0c20b893b94881991e2c498e56ba5e\n", " Running command git clone --filter=blob:none --quiet https://github.com/meta-llama/llama-stack.git /tmp/pip-install-eg1oxz01/llama-stack_fe0c20b893b94881991e2c498e56ba5e\n", " Resolved https://github.com/meta-llama/llama-stack.git to commit ff182ff6de435f762608d251d7aa6652c89545c1\n", +======= + " Stored in directory: /tmp/pip-ephem-wheel-cache-ka7eljoq/wheels/c9/21/63/5f6965968ab3dae8a0b1a0e43ca4991732ca03184aa158c15c\n", + "Successfully built llama-stack-client\n", + "Installing collected packages: pyaml, llama-stack-client\n", + "Successfully installed llama-stack-client-0.0.63 pyaml-25.1.0\n", + "Collecting llama-stack@ git+https://github.com/meta-llama/llama-stack.git@toolprovider-data-fixes\n", + " Cloning https://github.com/meta-llama/llama-stack.git (to revision toolprovider-data-fixes) to /tmp/pip-install-udp62x1r/llama-stack_47d385b1d8a04efaa5a25fa55f9c6b56\n", + " Running command git clone --filter=blob:none --quiet https://github.com/meta-llama/llama-stack.git /tmp/pip-install-udp62x1r/llama-stack_47d385b1d8a04efaa5a25fa55f9c6b56\n", + " Running command git checkout -b toolprovider-data-fixes --track origin/toolprovider-data-fixes\n", + " Switched to a new branch 'toolprovider-data-fixes'\n", + " Branch 'toolprovider-data-fixes' set up to track remote branch 'toolprovider-data-fixes' from 'origin'.\n", + " Resolved https://github.com/meta-llama/llama-stack.git to commit 33b4e8df49903920b56dd8feb91eeb24c5e495c1\n", +>>>>>>> Stashed changes " Running command git submodule update --init --recursive -q\n", " Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n", " Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n", " Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", +<<<<<<< Updated upstream "Collecting blobfile (from llama-stack@ git+https://github.com/meta-llama/llama-stack.git)\n", " Downloading blobfile-3.0.0-py3-none-any.whl.metadata (15 kB)\n", "Collecting fire (from llama-stack@ git+https://github.com/meta-llama/llama-stack.git)\n", @@ -230,6 +258,81 @@ " Stored in directory: /tmp/pip-ephem-wheel-cache-epbhpmcq/wheels/ba/3b/1f/682337c43216e5293d0a697d9e30935a9f352f7fdfa01d4e21\n", " Building wheel for fire (setup.py) ... \u001b[?25l\u001b[?25hdone\n", " Created wheel for fire: filename=fire-0.7.0-py3-none-any.whl size=114249 sha256=bd0e599d499dfd47e634026a825d0aececd1863f6c39ade0370dcd41fd62d752\n", +======= + "Collecting blobfile (from llama-stack@ git+https://github.com/meta-llama/llama-stack.git@toolprovider-data-fixes)\n", + " Downloading blobfile-3.0.0-py3-none-any.whl.metadata (15 kB)\n", + "Collecting fire (from llama-stack@ git+https://github.com/meta-llama/llama-stack.git@toolprovider-data-fixes)\n", + " Downloading fire-0.7.0.tar.gz (87 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m87.2/87.2 kB\u001b[0m \u001b[31m3.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + "Requirement already satisfied: httpx in /usr/local/lib/python3.10/dist-packages (from llama-stack@ git+https://github.com/meta-llama/llama-stack.git@toolprovider-data-fixes) (0.28.1)\n", + "Requirement already satisfied: huggingface-hub in /usr/local/lib/python3.10/dist-packages (from llama-stack@ git+https://github.com/meta-llama/llama-stack.git@toolprovider-data-fixes) (0.27.1)\n", + "Collecting llama-models>=0.0.63 (from llama-stack@ git+https://github.com/meta-llama/llama-stack.git@toolprovider-data-fixes)\n", + " Downloading llama_models-0.0.63-py3-none-any.whl.metadata (8.2 kB)\n", + "Requirement already satisfied: llama-stack-client>=0.0.63 in /usr/local/lib/python3.10/dist-packages (from llama-stack@ git+https://github.com/meta-llama/llama-stack.git@toolprovider-data-fixes) (0.0.63)\n", + "Requirement already satisfied: prompt-toolkit in /usr/local/lib/python3.10/dist-packages (from llama-stack@ git+https://github.com/meta-llama/llama-stack.git@toolprovider-data-fixes) (3.0.48)\n", + "Collecting python-dotenv (from llama-stack@ git+https://github.com/meta-llama/llama-stack.git@toolprovider-data-fixes)\n", + " Downloading python_dotenv-1.0.1-py3-none-any.whl.metadata (23 kB)\n", + "Requirement already satisfied: pydantic>=2 in /usr/local/lib/python3.10/dist-packages (from llama-stack@ git+https://github.com/meta-llama/llama-stack.git@toolprovider-data-fixes) (2.10.4)\n", + "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from llama-stack@ git+https://github.com/meta-llama/llama-stack.git@toolprovider-data-fixes) (2.32.3)\n", + "Requirement already satisfied: rich in /usr/local/lib/python3.10/dist-packages (from llama-stack@ git+https://github.com/meta-llama/llama-stack.git@toolprovider-data-fixes) (13.9.4)\n", + "Requirement already satisfied: setuptools in /usr/local/lib/python3.10/dist-packages (from llama-stack@ git+https://github.com/meta-llama/llama-stack.git@toolprovider-data-fixes) (75.1.0)\n", + "Requirement already satisfied: termcolor in /usr/local/lib/python3.10/dist-packages (from llama-stack@ git+https://github.com/meta-llama/llama-stack.git@toolprovider-data-fixes) (2.5.0)\n", + "Requirement already satisfied: PyYAML in /usr/local/lib/python3.10/dist-packages (from llama-models>=0.0.63->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@toolprovider-data-fixes) (6.0.2)\n", + "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from llama-models>=0.0.63->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@toolprovider-data-fixes) (3.1.5)\n", + "Collecting tiktoken (from llama-models>=0.0.63->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@toolprovider-data-fixes)\n", + " Downloading tiktoken-0.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (6.6 kB)\n", + "Requirement already satisfied: Pillow in /usr/local/lib/python3.10/dist-packages (from llama-models>=0.0.63->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@toolprovider-data-fixes) (11.1.0)\n", + "Requirement already satisfied: anyio<5,>=3.5.0 in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.63->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@toolprovider-data-fixes) (3.7.1)\n", + "Requirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.63->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@toolprovider-data-fixes) (8.1.8)\n", + "Requirement already satisfied: distro<2,>=1.7.0 in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.63->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@toolprovider-data-fixes) (1.9.0)\n", + "Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.63->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@toolprovider-data-fixes) (2.2.2)\n", + "Requirement already satisfied: pyaml in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.63->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@toolprovider-data-fixes) (25.1.0)\n", + "Requirement already satisfied: sniffio in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.63->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@toolprovider-data-fixes) (1.3.1)\n", + "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.63->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@toolprovider-data-fixes) (4.67.1)\n", + "Requirement already satisfied: typing-extensions<5,>=4.7 in /usr/local/lib/python3.10/dist-packages (from llama-stack-client>=0.0.63->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@toolprovider-data-fixes) (4.12.2)\n", + "Requirement already satisfied: certifi in /usr/local/lib/python3.10/dist-packages (from httpx->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@toolprovider-data-fixes) (2024.12.14)\n", + "Requirement already satisfied: httpcore==1.* in /usr/local/lib/python3.10/dist-packages (from httpx->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@toolprovider-data-fixes) (1.0.7)\n", + "Requirement already satisfied: idna in /usr/local/lib/python3.10/dist-packages (from httpx->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@toolprovider-data-fixes) (3.10)\n", + "Requirement already satisfied: h11<0.15,>=0.13 in /usr/local/lib/python3.10/dist-packages (from httpcore==1.*->httpx->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@toolprovider-data-fixes) (0.14.0)\n", + "Requirement already satisfied: annotated-types>=0.6.0 in /usr/local/lib/python3.10/dist-packages (from pydantic>=2->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@toolprovider-data-fixes) (0.7.0)\n", + "Requirement already satisfied: pydantic-core==2.27.2 in /usr/local/lib/python3.10/dist-packages (from pydantic>=2->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@toolprovider-data-fixes) (2.27.2)\n", + "Collecting pycryptodomex>=3.8 (from blobfile->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@toolprovider-data-fixes)\n", + " Downloading pycryptodomex-3.21.0-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (3.4 kB)\n", + "Requirement already satisfied: urllib3<3,>=1.25.3 in /usr/local/lib/python3.10/dist-packages (from blobfile->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@toolprovider-data-fixes) (2.3.0)\n", + "Requirement already satisfied: lxml>=4.9 in /usr/local/lib/python3.10/dist-packages (from blobfile->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@toolprovider-data-fixes) (5.3.0)\n", + "Requirement already satisfied: filelock>=3.0 in /usr/local/lib/python3.10/dist-packages (from blobfile->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@toolprovider-data-fixes) (3.16.1)\n", + "Requirement already satisfied: fsspec>=2023.5.0 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@toolprovider-data-fixes) (2024.10.0)\n", + "Requirement already satisfied: packaging>=20.9 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@toolprovider-data-fixes) (24.2)\n", + "Requirement already satisfied: wcwidth in /usr/local/lib/python3.10/dist-packages (from prompt-toolkit->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@toolprovider-data-fixes) (0.2.13)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@toolprovider-data-fixes) (3.4.1)\n", + "Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.10/dist-packages (from rich->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@toolprovider-data-fixes) (3.0.0)\n", + "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.10/dist-packages (from rich->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@toolprovider-data-fixes) (2.18.0)\n", + "Requirement already satisfied: exceptiongroup in /usr/local/lib/python3.10/dist-packages (from anyio<5,>=3.5.0->llama-stack-client>=0.0.63->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@toolprovider-data-fixes) (1.2.2)\n", + "Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py>=2.2.0->rich->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@toolprovider-data-fixes) (0.1.2)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->llama-models>=0.0.63->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@toolprovider-data-fixes) (3.0.2)\n", + "Requirement already satisfied: numpy>=1.22.4 in /usr/local/lib/python3.10/dist-packages (from pandas->llama-stack-client>=0.0.63->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@toolprovider-data-fixes) (1.26.4)\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas->llama-stack-client>=0.0.63->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@toolprovider-data-fixes) (2.8.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->llama-stack-client>=0.0.63->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@toolprovider-data-fixes) (2024.2)\n", + "Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages (from pandas->llama-stack-client>=0.0.63->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@toolprovider-data-fixes) (2024.2)\n", + "Requirement already satisfied: regex>=2022.1.18 in /usr/local/lib/python3.10/dist-packages (from tiktoken->llama-models>=0.0.63->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@toolprovider-data-fixes) (2024.11.6)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas->llama-stack-client>=0.0.63->llama-stack@ git+https://github.com/meta-llama/llama-stack.git@toolprovider-data-fixes) (1.17.0)\n", + "Downloading llama_models-0.0.63-py3-none-any.whl (1.6 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.6/1.6 MB\u001b[0m \u001b[31m31.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading blobfile-3.0.0-py3-none-any.whl (75 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m75.4/75.4 kB\u001b[0m \u001b[31m6.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading python_dotenv-1.0.1-py3-none-any.whl (19 kB)\n", + "Downloading pycryptodomex-3.21.0-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.3/2.3 MB\u001b[0m \u001b[31m63.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading tiktoken-0.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.2/1.2 MB\u001b[0m \u001b[31m48.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hBuilding wheels for collected packages: llama-stack, fire\n", + " Building wheel for llama-stack (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", + " Created wheel for llama-stack: filename=llama_stack-0.0.63-py3-none-any.whl size=500242 sha256=d3c5d6c847123d9ff1f50283bed2be4160247f5036680576561bc64b3e6b9e7d\n", + " Stored in directory: /tmp/pip-ephem-wheel-cache-b75hmslg/wheels/ae/cb/49/0d0fe1658c817f8f55b39bbf50696b732cd258ee302686501f\n", + " Building wheel for fire (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + " Created wheel for fire: filename=fire-0.7.0-py3-none-any.whl size=114249 sha256=39e370f5382c36f33c084fca00ced99ac445b40d46bc01ffa2b7edd39538ddd5\n", +>>>>>>> Stashed changes " Stored in directory: /root/.cache/pip/wheels/19/39/2f/2d3cadc408a8804103f1c34ddd4b9f6a93497b11fa96fe738e\n", "Successfully built llama-stack fire\n", "Installing collected packages: python-dotenv, pycryptodomex, fire, tiktoken, blobfile, llama-models, llama-stack\n", @@ -274,7 +377,11 @@ }, "collapsed": true, "id": "HaepEZXCDgif", +<<<<<<< Updated upstream "outputId": "584d2991-9329-4671-974c-c983278a459a" +======= + "outputId": "a4316331-8230-4ca9-adeb-eeae9a752c1d" +>>>>>>> Stashed changes }, "outputs": [ { @@ -310,6 +417,7 @@ "Requirement already satisfied: certifi in /usr/local/lib/python3.10/dist-packages (from httpx->llama-stack) (2024.12.14)\r\n", "Requirement already satisfied: httpcore==1.* in /usr/local/lib/python3.10/dist-packages (from httpx->llama-stack) (1.0.7)\r\n", "Requirement already satisfied: idna in /usr/local/lib/python3.10/dist-packages (from httpx->llama-stack) (3.10)\r\n", +<<<<<<< Updated upstream "Requirement already satisfied: h11<0.15,>=0.13 in /usr/local/lib/python3.10/dist-packages (from httpcore==1.*->httpx->llama-stack) (0.14.0)\r\n", "Requirement already satisfied: annotated-types>=0.6.0 in /usr/local/lib/python3.10/dist-packages (from pydantic>=2->llama-stack) (0.7.0)\r\n", "Requirement already satisfied: pydantic-core==2.27.2 in /usr/local/lib/python3.10/dist-packages (from pydantic>=2->llama-stack) (2.27.2)\r\n", @@ -323,6 +431,21 @@ "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->llama-stack) (3.4.1)\r\n", "Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.10/dist-packages (from rich->llama-stack) (3.0.0)\r\n", "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.10/dist-packages (from rich->llama-stack) (2.18.0)\r\n", +======= + "Requirement already satisfied: h11<0.15,>=0.13 in /usr/local/lib/python3.10/dist-packages (from httpcore==1.*->httpx->llama-stack) (0.14.0)\n", + "Requirement already satisfied: annotated-types>=0.6.0 in /usr/local/lib/python3.10/dist-packages (from pydantic>=2->llama-stack) (0.7.0)\n", + "Requirement already satisfied: pydantic-core==2.27.2 in /usr/local/lib/python3.10/dist-packages (from pydantic>=2->llama-stack) (2.27.2)\n", + "Requirement already satisfied: pycryptodomex>=3.8 in /usr/local/lib/python3.10/dist-packages (from blobfile->llama-stack) (3.21.0)\n", + "Requirement already satisfied: urllib3<3,>=1.25.3 in /usr/local/lib/python3.10/dist-packages (from blobfile->llama-stack) (2.3.0)\n", + "Requirement already satisfied: lxml>=4.9 in /usr/local/lib/python3.10/dist-packages (from blobfile->llama-stack) (5.3.0)\n", + "Requirement already satisfied: filelock>=3.0 in /usr/local/lib/python3.10/dist-packages (from blobfile->llama-stack) (3.16.1)\n", + "Requirement already satisfied: fsspec>=2023.5.0 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub->llama-stack) (2024.10.0)\n", + "Requirement already satisfied: packaging>=20.9 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub->llama-stack) (24.2)\n", + "Requirement already satisfied: wcwidth in /usr/local/lib/python3.10/dist-packages (from prompt-toolkit->llama-stack) (0.2.13)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->llama-stack) (3.4.1)\n", + "Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.10/dist-packages (from rich->llama-stack) (3.0.0)\n", + "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.10/dist-packages (from rich->llama-stack) (2.18.0)\n", +>>>>>>> Stashed changes "Requirement already satisfied: exceptiongroup in /usr/local/lib/python3.10/dist-packages (from anyio<5,>=3.5.0->llama-stack-client>=0.0.63->llama-stack) (1.2.2)\n", "Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py>=2.2.0->rich->llama-stack) (0.1.2)\n", "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->llama-models>=0.0.63->llama-stack) (3.0.2)\n", @@ -333,6 +456,7 @@ "Requirement already satisfied: regex>=2022.1.18 in /usr/local/lib/python3.10/dist-packages (from tiktoken->llama-models>=0.0.63->llama-stack) (2024.11.6)\n", "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas->llama-stack-client>=0.0.63->llama-stack) (1.17.0)\n", "Installing pip dependencies\n", +<<<<<<< Updated upstream "Requirement already satisfied: nltk in /usr/local/lib/python3.10/dist-packages (3.9.1)\n", "Requirement already satisfied: transformers in /usr/local/lib/python3.10/dist-packages (4.47.1)\n", "Requirement already satisfied: matplotlib in /usr/local/lib/python3.10/dist-packages (3.10.0)\n", @@ -343,10 +467,29 @@ "Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/dist-packages (1.6.0)\n", "Collecting autoevals\n", " Downloading autoevals-0.0.114-py3-none-any.whl.metadata (12 kB)\n", +======= + "Collecting together\n", + " Downloading together-1.3.11-py3-none-any.whl.metadata (11 kB)\n", + "Collecting aiosqlite\n", + " Downloading aiosqlite-0.20.0-py3-none-any.whl.metadata (4.3 kB)\n", + "Collecting autoevals\n", + " Downloading autoevals-0.0.115-py3-none-any.whl.metadata (12 kB)\n", + "Requirement already satisfied: matplotlib in /usr/local/lib/python3.10/dist-packages (3.10.0)\n", + "Requirement already satisfied: transformers in /usr/local/lib/python3.10/dist-packages (4.47.1)\n", + "Requirement already satisfied: blobfile in /usr/local/lib/python3.10/dist-packages (3.0.0)\n", + "Requirement already satisfied: nltk in /usr/local/lib/python3.10/dist-packages (3.9.1)\n", + "Collecting redis\n", + " Downloading redis-5.2.1-py3-none-any.whl.metadata (9.1 kB)\n", + "Requirement already satisfied: opentelemetry-sdk in /usr/local/lib/python3.10/dist-packages (1.29.0)\n", + "Requirement already satisfied: chardet in /usr/local/lib/python3.10/dist-packages (5.2.0)\n", + "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (2.32.3)\n", + "Requirement already satisfied: pillow in /usr/local/lib/python3.10/dist-packages (11.1.0)\n", +>>>>>>> Stashed changes "Collecting pypdf\n", " Downloading pypdf-5.1.0-py3-none-any.whl.metadata (7.2 kB)\n", "Collecting datasets\n", " Downloading datasets-3.2.0-py3-none-any.whl.metadata (20 kB)\n", +<<<<<<< Updated upstream "Requirement already satisfied: chardet in /usr/local/lib/python3.10/dist-packages (5.2.0)\n", "Collecting chromadb-client\n", " Downloading chromadb_client-0.6.2-py3-none-any.whl.metadata (2.4 kB)\n", @@ -368,12 +511,30 @@ " Downloading aiosqlite-0.20.0-py3-none-any.whl.metadata (4.3 kB)\n", "Requirement already satisfied: sentencepiece in /usr/local/lib/python3.10/dist-packages (0.2.0)\n", "Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-packages (1.13.1)\n", +======= + "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (4.67.1)\n", + "Requirement already satisfied: openai in /usr/local/lib/python3.10/dist-packages (1.59.4)\n", + "Collecting psycopg2-binary\n", + " Downloading psycopg2_binary-2.9.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (4.9 kB)\n", + "Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/dist-packages (1.6.0)\n", + "Collecting opentelemetry-exporter-otlp-proto-http\n", + " Downloading opentelemetry_exporter_otlp_proto_http-1.29.0-py3-none-any.whl.metadata (2.2 kB)\n", + "Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-packages (1.13.1)\n", + "Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (2.2.2)\n", + "Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (1.26.4)\n", + "Collecting chromadb-client\n", + " Downloading chromadb_client-0.6.2-py3-none-any.whl.metadata (2.4 kB)\n", + "Collecting faiss-cpu\n", + " Downloading faiss_cpu-1.9.0.post1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (4.4 kB)\n", + "Requirement already satisfied: sentencepiece in /usr/local/lib/python3.10/dist-packages (0.2.0)\n", +>>>>>>> Stashed changes "Collecting fastapi\n", " Downloading fastapi-0.115.6-py3-none-any.whl.metadata (27 kB)\n", "Requirement already satisfied: fire in /usr/local/lib/python3.10/dist-packages (0.7.0)\n", "Requirement already satisfied: httpx in /usr/local/lib/python3.10/dist-packages (0.28.1)\n", "Collecting uvicorn\n", " Downloading uvicorn-0.34.0-py3-none-any.whl.metadata (6.5 kB)\n", +<<<<<<< Updated upstream "Requirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from nltk) (8.1.8)\n", "Requirement already satisfied: joblib in /usr/local/lib/python3.10/dist-packages (from nltk) (1.4.2)\n", "Requirement already satisfied: regex>=2021.8.3 in /usr/local/lib/python3.10/dist-packages (from nltk) (2024.11.6)\n", @@ -407,13 +568,57 @@ "Requirement already satisfied: tabulate<0.10.0,>=0.9.0 in /usr/local/lib/python3.10/dist-packages (from together) (0.9.0)\n", "Requirement already satisfied: typer<0.16,>=0.9 in /usr/local/lib/python3.10/dist-packages (from together) (0.15.1)\n", "Requirement already satisfied: threadpoolctl>=3.1.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (3.5.0)\n", +======= + "Requirement already satisfied: aiohttp<4.0.0,>=3.9.3 in /usr/local/lib/python3.10/dist-packages (from together) (3.11.11)\n", + "Requirement already satisfied: click<9.0.0,>=8.1.7 in /usr/local/lib/python3.10/dist-packages (from together) (8.1.8)\n", + "Requirement already satisfied: eval-type-backport<0.3.0,>=0.1.3 in /usr/local/lib/python3.10/dist-packages (from together) (0.2.2)\n", + "Requirement already satisfied: filelock<4.0.0,>=3.13.1 in /usr/local/lib/python3.10/dist-packages (from together) (3.16.1)\n", + "Collecting pillow\n", + " Downloading pillow-10.4.0-cp310-cp310-manylinux_2_28_x86_64.whl.metadata (9.2 kB)\n", + "Requirement already satisfied: pyarrow>=10.0.1 in /usr/local/lib/python3.10/dist-packages (from together) (17.0.0)\n", + "Requirement already satisfied: pydantic<3.0.0,>=2.6.3 in /usr/local/lib/python3.10/dist-packages (from together) (2.10.4)\n", + "Requirement already satisfied: rich<14.0.0,>=13.8.1 in /usr/local/lib/python3.10/dist-packages (from together) (13.9.4)\n", + "Requirement already satisfied: tabulate<0.10.0,>=0.9.0 in /usr/local/lib/python3.10/dist-packages (from together) (0.9.0)\n", + "Requirement already satisfied: typer<0.16,>=0.9 in /usr/local/lib/python3.10/dist-packages (from together) (0.15.1)\n", + "Requirement already satisfied: typing_extensions>=4.0 in /usr/local/lib/python3.10/dist-packages (from aiosqlite) (4.12.2)\n", +>>>>>>> Stashed changes "Collecting chevron (from autoevals)\n", " Downloading chevron-0.14.0-py3-none-any.whl.metadata (4.9 kB)\n", "Collecting levenshtein (from autoevals)\n", " Downloading levenshtein-0.26.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (3.2 kB)\n", +<<<<<<< Updated upstream "Collecting braintrust_core==0.0.57 (from autoevals)\n", " Downloading braintrust_core-0.0.57-py3-none-any.whl.metadata (669 bytes)\n", "Requirement already satisfied: jsonschema in /usr/local/lib/python3.10/dist-packages (from autoevals) (4.23.0)\n", +======= + "Requirement already satisfied: pyyaml in /usr/local/lib/python3.10/dist-packages (from autoevals) (6.0.2)\n", + "Collecting braintrust_core==0.0.57 (from autoevals)\n", + " Downloading braintrust_core-0.0.57-py3-none-any.whl.metadata (669 bytes)\n", + "Requirement already satisfied: jsonschema in /usr/local/lib/python3.10/dist-packages (from autoevals) (4.23.0)\n", + "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (1.3.1)\n", + "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (0.12.1)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (4.55.3)\n", + "Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (1.4.8)\n", + "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (24.2)\n", + "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (3.2.1)\n", + "Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (2.8.2)\n", + "Requirement already satisfied: huggingface-hub<1.0,>=0.24.0 in /usr/local/lib/python3.10/dist-packages (from transformers) (0.27.1)\n", + "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers) (2024.11.6)\n", + "Requirement already satisfied: tokenizers<0.22,>=0.21 in /usr/local/lib/python3.10/dist-packages (from transformers) (0.21.0)\n", + "Requirement already satisfied: safetensors>=0.4.1 in /usr/local/lib/python3.10/dist-packages (from transformers) (0.5.1)\n", + "Requirement already satisfied: pycryptodomex>=3.8 in /usr/local/lib/python3.10/dist-packages (from blobfile) (3.21.0)\n", + "Requirement already satisfied: urllib3<3,>=1.25.3 in /usr/local/lib/python3.10/dist-packages (from blobfile) (2.3.0)\n", + "Requirement already satisfied: lxml>=4.9 in /usr/local/lib/python3.10/dist-packages (from blobfile) (5.3.0)\n", + "Requirement already satisfied: joblib in /usr/local/lib/python3.10/dist-packages (from nltk) (1.4.2)\n", + "Requirement already satisfied: async-timeout>=4.0.3 in /usr/local/lib/python3.10/dist-packages (from redis) (4.0.3)\n", + "Requirement already satisfied: opentelemetry-api==1.29.0 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-sdk) (1.29.0)\n", + "Requirement already satisfied: opentelemetry-semantic-conventions==0.50b0 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-sdk) (0.50b0)\n", + "Requirement already satisfied: deprecated>=1.2.6 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-api==1.29.0->opentelemetry-sdk) (1.2.15)\n", + "Requirement already satisfied: importlib-metadata<=8.5.0,>=6.0 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-api==1.29.0->opentelemetry-sdk) (8.5.0)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests) (3.4.1)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests) (3.10)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests) (2024.12.14)\n", +>>>>>>> Stashed changes "Collecting dill<0.3.9,>=0.3.0 (from datasets)\n", " Downloading dill-0.3.8-py3-none-any.whl.metadata (10 kB)\n", "Collecting xxhash (from datasets)\n", @@ -422,7 +627,24 @@ " Downloading multiprocess-0.70.16-py310-none-any.whl.metadata (7.2 kB)\n", "Collecting fsspec<=2024.9.0,>=2023.1.0 (from fsspec[http]<=2024.9.0,>=2023.1.0->datasets)\n", " Downloading fsspec-2024.9.0-py3-none-any.whl.metadata (11 kB)\n", +<<<<<<< Updated upstream "Requirement already satisfied: opentelemetry-api>=1.2.0 in /usr/local/lib/python3.10/dist-packages (from chromadb-client) (1.29.0)\n", +======= + "Requirement already satisfied: anyio<5,>=3.5.0 in /usr/local/lib/python3.10/dist-packages (from openai) (3.7.1)\n", + "Requirement already satisfied: distro<2,>=1.7.0 in /usr/local/lib/python3.10/dist-packages (from openai) (1.9.0)\n", + "Requirement already satisfied: jiter<1,>=0.4.0 in /usr/local/lib/python3.10/dist-packages (from openai) (0.8.2)\n", + "Requirement already satisfied: sniffio in /usr/local/lib/python3.10/dist-packages (from openai) (1.3.1)\n", + "Requirement already satisfied: threadpoolctl>=3.1.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (3.5.0)\n", + "Requirement already satisfied: googleapis-common-protos~=1.52 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-exporter-otlp-proto-http) (1.66.0)\n", + "Collecting opentelemetry-exporter-otlp-proto-common==1.29.0 (from opentelemetry-exporter-otlp-proto-http)\n", + " Downloading opentelemetry_exporter_otlp_proto_common-1.29.0-py3-none-any.whl.metadata (1.8 kB)\n", + "Collecting opentelemetry-proto==1.29.0 (from opentelemetry-exporter-otlp-proto-http)\n", + " Downloading opentelemetry_proto-1.29.0-py3-none-any.whl.metadata (2.3 kB)\n", + "Collecting protobuf<6.0,>=5.0 (from opentelemetry-proto==1.29.0->opentelemetry-exporter-otlp-proto-http)\n", + " Downloading protobuf-5.29.3-cp38-abi3-manylinux2014_x86_64.whl.metadata (592 bytes)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas) (2024.2)\n", + "Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages (from pandas) (2024.2)\n", +>>>>>>> Stashed changes "Collecting opentelemetry-exporter-otlp-proto-grpc>=1.2.0 (from chromadb-client)\n", " Downloading opentelemetry_exporter_otlp_proto_grpc-1.29.0-py3-none-any.whl.metadata (2.2 kB)\n", "Collecting overrides>=7.3.1 (from chromadb-client)\n", @@ -431,6 +653,7 @@ " Downloading posthog-3.7.5-py2.py3-none-any.whl.metadata (2.0 kB)\n", "Requirement already satisfied: tenacity>=8.2.3 in /usr/local/lib/python3.10/dist-packages (from chromadb-client) (9.0.0)\n", "Requirement already satisfied: orjson>=3.9.12 in /usr/local/lib/python3.10/dist-packages (from chromadb-client) (3.10.13)\n", +<<<<<<< Updated upstream "Requirement already satisfied: deprecated>=1.2.6 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-exporter-otlp-proto-http) (1.2.15)\n", "Requirement already satisfied: googleapis-common-protos~=1.52 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-exporter-otlp-proto-http) (1.66.0)\n", "Collecting opentelemetry-exporter-otlp-proto-common==1.29.0 (from opentelemetry-exporter-otlp-proto-http)\n", @@ -447,6 +670,8 @@ "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests) (3.4.1)\n", "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests) (3.10)\n", "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests) (2024.12.14)\n", +======= +>>>>>>> Stashed changes "Collecting starlette<0.42.0,>=0.40.0 (from fastapi)\n", " Downloading starlette-0.41.3-py3-none-any.whl.metadata (6.0 kB)\n", "Requirement already satisfied: termcolor in /usr/local/lib/python3.10/dist-packages (from fire) (2.5.0)\n", @@ -460,15 +685,24 @@ "Requirement already satisfied: propcache>=0.2.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0.0,>=3.9.3->together) (0.2.1)\n", "Requirement already satisfied: yarl<2.0,>=1.17.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0.0,>=3.9.3->together) (1.18.3)\n", "Requirement already satisfied: exceptiongroup in /usr/local/lib/python3.10/dist-packages (from anyio<5,>=3.5.0->openai) (1.2.2)\n", +<<<<<<< Updated upstream "Requirement already satisfied: wrapt<2,>=1.10 in /usr/local/lib/python3.10/dist-packages (from deprecated>=1.2.6->opentelemetry-exporter-otlp-proto-http) (1.17.0)\n", +======= + "Requirement already satisfied: wrapt<2,>=1.10 in /usr/local/lib/python3.10/dist-packages (from deprecated>=1.2.6->opentelemetry-api==1.29.0->opentelemetry-sdk) (1.17.0)\n", +>>>>>>> Stashed changes "Requirement already satisfied: grpcio<2.0.0,>=1.63.2 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-exporter-otlp-proto-grpc>=1.2.0->chromadb-client) (1.69.0)\n", "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from posthog>=2.4.0->chromadb-client) (1.17.0)\n", "Collecting monotonic>=1.5 (from posthog>=2.4.0->chromadb-client)\n", " Downloading monotonic-1.6-py2.py3-none-any.whl.metadata (1.5 kB)\n", "Collecting backoff>=1.10.0 (from posthog>=2.4.0->chromadb-client)\n", " Downloading backoff-2.2.1-py3-none-any.whl.metadata (14 kB)\n", +<<<<<<< Updated upstream "Requirement already satisfied: annotated-types>=0.6.0 in /usr/local/lib/python3.10/dist-packages (from pydantic<3,>=1.9.0->openai) (0.7.0)\n", "Requirement already satisfied: pydantic-core==2.27.2 in /usr/local/lib/python3.10/dist-packages (from pydantic<3,>=1.9.0->openai) (2.27.2)\n", +======= + "Requirement already satisfied: annotated-types>=0.6.0 in /usr/local/lib/python3.10/dist-packages (from pydantic<3.0.0,>=2.6.3->together) (0.7.0)\n", + "Requirement already satisfied: pydantic-core==2.27.2 in /usr/local/lib/python3.10/dist-packages (from pydantic<3.0.0,>=2.6.3->together) (2.27.2)\n", +>>>>>>> Stashed changes "Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.10/dist-packages (from rich<14.0.0,>=13.8.1->together) (3.0.0)\n", "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.10/dist-packages (from rich<14.0.0,>=13.8.1->together) (2.18.0)\n", "Requirement already satisfied: shellingham>=1.3.0 in /usr/local/lib/python3.10/dist-packages (from typer<0.16,>=0.9->together) (1.5.4)\n", @@ -477,6 +711,7 @@ "Requirement already satisfied: rpds-py>=0.7.1 in /usr/local/lib/python3.10/dist-packages (from jsonschema->autoevals) (0.22.3)\n", "Collecting rapidfuzz<4.0.0,>=3.9.0 (from levenshtein->autoevals)\n", " Downloading rapidfuzz-3.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (11 kB)\n", +<<<<<<< Updated upstream "Requirement already satisfied: zipp>=3.20 in /usr/local/lib/python3.10/dist-packages (from importlib-metadata<=8.5.0,>=6.0->opentelemetry-api>=1.2.0->chromadb-client) (3.21.0)\n", "Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py>=2.2.0->rich<14.0.0,>=13.8.1->together) (0.1.2)\n", "Downloading together-1.3.11-py3-none-any.whl (70 kB)\n", @@ -530,6 +765,61 @@ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m319.7/319.7 kB\u001b[0m \u001b[31m26.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading rapidfuzz-3.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.1/3.1 MB\u001b[0m \u001b[31m68.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", +======= + "Requirement already satisfied: zipp>=3.20 in /usr/local/lib/python3.10/dist-packages (from importlib-metadata<=8.5.0,>=6.0->opentelemetry-api==1.29.0->opentelemetry-sdk) (3.21.0)\n", + "Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py>=2.2.0->rich<14.0.0,>=13.8.1->together) (0.1.2)\n", + "Downloading together-1.3.11-py3-none-any.whl (70 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m70.6/70.6 kB\u001b[0m \u001b[31m4.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading aiosqlite-0.20.0-py3-none-any.whl (15 kB)\n", + "Downloading autoevals-0.0.115-py3-none-any.whl (41 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m41.1/41.1 kB\u001b[0m \u001b[31m3.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading braintrust_core-0.0.57-py3-none-any.whl (4.4 kB)\n", + "Downloading redis-5.2.1-py3-none-any.whl (261 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m261.5/261.5 kB\u001b[0m \u001b[31m12.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading pillow-10.4.0-cp310-cp310-manylinux_2_28_x86_64.whl (4.5 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m4.5/4.5 MB\u001b[0m \u001b[31m62.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading pypdf-5.1.0-py3-none-any.whl (297 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m298.0/298.0 kB\u001b[0m \u001b[31m25.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading datasets-3.2.0-py3-none-any.whl (480 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m480.6/480.6 kB\u001b[0m \u001b[31m35.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading psycopg2_binary-2.9.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.0/3.0 MB\u001b[0m \u001b[31m64.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading opentelemetry_exporter_otlp_proto_http-1.29.0-py3-none-any.whl (17 kB)\n", + "Downloading opentelemetry_exporter_otlp_proto_common-1.29.0-py3-none-any.whl (18 kB)\n", + "Downloading opentelemetry_proto-1.29.0-py3-none-any.whl (55 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m55.8/55.8 kB\u001b[0m \u001b[31m4.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading chromadb_client-0.6.2-py3-none-any.whl (604 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m604.2/604.2 kB\u001b[0m \u001b[31m36.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading faiss_cpu-1.9.0.post1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (27.5 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m27.5/27.5 MB\u001b[0m \u001b[31m55.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading fastapi-0.115.6-py3-none-any.whl (94 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m94.8/94.8 kB\u001b[0m \u001b[31m6.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading uvicorn-0.34.0-py3-none-any.whl (62 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m62.3/62.3 kB\u001b[0m \u001b[31m5.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading dill-0.3.8-py3-none-any.whl (116 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m116.3/116.3 kB\u001b[0m \u001b[31m9.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading fsspec-2024.9.0-py3-none-any.whl (179 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m179.3/179.3 kB\u001b[0m \u001b[31m16.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading multiprocess-0.70.16-py310-none-any.whl (134 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m134.8/134.8 kB\u001b[0m \u001b[31m13.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading opentelemetry_exporter_otlp_proto_grpc-1.29.0-py3-none-any.whl (18 kB)\n", + "Downloading overrides-7.7.0-py3-none-any.whl (17 kB)\n", + "Downloading posthog-3.7.5-py2.py3-none-any.whl (54 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m54.9/54.9 kB\u001b[0m \u001b[31m5.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading starlette-0.41.3-py3-none-any.whl (73 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m73.2/73.2 kB\u001b[0m \u001b[31m6.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading chevron-0.14.0-py3-none-any.whl (11 kB)\n", + "Downloading levenshtein-0.26.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (162 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m162.6/162.6 kB\u001b[0m \u001b[31m12.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading xxhash-3.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (194 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m194.1/194.1 kB\u001b[0m \u001b[31m15.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading backoff-2.2.1-py3-none-any.whl (15 kB)\n", + "Downloading monotonic-1.6-py2.py3-none-any.whl (8.2 kB)\n", + "Downloading protobuf-5.29.3-cp38-abi3-manylinux2014_x86_64.whl (319 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m319.7/319.7 kB\u001b[0m \u001b[31m25.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading rapidfuzz-3.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.1/3.1 MB\u001b[0m \u001b[31m69.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", +>>>>>>> Stashed changes "\u001b[?25hInstalling collected packages: monotonic, chevron, xxhash, uvicorn, redis, rapidfuzz, pypdf, psycopg2-binary, protobuf, pillow, overrides, fsspec, faiss-cpu, dill, braintrust_core, backoff, aiosqlite, starlette, posthog, opentelemetry-proto, multiprocess, levenshtein, opentelemetry-exporter-otlp-proto-common, fastapi, together, autoevals, opentelemetry-exporter-otlp-proto-http, opentelemetry-exporter-otlp-proto-grpc, datasets, chromadb-client\n", " Attempting uninstall: protobuf\n", " Found existing installation: protobuf 4.25.5\n", @@ -547,7 +837,11 @@ "gcsfs 2024.10.0 requires fsspec==2024.10.0, but you have fsspec 2024.9.0 which is incompatible.\n", "tensorflow 2.17.1 requires protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0dev,>=3.20.3, but you have protobuf 5.29.3 which is incompatible.\n", "tensorflow-metadata 1.13.1 requires protobuf<5,>=3.20.3, but you have protobuf 5.29.3 which is incompatible.\u001b[0m\u001b[31m\n", +<<<<<<< Updated upstream "\u001b[0mSuccessfully installed aiosqlite-0.20.0 autoevals-0.0.114 backoff-2.2.1 braintrust_core-0.0.57 chevron-0.14.0 chromadb-client-0.6.2 datasets-3.2.0 dill-0.3.8 faiss-cpu-1.9.0.post1 fastapi-0.115.6 fsspec-2024.9.0 levenshtein-0.26.1 monotonic-1.6 multiprocess-0.70.16 opentelemetry-exporter-otlp-proto-common-1.29.0 opentelemetry-exporter-otlp-proto-grpc-1.29.0 opentelemetry-exporter-otlp-proto-http-1.29.0 opentelemetry-proto-1.29.0 overrides-7.7.0 pillow-10.4.0 posthog-3.7.5 protobuf-5.29.3 psycopg2-binary-2.9.10 pypdf-5.1.0 rapidfuzz-3.11.0 redis-5.2.1 starlette-0.41.3 together-1.3.11 uvicorn-0.34.0 xxhash-3.5.0\n", +======= + "\u001b[0mSuccessfully installed aiosqlite-0.20.0 autoevals-0.0.115 backoff-2.2.1 braintrust_core-0.0.57 chevron-0.14.0 chromadb-client-0.6.2 datasets-3.2.0 dill-0.3.8 faiss-cpu-1.9.0.post1 fastapi-0.115.6 fsspec-2024.9.0 levenshtein-0.26.1 monotonic-1.6 multiprocess-0.70.16 opentelemetry-exporter-otlp-proto-common-1.29.0 opentelemetry-exporter-otlp-proto-grpc-1.29.0 opentelemetry-exporter-otlp-proto-http-1.29.0 opentelemetry-proto-1.29.0 overrides-7.7.0 pillow-10.4.0 posthog-3.7.5 protobuf-5.29.3 psycopg2-binary-2.9.10 pypdf-5.1.0 rapidfuzz-3.11.0 redis-5.2.1 starlette-0.41.3 together-1.3.11 uvicorn-0.34.0 xxhash-3.5.0\n", +>>>>>>> Stashed changes "torch --index-url https://download.pytorch.org/whl/cpu\n", "Looking in indexes: https://download.pytorch.org/whl/cpu\n", "Requirement already satisfied: torch in /usr/local/lib/python3.10/dist-packages (2.5.1+cu121)\n", @@ -589,11 +883,138 @@ "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 1000 + "height": 1000, + "referenced_widgets": [ + "5efa1befafc4442fa4c2ebe64415f78b", + "d6ac7a1194a74402a55ce01455c5a17a", + "cd072e192c9547a7b7a6d9f6648dd587", + "dbed4fdaf53f49bd94d1b763b6406c7e", + "5fa6c89f4ff146c782d7ad5332724648", + "49c4514aaed146c3b633c1dc329351a7", + "c47b7222cd0444049129c6a78386d23b", + "400b59adf711468ea2db52e4ff62bc11", + "76395834b32b47bea30c695022156c07", + "fee442a2d1ab4c23bab7309706974605", + "e5d068844cc849a3ab98a0882bf64b68", + "5add3cee30b24697ae31767e1bf662e2", + "8472d5dab9a04356ac2cc253081b33c5", + "6f5110129dd441dc936eaa6fc6fdda7f", + "18274644ad86446a84ee59cfd6dda073", + "f4ad6e849ff24071a2d6194186f52549", + "fac666b62f4a4d70aa406e7fe7114158", + "37ffa3e9bf5b4f1faa22083a3b80c057", + "6092412a1fa4445aa72314a707374ea2", + "33a6b4aa70584faca6319b3dc1cfd13e", + "2c29f1d881784db59b0113bd7bccbe75", + "1d18e7a686374756b80b46ab5546f8ed", + "f7bee04278ce4ad9bb0b4f62f54b7455", + "4477705a42c94351af63639d30876689", + "a1bc1de6665f4a5297c7b051d9441bec", + "5d70890d42b542cca897588a5a27e56c", + "d2bd17846c9a402ca7c16e9c2b330e67", + "912680aea42543c2b59d64aab34ef849", + "03d068ceb20b434c85bb631659347556", + "93daa507e8ed4138bcbfd82eec2490a3", + "1cfc7f7670be42c982eb6ac8d43dbc1e", + "60aad78c138a4391997adcd305a35f03", + "70daaacc22e34e2a911e842a7705dd32", + "c470be11fb3147bcb09e1dccb6d88937", + "13a497ffcca044059e9498db6f587e19", + "4d457db80cb84a4eb798de7dd9a8e844", + "81cf9f25de254d7f85683fb4f77a16c1", + "f69a8c16ac844412959f04b82d2a7a7a", + "7d97adf6e937438d9ab29f61893f36cf", + "516b23bf77ca4badadd60005d9275148", + "723e47c99a2a45eb8e0ad7d73a60e251", + "f25c7e613ad04f728f92a8f0bbe057e2", + "0a09259387304e4f978298aeab0b4655", + "e42fe5a7f70249578818b46a5c9c8483", + "a9280bb243b6426c87e8295bf74f44e9", + "845dccd7809d4105a8494d238796d203", + "f70b158281904d009017191e8fb7f867", + "2785f993e7a442d5a6961b2206f10696", + "0aa12df801754c778dd6f433d2c72192", + "9ad1925e1bdd42e4b1b25fd75c5c97cb", + "d615cfe64ba4424480fd0b524a93739e", + "a5676481e43b42828c42c892c609c0f7", + "415cc6dd095c4b4d9851520604e72b60", + "ccb4343892c142a6be6ae701dc57549f", + "1d8a85e7bc0442eb86180fb836052311", + "177d6b45a457405b893e84c35a0fa6ea", + "fb6640484564454f8eb34b54525472fb", + "2d97884d94e14ad29cff6806aa868d0f", + "3f33f2ebc9a6466c94fde8c11265fa14", + "fcf4503519cb42608581fcb1a4d5741f", + "faa1034d12da468e89260ffd739cdd9b", + "7524409dadf5473890440649052ae5c5", + "af650f2c2fd24624aaaea1368091f18d", + "181b804adce24bebba5c85440075a555", + "e832c08d72e646539c353dd1f754b3e7", + "cbcbe3a1377e4407962b21069e93e858", + "8b1b0bef47d741369701bc9c6043682e", + "ed75df76ffcf4824a221c03d3da1ac51", + "4e3e9f2ecee540d5abcff87038a36329", + "08ece5d22eb546de86585cbe790db92a", + "50216956a1bc4da7b2895b0a5fc2510a", + "fd63f59c20c241ecbc5a4eacc93a208b", + "0f5b3601f2414ae389d1a65d2d467303", + "1773ba8aa7e34b34bf846534cc8524d7", + "21dd62ce373743fea99e19026deb495b", + "880eeafc981c43be8d5cbcca78360721", + "b883607853b64f50b1aa70679930bf62", + "4ff5e52281134d12ad092dbc5ec34a41", + "98a2e4db31d64fbf9b730234e059642d", + "c19e191046a242ecad1d5a2922e4b4c1", + "173b58b5a7ad4470bf52dc6664afdf5f", + "a01077466bab4b66bfd1f5f1e47655c6", + "641688bbdd804e61ba91930b464515ae", + "bbb7d2b67aae4fff9b6cc0ffdd7ca392", + "c1b74a9bb5c4451f821bb7ad58fd2f4e", + "97c506ac0ea542deb87df26bcfe0cf38", + "28a8f5def41e42b98b79128a988c5d00", + "356c183407d647c6855624dcf0b5b7b4", + "478aa724d228479f956c276c07096a12", + "b33f3ccf934545f5b67585e9f374638a", + "0536331dd18c444db47d12d37859a5c7", + "ccfff6f6b5bd4e199bbe0558d44060c6", + "bd8910dcc15f4b64a0b0ab46f5bae139", + "826e65efc33947f5b2a181a49370320a", + "ae68b3263e3941ad931b444872c86223", + "acb7285b033d429381194688c00bcefa", + "5f22c61c5dba4299837084ad0445f224", + "f47a188af6bd47529c4c04815eba3dec", + "352b3ab3c8854c2db924b49eb6ba2ff0", + "cebb41c23b4b4c12999a5d61de4dae59", + "8053a2996e9d4789b5e6ec4b17523bd8", + "2e23bfa137c949d18c591417042d7173", + "c140a3b214214b8887cea17aa7546b53", + "e38dcd664d624ed88b01015fed2349e4", + "9bad8d9ba6d04483ac7ba3114bc3f5ae", + "e61865e0066448cf916a0fcc09febee2", + "a32887f7f4bd4818ae0c12c757f647a0", + "9c19ac232996472da041e2b2b47867df", + "d93bd41e0cba43baab9909276772646e", + "ab12ccc65ed540c8817f77b1719ac7b8", + "dd526fb72c3846308c68652c744e67a8", + "52575936204e491e980569b23d26c302", + "2e785e67be9144279f6dfdc5879c913d", + "e4738aed83af45f09c756557baaf73b5", + "dfe76645b10741b49a4d9db3779958a4", + "0ab861281ab344909d6aa1aaa6950cf2", + "c99ea417133f4e14aa06f673edbec30c", + "ce36fa215a38475ca1d5f8e9c438beae", + "72ef7e41f45341808f81cf9b40685cbb", + "c39742ecf7954c59bbeeb03046c9e973", + "f4a42dc444474eb2ae8857b44a897839" + ] }, "collapsed": true, "id": "E1UFuJC570Tk", +<<<<<<< Updated upstream "outputId": "03fd0374-9db5-4e73-f066-49baa4a9b799" +======= + "outputId": "29571f09-4171-4297-d356-14b5eddc01bd" +>>>>>>> Stashed changes }, "outputs": [ { @@ -619,8 +1040,167 @@ "output_type": "display_data", "data": { "text/plain": [ +<<<<<<< Updated upstream "Using config \u001b[34mtogether\u001b[0m:\n" ], +======= + "modules.json: 0%| | 0.00/349 [00:00>>>>>> Stashed changes "text/html": [ "
Using config together:\n",
               "
\n" @@ -1003,10 +1583,16 @@ "from google.colab import userdata\n", "\n", "os.environ['TOGETHER_API_KEY'] = userdata.get('TOGETHER_API_KEY')\n", +<<<<<<< Updated upstream "os.environ['TAVILY_SEARCH_API_KEY'] = userdata.get('TAVILY_SEARCH_API_KEY')\n", "\n", "from llama_stack.distribution.library_client import LlamaStackAsLibraryClient\n", "client = LlamaStackAsLibraryClient(\"together\")\n", +======= + "\n", + "from llama_stack.distribution.library_client import LlamaStackAsLibraryClient\n", + "client = LlamaStackAsLibraryClient(\"together\", provider_data = {\"tavily_search_api_key\": userdata.get('TAVILY_SEARCH_API_KEY')})\n", +>>>>>>> Stashed changes "_ = client.initialize()" ] }, @@ -1024,7 +1610,11 @@ }, { "cell_type": "code", +<<<<<<< Updated upstream "execution_count": 5, +======= + "execution_count": 4, +>>>>>>> Stashed changes "id": "ruO9jQna_t_S", "metadata": { "colab": { @@ -1033,7 +1623,11 @@ }, "collapsed": true, "id": "ruO9jQna_t_S", +<<<<<<< Updated upstream "outputId": "1396f720-7fc1-4231-9807-c777753d0089" +======= + "outputId": "c74d1480-9677-432c-cd32-51f829c24100" +>>>>>>> Stashed changes }, "outputs": [ { @@ -1085,7 +1679,11 @@ }, { "cell_type": "code", +<<<<<<< Updated upstream "execution_count": 9, +======= + "execution_count": 4, +>>>>>>> Stashed changes "id": "LINBvv8lwTJh", "metadata": { "colab": { @@ -1093,7 +1691,11 @@ "height": 35 }, "id": "LINBvv8lwTJh", +<<<<<<< Updated upstream "outputId": "aea54e67-ce5a-4d3f-d239-9947576e6262" +======= + "outputId": "aa090946-dcb5-420c-bce7-779c95f93886" +>>>>>>> Stashed changes }, "outputs": [ { @@ -1107,7 +1709,11 @@ } }, "metadata": {}, +<<<<<<< Updated upstream "execution_count": 9 +======= + "execution_count": 4 +>>>>>>> Stashed changes } ], "source": [ @@ -1130,7 +1736,11 @@ }, { "cell_type": "code", +<<<<<<< Updated upstream "execution_count": 7, +======= + "execution_count": 5, +>>>>>>> Stashed changes "id": "77c29dba", "metadata": { "colab": { @@ -1138,7 +1748,11 @@ "height": 0 }, "id": "77c29dba", +<<<<<<< Updated upstream "outputId": "82e1488c-b918-4968-c49e-13cbe11c286f" +======= + "outputId": "ec922e6e-211e-43a4-e920-eb5077a94c02" +>>>>>>> Stashed changes }, "outputs": [ { @@ -1147,8 +1761,13 @@ "text": [ "Here's a two-sentence poem about a llama:\n", "\n", +<<<<<<< Updated upstream "With gentle eyes and a soft, fuzzy face,\n", "A llama walks, a peaceful, gentle pace.\n" +======= + "With soft fur and gentle eyes, the llama roams so free,\n", + "A gentle soul, full of kindness, in the Andean breeze.\n" +>>>>>>> Stashed changes ] } ], @@ -1187,7 +1806,11 @@ "base_uri": "https://localhost:8080/" }, "id": "9496f75c", +<<<<<<< Updated upstream "outputId": "1b3ca919-39c9-40a0-cd15-9ab5b2c18b6b" +======= + "outputId": "df5f01c4-a073-4da9-f775-79836ecd1d9e" +>>>>>>> Stashed changes }, "outputs": [ { @@ -1195,9 +1818,15 @@ "name": "stdout", "text": [ "User> write a haiku about machines that learn\n", +<<<<<<< Updated upstream "> Response: Metal minds awake\n", "Learning from each tender step\n", "Intelligence born\n", +======= + "> Response: Circuits learn and grow\n", + "Intelligence in metal\n", + "Minds of their own rise\n", +>>>>>>> Stashed changes "User> bye\n", "Ending conversation. Goodbye!\n" ] @@ -1246,7 +1875,11 @@ }, { "cell_type": "code", +<<<<<<< Updated upstream "execution_count": 9, +======= + "execution_count": 8, +>>>>>>> Stashed changes "id": "d119026e", "metadata": { "colab": { @@ -1254,7 +1887,11 @@ "height": 0 }, "id": "d119026e", +<<<<<<< Updated upstream "outputId": "aa74b0b8-51c5-44b7-a20a-00ab03325ad4" +======= + "outputId": "553a6c17-7206-41f9-eb52-1ca36212ef27" +>>>>>>> Stashed changes }, "outputs": [ { @@ -1262,6 +1899,7 @@ "name": "stdout", "text": [ "User> Write me a sonnet about llama green\n", +<<<<<<< Updated upstream "Assistant> In Andean highlands, where the sun does shine,\n", "A majestic creature roams with gentle stride,\n", "The llama, with its soft and woolly prime,\n", @@ -1279,6 +1917,25 @@ "\n", "And as the sun sets on the Andean high,\n", "The llama's peaceful spirit meets the sky.\n" +======= + "Assistant> In Andean mountains, where the sun does shine,\n", + "A creature roams, with fleece of softest down,\n", + "The llama, gentle, calm, and truly divine,\n", + "Its steps, a waltz, upon the winding town.\n", + "\n", + "Its eyes, like dark, rich jewels, sparkle bright,\n", + "Reflecting wisdom, gained from ancient years,\n", + "Its ears, like satellites, attuned to sound and sight,\n", + " Alert, yet quiet, as it navigates its peers.\n", + "\n", + "The wind, a whispered secret, in its ear,\n", + "As it traverses, with a gentle, easy air,\n", + "The treacherous paths, that only few can dare,\n", + "With each step, certain, in its own gentle care.\n", + "\n", + "And when it speaks, a soft, melodious hum,\n", + "That echoes through the Andes, like a gentle drum.\n" +>>>>>>> Stashed changes ] } ], @@ -1316,21 +1973,33 @@ }, { "cell_type": "code", +<<<<<<< Updated upstream "execution_count": 11, +======= + "execution_count": 9, +>>>>>>> Stashed changes "id": "axdQIRaJCYAV", "metadata": { "colab": { "base_uri": "https://localhost:8080/", +<<<<<<< Updated upstream "height": 501 }, "id": "axdQIRaJCYAV", "outputId": "9e9e9913-a18a-4c05-c9fb-0a5d2303d143" +======= + "height": 241 + }, + "id": "axdQIRaJCYAV", + "outputId": "404a4786-5b55-49d1-de91-3fa1ae87a0df" +>>>>>>> Stashed changes }, "outputs": [ { "output_type": "stream", "name": "stderr", "text": [ +<<<<<<< Updated upstream "Exception ignored in: \n", "Traceback (most recent call last):\n", " File \"/usr/local/lib/python3.10/dist-packages/httpcore/_async/http11.py\", line 348, in aclose\n", @@ -1346,6 +2015,8 @@ " File \"/usr/local/lib/python3.10/dist-packages/anyio/_backends/_asyncio.py\", line 456, in __exit__\n", " raise RuntimeError(\n", "RuntimeError: Attempted to exit cancel scope in a different task than it was entered in\n", +======= +>>>>>>> Stashed changes "/usr/local/lib/python3.10/dist-packages/pydantic/main.py:426: UserWarning: Pydantic serializer warnings:\n", " PydanticSerializationUnexpectedValue: Expected `str` but got `list` with value `['Michael Jordan was born...ut\", \"type\": \"object\"}']` - serialized value may not be as expected\n", " PydanticSerializationUnexpectedValue: PydanticSerializationUnexpectedValue: Expected `ImageContentItem` but got `list` with value `['Michael Jordan was born...ut\", \"type\": \"object\"}']` - serialized value may not be as expected\n", @@ -1360,7 +2031,11 @@ "data": { "text/plain": [ "\u001b[1;35mCompletionResponse\u001b[0m\u001b[1m(\u001b[0m\n", +<<<<<<< Updated upstream "\u001b[2;32m│ \u001b[0m\u001b[33mcontent\u001b[0m=\u001b[32m' \u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"name\": \"Michael Jordan\", \"year_born\": \"1963\", \"year_retired\": \"2003\"\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m,\n", +======= + "\u001b[2;32m│ \u001b[0m\u001b[33mcontent\u001b[0m=\u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"name\": \"\", \"year_born\": \"\", \"year_retired\": \"\"\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m,\n", +>>>>>>> Stashed changes "\u001b[2;32m│ \u001b[0m\u001b[33mstop_reason\u001b[0m=\u001b[32m'end_of_turn'\u001b[0m,\n", "\u001b[2;32m│ \u001b[0m\u001b[33mlogprobs\u001b[0m=\u001b[3;35mNone\u001b[0m\n", "\u001b[1m)\u001b[0m\n" @@ -1424,7 +2099,11 @@ "height": 368 }, "id": "sUJKJxvAFCaI", +<<<<<<< Updated upstream "outputId": "2cd4f88f-4c2f-41de-f6f6-8e431cba5aaa" +======= + "outputId": "e3bf180c-7305-4bc5-ab4b-541706142b66" +>>>>>>> Stashed changes }, "outputs": [ { @@ -1583,6 +2262,189 @@ "4. Shields - for safety calls that are executed everytime the agent interacts with external systems, including user prompts" ] }, + { + "cell_type": "markdown", + "source": [ + "### 2.1. List available tools on the provider" + ], + "metadata": { + "id": "lYDAkMsL9xSk" + }, + "id": "lYDAkMsL9xSk" + }, + { + "cell_type": "code", + "source": [ + "from rich.pretty import pprint\n", + "for tool in client.tools.list():\n", + " pprint(tool)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "MpMXiMCv97X5", + "outputId": "8057a7b2-cb56-4857-f1ef-0002dadfc810" + }, + "id": "MpMXiMCv97X5", + "execution_count": 13, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1;35mTool\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m'Search the web for information'\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33midentifier\u001b[0m=\u001b[32m'web_search'\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mparameters\u001b[0m=\u001b[1m[\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1;35mParameter\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m'The query to search for'\u001b[0m,\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[33mname\u001b[0m=\u001b[32m'query'\u001b[0m,\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[33mparameter_type\u001b[0m=\u001b[32m'string'\u001b[0m,\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[33mrequired\u001b[0m=\u001b[3;92mTrue\u001b[0m,\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[33mdefault\u001b[0m=\u001b[3;35mNone\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m)\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m]\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mprovider_id\u001b[0m=\u001b[32m'tavily-search'\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mprovider_resource_id\u001b[0m=\u001b[32m'web_search'\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mtool_host\u001b[0m=\u001b[32m'distribution'\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mtoolgroup_id\u001b[0m=\u001b[32m'builtin::websearch'\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mtype\u001b[0m=\u001b[32m'tool'\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mmetadata\u001b[0m=\u001b[3;35mNone\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mtool_prompt_format\u001b[0m=\u001b[3;35mNone\u001b[0m\n", + "\u001b[1m)\u001b[0m\n" + ], + "text/html": [ + "
Tool(\n",
+              "description='Search the web for information',\n",
+              "identifier='web_search',\n",
+              "parameters=[\n",
+              "│   │   Parameter(\n",
+              "│   │   │   description='The query to search for',\n",
+              "│   │   │   name='query',\n",
+              "│   │   │   parameter_type='string',\n",
+              "│   │   │   required=True,\n",
+              "│   │   │   default=None\n",
+              "│   │   )\n",
+              "],\n",
+              "provider_id='tavily-search',\n",
+              "provider_resource_id='web_search',\n",
+              "tool_host='distribution',\n",
+              "toolgroup_id='builtin::websearch',\n",
+              "type='tool',\n",
+              "metadata=None,\n",
+              "tool_prompt_format=None\n",
+              ")\n",
+              "
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1;35mTool\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m'Retrieve context from memory'\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33midentifier\u001b[0m=\u001b[32m'query_memory'\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mparameters\u001b[0m=\u001b[1m[\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1;35mParameter\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m'The input messages to search for'\u001b[0m,\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[33mname\u001b[0m=\u001b[32m'messages'\u001b[0m,\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[33mparameter_type\u001b[0m=\u001b[32m'array'\u001b[0m,\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[33mrequired\u001b[0m=\u001b[3;92mTrue\u001b[0m,\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[33mdefault\u001b[0m=\u001b[3;35mNone\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m)\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m]\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mprovider_id\u001b[0m=\u001b[32m'memory-runtime'\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mprovider_resource_id\u001b[0m=\u001b[32m'query_memory'\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mtool_host\u001b[0m=\u001b[32m'distribution'\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mtoolgroup_id\u001b[0m=\u001b[32m'builtin::memory'\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mtype\u001b[0m=\u001b[32m'tool'\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mmetadata\u001b[0m=\u001b[3;35mNone\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mtool_prompt_format\u001b[0m=\u001b[3;35mNone\u001b[0m\n", + "\u001b[1m)\u001b[0m\n" + ], + "text/html": [ + "
Tool(\n",
+              "description='Retrieve context from memory',\n",
+              "identifier='query_memory',\n",
+              "parameters=[\n",
+              "│   │   Parameter(\n",
+              "│   │   │   description='The input messages to search for',\n",
+              "│   │   │   name='messages',\n",
+              "│   │   │   parameter_type='array',\n",
+              "│   │   │   required=True,\n",
+              "│   │   │   default=None\n",
+              "│   │   )\n",
+              "],\n",
+              "provider_id='memory-runtime',\n",
+              "provider_resource_id='query_memory',\n",
+              "tool_host='distribution',\n",
+              "toolgroup_id='builtin::memory',\n",
+              "type='tool',\n",
+              "metadata=None,\n",
+              "tool_prompt_format=None\n",
+              ")\n",
+              "
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1;35mTool\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m'Execute code'\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33midentifier\u001b[0m=\u001b[32m'code_interpreter'\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mparameters\u001b[0m=\u001b[1m[\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1;35mParameter\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m'The code to execute'\u001b[0m,\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[33mname\u001b[0m=\u001b[32m'code'\u001b[0m,\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[33mparameter_type\u001b[0m=\u001b[32m'string'\u001b[0m,\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[33mrequired\u001b[0m=\u001b[3;92mTrue\u001b[0m,\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[33mdefault\u001b[0m=\u001b[3;35mNone\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m)\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m]\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mprovider_id\u001b[0m=\u001b[32m'code-interpreter'\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mprovider_resource_id\u001b[0m=\u001b[32m'code_interpreter'\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mtool_host\u001b[0m=\u001b[32m'distribution'\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mtoolgroup_id\u001b[0m=\u001b[32m'builtin::code_interpreter'\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mtype\u001b[0m=\u001b[32m'tool'\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mmetadata\u001b[0m=\u001b[3;35mNone\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mtool_prompt_format\u001b[0m=\u001b[3;35mNone\u001b[0m\n", + "\u001b[1m)\u001b[0m\n" + ], + "text/html": [ + "
Tool(\n",
+              "description='Execute code',\n",
+              "identifier='code_interpreter',\n",
+              "parameters=[\n",
+              "│   │   Parameter(\n",
+              "│   │   │   description='The code to execute',\n",
+              "│   │   │   name='code',\n",
+              "│   │   │   parameter_type='string',\n",
+              "│   │   │   required=True,\n",
+              "│   │   │   default=None\n",
+              "│   │   )\n",
+              "],\n",
+              "provider_id='code-interpreter',\n",
+              "provider_resource_id='code_interpreter',\n",
+              "tool_host='distribution',\n",
+              "toolgroup_id='builtin::code_interpreter',\n",
+              "type='tool',\n",
+              "metadata=None,\n",
+              "tool_prompt_format=None\n",
+              ")\n",
+              "
\n" + ] + }, + "metadata": {} + } + ] + }, { "cell_type": "markdown", "id": "fN5jaAaax2Aq", @@ -1590,20 +2452,25 @@ "id": "fN5jaAaax2Aq" }, "source": [ - "### 2.1. RAG Agent\n", + "### 2.2. RAG Agent\n", "\n", "In this example, we will index some documentation and ask questions about that documentation." ] }, { "cell_type": "code", +<<<<<<< Updated upstream "execution_count": 11, +======= + "execution_count": 7, +>>>>>>> Stashed changes "id": "GvLWltzZCNkg", "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 351, "referenced_widgets": [ +<<<<<<< Updated upstream "b3aeb4406e0b4147821cee93d430fd27", "c73ed62cc02149cf8658d38a1544ac7c", "42bc7503d5b846e2a01d59c4182a1ab6", @@ -1663,6 +2530,67 @@ }, "id": "GvLWltzZCNkg", "outputId": "fb9d4f77-9e93-4ef7-a5d7-97184bad324e" +======= + "d90ae0a531b941b4841e1ad7407fd4fc", + "51d8b257a8954557b3a057438f9c7c4e", + "7ab5d9edbdb649e2b44dcb646889792c", + "e07333c41e8f4f95ae1253ff3af96232", + "df158a470e1a4aec80f74c8d524a391b", + "116223f0414d47eb9a63a60751c474e9", + "ff47333fbc684a9f8bf916ce791254b6", + "e7066ddf191e437faa1d84e44a5410ee", + "4355f8bc9c434b78b82a3a219f3a1b77", + "61399af883fd466aa13c35ae788e2cc3", + "64c5428d11134056ba1c84e7290d105a", + "6762003e4d5c49349aabd82e944fbf8b", + "9259f686497140db8424dd5958a740ce", + "5be4d9bfe4ca41ddb451527796e365ab", + "e1c4cb8a3240434eb807e0122ef5f33a", + "49e457648bc145c7ba4ce448121c380f", + "d76185a6ff05423a98f9927c3d02feea", + "96cbf379d9bf41baa5e38db62d4b1e3d", + "fd8f04c37df94cdaa77aa78efd3f3c73", + "a3c076e149104d0f8c50eae37dcc3def", + "1d9fd701a7ea467ab2f3d17e0e978f8c", + "bc09309977b34483bee47453aa2c7a62", + "77ba019b3e414410b330971b0e62c9cc", + "75f2ed98417e4f5b8653057b66c5def7", + "44b5ece960d746438c720e0e0a9aa22d", + "98a85a047d034c018151b9356cb6d641", + "6fb7d255e5e540b6b12235954ef1ec8d", + "a9496e2bf3794874af30212172dc62b9", + "3413c41edf514291a1495d2478e01eac", + "25959703abf84ef5a70094644a7a1691", + "ffa86fa04e1040d5a7f6900e924abf61", + "a885e06b118f4895b3f3881a618c6426", + "9a0a2851ad7f4a53ac931bff7150eb27", + "f5390948e7fc480f86e2f60843b0418e", + "171e8a4cabac4b2ca64cd30970c8f21c", + "c9756fc8f7c94174a265c878606dc376", + "d5e18738455149f4928aacc48f0967e4", + "ca932a302deb429982db22944598f503", + "96c5c997e80b4579a33e54f3542da86a", + "88dc1cc48508416fbdce6c05ad25f06d", + "9ff97d20245e4217aab115b1bb62d897", + "40d203e27ddc4a929b27d0928434f23a", + "e18157e06e464fe8b3ee412b7f1b6c9b", + "2ca57033b1854af586ec96a77c96dd2c", + "4d9cb8791fde4b85983f5a83fe30975c", + "e51fda70dd054b40b867cb59694419db", + "96c295f6ae6e4a449b6f8acad2943993", + "9eca8287cc5d4c96a99b70d2870eb830", + "b0ec76eb983c4ccba08df2cfe8f65f2a", + "703eea437c04465eb2095b37ac30bb56", + "df2e980119a6471297c65348a5152066", + "c8e1576d9e1e4674ba789e68bd5fba92", + "1cd91700b19d456db5d0cf107dc7c1c0", + "337df483bf7d4d8a81445137d7c66d13", + "575b6200c7a246dba15f94930b7f4487" + ] + }, + "id": "GvLWltzZCNkg", + "outputId": "ed86ad29-52b7-41c1-ca18-ba8e29beea8d" +>>>>>>> Stashed changes }, "outputs": [ { @@ -1674,7 +2602,11 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, +<<<<<<< Updated upstream "model_id": "b3aeb4406e0b4147821cee93d430fd27" +======= + "model_id": "d90ae0a531b941b4841e1ad7407fd4fc" +>>>>>>> Stashed changes } }, "metadata": {} @@ -1688,7 +2620,11 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, +<<<<<<< Updated upstream "model_id": "daca91b8e4c643daa33d15f8e347fd8e" +======= + "model_id": "6762003e4d5c49349aabd82e944fbf8b" +>>>>>>> Stashed changes } }, "metadata": {} @@ -1702,7 +2638,11 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, +<<<<<<< Updated upstream "model_id": "1c8d9ea02b594336b674b784a72399db" +======= + "model_id": "77ba019b3e414410b330971b0e62c9cc" +>>>>>>> Stashed changes } }, "metadata": {} @@ -1716,7 +2656,11 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, +<<<<<<< Updated upstream "model_id": "4985be31c38a404a810401f7e4a8631f" +======= + "model_id": "f5390948e7fc480f86e2f60843b0418e" +>>>>>>> Stashed changes } }, "metadata": {} @@ -1737,7 +2681,11 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, +<<<<<<< Updated upstream "model_id": "8cdb6600d3ad4fd9ae7c843e9b5973f3" +======= + "model_id": "4d9cb8791fde4b85983f5a83fe30975c" +>>>>>>> Stashed changes } }, "metadata": {} @@ -1748,6 +2696,7 @@ "text": [ "tool_execution> Tool:query_memory Args:{}\n", "tool_execution> fetched 10848 bytes from memory\n", +<<<<<<< Updated upstream "inference> Here are the top 5 topics explained:\n", "\n", "• Fine-tuning Llama3 with a custom chat dataset \n", @@ -1755,6 +2704,15 @@ "• Template changes from Llama2 to Llama3 \n", "• Using a prompt template \n", "• Fine-tuning with a custom chat dataset\n" +======= + "inference> Here are the top 5 topics explained in the provided context:\n", + "\n", + "• Fine-tuning Llama3 with chat data\n", + "• Tokenizing prompt templates and special tokens\n", + "• Template changes from Llama2 to Llama3\n", + "• Fine-tuning on a custom chat dataset\n", + "• Using prompt templates for specific tasks and inference behavior\n" +>>>>>>> Stashed changes ] } ], @@ -1824,7 +2782,7 @@ "id": "i2o0gDhrv2og" }, "source": [ - "### 2.2. Search agent\n", + "### 2.3. Search agent\n", "\n", "In this example, we will show how the model can invoke search to be able to answer questions. We will first have to set the API key of the search tool.\n", "\n", @@ -1835,14 +2793,22 @@ }, { "cell_type": "code", +<<<<<<< Updated upstream "execution_count": 12, +======= + "execution_count": 8, +>>>>>>> Stashed changes "id": "WS8Gu5b0APHs", "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "WS8Gu5b0APHs", +<<<<<<< Updated upstream "outputId": "d49d4e5e-dc51-4110-9c0a-b0d8a97faaf1" +======= + "outputId": "3d335908-3eef-4a4a-846b-ff79151d8d87" +>>>>>>> Stashed changes }, "outputs": [ { @@ -1854,7 +2820,11 @@ "User> Which teams played in the NBA western conference finals of 2024\n", "inference> brave_search.call(query=\"NBA Western Conference Finals 2024 teams\")\n", "tool_execution> Tool:brave_search Args:{'query': 'NBA Western Conference Finals 2024 teams'}\n", +<<<<<<< Updated upstream "tool_execution> Tool:brave_search Response:{\"query\": \"NBA Western Conference Finals 2024 teams\", \"top_k\": [{\"title\": \"2024 NBA Western Conference Finals - Basketball-Reference.com\", \"url\": \"https://www.basketball-reference.com/playoffs/2024-nba-western-conference-finals-mavericks-vs-timberwolves.html\", \"content\": \"2024 NBA Western Conference Finals Mavericks vs. Timberwolves League Champion: Boston Celtics. Finals MVP: Jaylen Brown (20.8 / 5.4 / 5.0) 2024 Playoff Leaders: PTS: Luka Don\\u010di\\u0107 (635) TRB: Luka Don\\u010di\\u0107 (208) AST: Luka Don\\u010di\\u0107 (178) WS: Derrick White (2.9) More playoffs info\", \"score\": 0.9310187, \"raw_content\": null}, {\"title\": \"NBA Western Conference Finals 2024: Dates, schedule and more - Sportskeeda\", \"url\": \"https://www.sportskeeda.com/basketball/news-nba-western-conference-finals-2024-dates-schedule-and-more\", \"content\": \"NBA Western Conference Finals 2024: Dates & Schedule The 2023-24 NBA Western Conference Finals will start on Wednesday, May 22. The Mavericks will face the team that wins in Game 7 between the\", \"score\": 0.8914433, \"raw_content\": null}, {\"title\": \"2024 Playoffs: West Finals | Timberwolves (3) vs. Mavericks (5) - NBA.com\", \"url\": \"https://www.nba.com/playoffs/2024/west-final\", \"content\": \"The Dallas Mavericks and Minnesota Timberwolves have advanced to the 2024 Western Conference Finals during the NBA playoffs.\", \"score\": 0.8884594, \"raw_content\": null}, {\"title\": \"NBA Conference Finals Schedule: Full List of Games & Results\", \"url\": \"https://www.si.com/nba/nba-conference-finals-schedule-full-list-of-games-results\", \"content\": \"The 2024 NBA conference finals matchups are set. Here's the schedule for all the games. ... Western Conference First Round (1) Oklahoma City Thunder def. (8) New Orleans Pelicans in 4 games\", \"score\": 0.85008353, \"raw_content\": null}, {\"title\": \"2024 NBA Western Conference playoff bracket - Basketnews.com\", \"url\": \"https://basketnews.com/news-204687-2024-nba-western-conference-playoff-bracket.html\", \"content\": \"In the 2024 NBA Western Conference playoffs, the Oklahoma City Thunder clinched the No. 1 seed. Every team from the Western Conference played their final game of the regular season, and two playoff pairs have been confirmed. The Los Angeles Lakers beat the New Orleans Pelicans, 110-106, in the Play-In Tournament to secure the 7th seed to set up a first-round matchup with the Denver Nuggets. Meanwhile, the Sacramento Kings will host the Golden State Warriors in the second Western Conference NBA Play-In Tournament game. The winners secure the No. 8 seed in the NBA playoffs for its conference. EuroLeague Play-In: Baskonia-Virtus game schedule announced\", \"score\": 0.84767824, \"raw_content\": null}]}\n", +======= + "tool_execution> Tool:brave_search Response:{\"query\": \"NBA Western Conference Finals 2024 teams\", \"top_k\": [{\"title\": \"2024 NBA Western Conference Finals - Basketball-Reference.com\", \"url\": \"https://www.basketball-reference.com/playoffs/2024-nba-western-conference-finals-mavericks-vs-timberwolves.html\", \"content\": \"2024 NBA Western Conference Finals Mavericks vs. Timberwolves League Champion: Boston Celtics. Finals MVP: Jaylen Brown (20.8 / 5.4 / 5.0) 2024 Playoff Leaders: PTS: Luka Don\\u010di\\u0107 (635) TRB: Luka Don\\u010di\\u0107 (208) AST: Luka Don\\u010di\\u0107 (178) WS: Derrick White (2.9) More playoffs info\", \"score\": 0.9310187, \"raw_content\": null}, {\"title\": \"NBA Western Conference Finals 2024: Dates, schedule and more - Sportskeeda\", \"url\": \"https://www.sportskeeda.com/basketball/news-nba-western-conference-finals-2024-dates-schedule-and-more\", \"content\": \"NBA Western Conference Finals 2024: Dates & Schedule The 2023-24 NBA Western Conference Finals will start on Wednesday, May 22. The Mavericks will face the team that wins in Game 7 between the\", \"score\": 0.8914433, \"raw_content\": null}, {\"title\": \"2024 Playoffs: West Finals | Timberwolves (3) vs. Mavericks (5) - NBA.com\", \"url\": \"https://www.nba.com/playoffs/2024/west-final\", \"content\": \"The Dallas Mavericks and Minnesota Timberwolves have advanced to the 2024 Western Conference Finals during the NBA playoffs.\", \"score\": 0.8884594, \"raw_content\": null}, {\"title\": \"NBA Conference Finals Schedule: Full List of Games & Results\", \"url\": \"https://www.si.com/nba/nba-conference-finals-schedule-full-list-of-games-results\", \"content\": \"The 2024 NBA conference finals matchups are set. Here's the schedule for all the games. ... Western Conference First Round (1) Oklahoma City Thunder def. (8) New Orleans Pelicans in 4 games\", \"score\": 0.850382, \"raw_content\": null}, {\"title\": \"2024 Playoffs: West Final | News - NBA.com\", \"url\": \"https://www.nba.com/playoffs/2024/west-final/news\", \"content\": \"Stellar Doncic named West Finals MVP. Luka Doncic dominates the Wolves, raising the Magic Johnson Western Conference Finals MVP award after a 4-1 series win.\", \"score\": 0.75181264, \"raw_content\": null}]}\n", +>>>>>>> Stashed changes "inference> The teams that played in the NBA Western Conference Finals of 2024 were the Dallas Mavericks and the Minnesota Timberwolves.\n" ] } @@ -1897,7 +2867,7 @@ "id": "yRzRwu8qxyl0" }, "source": [ - "### 2.3. Code Execution Agent\n", + "### 2.4. Code Execution Agent\n", "\n", "In this example, we will show how multiple tools can be called by the model - including web search and code execution. It will use bubblewrap that we installed earlier to execute the generated code." ] @@ -2705,7 +3675,11 @@ }, "widgets": { "application/vnd.jupyter.widget-state+json": { +<<<<<<< Updated upstream "b3aeb4406e0b4147821cee93d430fd27": { +======= + "5efa1befafc4442fa4c2ebe64415f78b": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -2720,6 +3694,7 @@ "_view_name": "HBoxView", "box_style": "", "children": [ +<<<<<<< Updated upstream "IPY_MODEL_c73ed62cc02149cf8658d38a1544ac7c", "IPY_MODEL_42bc7503d5b846e2a01d59c4182a1ab6", "IPY_MODEL_35fc33cc83ad4d32a6dd9bd66a59d687" @@ -2728,6 +3703,16 @@ } }, "c73ed62cc02149cf8658d38a1544ac7c": { +======= + "IPY_MODEL_d6ac7a1194a74402a55ce01455c5a17a", + "IPY_MODEL_cd072e192c9547a7b7a6d9f6648dd587", + "IPY_MODEL_dbed4fdaf53f49bd94d1b763b6406c7e" + ], + "layout": "IPY_MODEL_5fa6c89f4ff146c782d7ad5332724648" + } + }, + "d6ac7a1194a74402a55ce01455c5a17a": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -2742,6 +3727,7 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, +<<<<<<< Updated upstream "layout": "IPY_MODEL_e67c00f0d96447fdbb5ea73f9fd4cc7b", "placeholder": "​", "style": "IPY_MODEL_b144748fa2904815b3ce08d3a601dfc1", @@ -2749,6 +3735,15 @@ } }, "42bc7503d5b846e2a01d59c4182a1ab6": { +======= + "layout": "IPY_MODEL_49c4514aaed146c3b633c1dc329351a7", + "placeholder": "​", + "style": "IPY_MODEL_c47b7222cd0444049129c6a78386d23b", + "value": "modules.json: 100%" + } + }, + "cd072e192c9547a7b7a6d9f6648dd587": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -2764,6 +3759,7 @@ "bar_style": "success", "description": "", "description_tooltip": null, +<<<<<<< Updated upstream "layout": "IPY_MODEL_01674d9ff69b4de49093a3039fc0895f", "max": 1, "min": 0, @@ -2773,6 +3769,17 @@ } }, "35fc33cc83ad4d32a6dd9bd66a59d687": { +======= + "layout": "IPY_MODEL_400b59adf711468ea2db52e4ff62bc11", + "max": 349, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_76395834b32b47bea30c695022156c07", + "value": 349 + } + }, + "dbed4fdaf53f49bd94d1b763b6406c7e": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -2787,6 +3794,7 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, +<<<<<<< Updated upstream "layout": "IPY_MODEL_f43d865f12b74852b4d0df47ab0fdd84", "placeholder": "​", "style": "IPY_MODEL_ef56dad1627c4d32a59167786ae88e28", @@ -2794,6 +3802,15 @@ } }, "75d8b7c10f9640438ffdc253a939be4a": { +======= + "layout": "IPY_MODEL_fee442a2d1ab4c23bab7309706974605", + "placeholder": "​", + "style": "IPY_MODEL_e5d068844cc849a3ab98a0882bf64b68", + "value": " 349/349 [00:00<00:00, 22.8kB/s]" + } + }, + "5fa6c89f4ff146c782d7ad5332724648": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -2845,7 +3862,11 @@ "width": null } }, +<<<<<<< Updated upstream "e67c00f0d96447fdbb5ea73f9fd4cc7b": { +======= + "49c4514aaed146c3b633c1dc329351a7": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -2897,7 +3918,11 @@ "width": null } }, +<<<<<<< Updated upstream "b144748fa2904815b3ce08d3a601dfc1": { +======= + "c47b7222cd0444049129c6a78386d23b": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -2912,7 +3937,11 @@ "description_width": "" } }, +<<<<<<< Updated upstream "01674d9ff69b4de49093a3039fc0895f": { +======= + "400b59adf711468ea2db52e4ff62bc11": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -2964,7 +3993,11 @@ "width": null } }, +<<<<<<< Updated upstream "fe8902b35dc446ed9c3c897835d1b92e": { +======= + "76395834b32b47bea30c695022156c07": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -2980,7 +4013,11 @@ "description_width": "" } }, +<<<<<<< Updated upstream "f43d865f12b74852b4d0df47ab0fdd84": { +======= + "fee442a2d1ab4c23bab7309706974605": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3032,7 +4069,11 @@ "width": null } }, +<<<<<<< Updated upstream "ef56dad1627c4d32a59167786ae88e28": { +======= + "e5d068844cc849a3ab98a0882bf64b68": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -3047,7 +4088,11 @@ "description_width": "" } }, +<<<<<<< Updated upstream "daca91b8e4c643daa33d15f8e347fd8e": { +======= + "5add3cee30b24697ae31767e1bf662e2": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -3062,6 +4107,7 @@ "_view_name": "HBoxView", "box_style": "", "children": [ +<<<<<<< Updated upstream "IPY_MODEL_75595e2bdeb84866b50a772cd27ba320", "IPY_MODEL_e9b6488fb75e47f88d669638b2d35f40", "IPY_MODEL_6a73b8be819a4ce9b3232b22f6a2fc52" @@ -3070,6 +4116,16 @@ } }, "75595e2bdeb84866b50a772cd27ba320": { +======= + "IPY_MODEL_8472d5dab9a04356ac2cc253081b33c5", + "IPY_MODEL_6f5110129dd441dc936eaa6fc6fdda7f", + "IPY_MODEL_18274644ad86446a84ee59cfd6dda073" + ], + "layout": "IPY_MODEL_f4ad6e849ff24071a2d6194186f52549" + } + }, + "8472d5dab9a04356ac2cc253081b33c5": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -3084,6 +4140,7 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, +<<<<<<< Updated upstream "layout": "IPY_MODEL_bdb868b9d70c4a9f8ff6dcdd1acd47b7", "placeholder": "​", "style": "IPY_MODEL_295c83e70a8546cb983e8e323374ca43", @@ -3091,6 +4148,15 @@ } }, "e9b6488fb75e47f88d669638b2d35f40": { +======= + "layout": "IPY_MODEL_fac666b62f4a4d70aa406e7fe7114158", + "placeholder": "​", + "style": "IPY_MODEL_37ffa3e9bf5b4f1faa22083a3b80c057", + "value": "config_sentence_transformers.json: 100%" + } + }, + "6f5110129dd441dc936eaa6fc6fdda7f": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -3106,6 +4172,7 @@ "bar_style": "success", "description": "", "description_tooltip": null, +<<<<<<< Updated upstream "layout": "IPY_MODEL_9389e809bcf544b4a1a054b1d9880217", "max": 1, "min": 0, @@ -3115,6 +4182,17 @@ } }, "6a73b8be819a4ce9b3232b22f6a2fc52": { +======= + "layout": "IPY_MODEL_6092412a1fa4445aa72314a707374ea2", + "max": 116, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_33a6b4aa70584faca6319b3dc1cfd13e", + "value": 116 + } + }, + "18274644ad86446a84ee59cfd6dda073": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -3129,6 +4207,7 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, +<<<<<<< Updated upstream "layout": "IPY_MODEL_18ef9d1481bc476fb268980f2ce6790d", "placeholder": "​", "style": "IPY_MODEL_7e402295522f46fe926483315611d189", @@ -3136,6 +4215,15 @@ } }, "b6d3c11cf77344f599700dfc65fabfe0": { +======= + "layout": "IPY_MODEL_2c29f1d881784db59b0113bd7bccbe75", + "placeholder": "​", + "style": "IPY_MODEL_1d18e7a686374756b80b46ab5546f8ed", + "value": " 116/116 [00:00<00:00, 4.40kB/s]" + } + }, + "f4ad6e849ff24071a2d6194186f52549": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3187,7 +4275,11 @@ "width": null } }, +<<<<<<< Updated upstream "bdb868b9d70c4a9f8ff6dcdd1acd47b7": { +======= + "fac666b62f4a4d70aa406e7fe7114158": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3239,7 +4331,11 @@ "width": null } }, +<<<<<<< Updated upstream "295c83e70a8546cb983e8e323374ca43": { +======= + "37ffa3e9bf5b4f1faa22083a3b80c057": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -3254,7 +4350,11 @@ "description_width": "" } }, +<<<<<<< Updated upstream "9389e809bcf544b4a1a054b1d9880217": { +======= + "6092412a1fa4445aa72314a707374ea2": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3306,7 +4406,11 @@ "width": null } }, +<<<<<<< Updated upstream "3a9188e2305b4e2686cd6fc679922862": { +======= + "33a6b4aa70584faca6319b3dc1cfd13e": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -3322,7 +4426,11 @@ "description_width": "" } }, +<<<<<<< Updated upstream "18ef9d1481bc476fb268980f2ce6790d": { +======= + "2c29f1d881784db59b0113bd7bccbe75": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3374,7 +4482,11 @@ "width": null } }, +<<<<<<< Updated upstream "7e402295522f46fe926483315611d189": { +======= + "1d18e7a686374756b80b46ab5546f8ed": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -3389,7 +4501,11 @@ "description_width": "" } }, +<<<<<<< Updated upstream "1c8d9ea02b594336b674b784a72399db": { +======= + "f7bee04278ce4ad9bb0b4f62f54b7455": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -3404,6 +4520,7 @@ "_view_name": "HBoxView", "box_style": "", "children": [ +<<<<<<< Updated upstream "IPY_MODEL_a55f599757aa402b9d8d3f1472670852", "IPY_MODEL_5ffdaa756a0446648c300b2885977cb8", "IPY_MODEL_296746e96a97439ea2f8436154fae754" @@ -3412,6 +4529,16 @@ } }, "a55f599757aa402b9d8d3f1472670852": { +======= + "IPY_MODEL_4477705a42c94351af63639d30876689", + "IPY_MODEL_a1bc1de6665f4a5297c7b051d9441bec", + "IPY_MODEL_5d70890d42b542cca897588a5a27e56c" + ], + "layout": "IPY_MODEL_d2bd17846c9a402ca7c16e9c2b330e67" + } + }, + "4477705a42c94351af63639d30876689": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -3426,6 +4553,7 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, +<<<<<<< Updated upstream "layout": "IPY_MODEL_33e3c68f72eb47debd306faee58ccd3f", "placeholder": "​", "style": "IPY_MODEL_e882c8b99b08479a9705cf3242cf04bb", @@ -3433,6 +4561,15 @@ } }, "5ffdaa756a0446648c300b2885977cb8": { +======= + "layout": "IPY_MODEL_912680aea42543c2b59d64aab34ef849", + "placeholder": "​", + "style": "IPY_MODEL_03d068ceb20b434c85bb631659347556", + "value": "README.md: 100%" + } + }, + "a1bc1de6665f4a5297c7b051d9441bec": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -3448,6 +4585,7 @@ "bar_style": "success", "description": "", "description_tooltip": null, +<<<<<<< Updated upstream "layout": "IPY_MODEL_23a0123ce90e45658533d28a4cd47c11", "max": 1, "min": 0, @@ -3457,6 +4595,17 @@ } }, "296746e96a97439ea2f8436154fae754": { +======= + "layout": "IPY_MODEL_93daa507e8ed4138bcbfd82eec2490a3", + "max": 10659, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_1cfc7f7670be42c982eb6ac8d43dbc1e", + "value": 10659 + } + }, + "5d70890d42b542cca897588a5a27e56c": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -3471,6 +4620,7 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, +<<<<<<< Updated upstream "layout": "IPY_MODEL_97e4cc905970452280a7f07bd785350e", "placeholder": "​", "style": "IPY_MODEL_064a15a903064adc921694d0c1509443", @@ -3478,6 +4628,15 @@ } }, "120605108be744e9ba38a9fb2b2d6e77": { +======= + "layout": "IPY_MODEL_60aad78c138a4391997adcd305a35f03", + "placeholder": "​", + "style": "IPY_MODEL_70daaacc22e34e2a911e842a7705dd32", + "value": " 10.7k/10.7k [00:00<00:00, 842kB/s]" + } + }, + "d2bd17846c9a402ca7c16e9c2b330e67": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3529,7 +4688,11 @@ "width": null } }, +<<<<<<< Updated upstream "33e3c68f72eb47debd306faee58ccd3f": { +======= + "912680aea42543c2b59d64aab34ef849": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3581,7 +4744,11 @@ "width": null } }, +<<<<<<< Updated upstream "e882c8b99b08479a9705cf3242cf04bb": { +======= + "03d068ceb20b434c85bb631659347556": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -3596,7 +4763,11 @@ "description_width": "" } }, +<<<<<<< Updated upstream "23a0123ce90e45658533d28a4cd47c11": { +======= + "93daa507e8ed4138bcbfd82eec2490a3": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3648,7 +4819,11 @@ "width": null } }, +<<<<<<< Updated upstream "6bdf5bda589043d5b42350da193d96ba": { +======= + "1cfc7f7670be42c982eb6ac8d43dbc1e": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -3664,7 +4839,11 @@ "description_width": "" } }, +<<<<<<< Updated upstream "97e4cc905970452280a7f07bd785350e": { +======= + "60aad78c138a4391997adcd305a35f03": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3716,7 +4895,11 @@ "width": null } }, +<<<<<<< Updated upstream "064a15a903064adc921694d0c1509443": { +======= + "70daaacc22e34e2a911e842a7705dd32": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -3731,7 +4914,11 @@ "description_width": "" } }, +<<<<<<< Updated upstream "4985be31c38a404a810401f7e4a8631f": { +======= + "c470be11fb3147bcb09e1dccb6d88937": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -3746,6 +4933,7 @@ "_view_name": "HBoxView", "box_style": "", "children": [ +<<<<<<< Updated upstream "IPY_MODEL_6f71b8be7ce84193a3f58ce42db1800d", "IPY_MODEL_ff53a253d2064f42a1d4c6bc5e44a0fd", "IPY_MODEL_8141d0ab228b4092b569dfe57e6c6218" @@ -3754,6 +4942,16 @@ } }, "6f71b8be7ce84193a3f58ce42db1800d": { +======= + "IPY_MODEL_13a497ffcca044059e9498db6f587e19", + "IPY_MODEL_4d457db80cb84a4eb798de7dd9a8e844", + "IPY_MODEL_81cf9f25de254d7f85683fb4f77a16c1" + ], + "layout": "IPY_MODEL_f69a8c16ac844412959f04b82d2a7a7a" + } + }, + "13a497ffcca044059e9498db6f587e19": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -3768,6 +4966,7 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, +<<<<<<< Updated upstream "layout": "IPY_MODEL_d7252839fbeb4f33b889782d6bcc2b26", "placeholder": "​", "style": "IPY_MODEL_e76f5bc57e494303b067cea56b75798d", @@ -3775,6 +4974,15 @@ } }, "ff53a253d2064f42a1d4c6bc5e44a0fd": { +======= + "layout": "IPY_MODEL_7d97adf6e937438d9ab29f61893f36cf", + "placeholder": "​", + "style": "IPY_MODEL_516b23bf77ca4badadd60005d9275148", + "value": "sentence_bert_config.json: 100%" + } + }, + "4d457db80cb84a4eb798de7dd9a8e844": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -3790,6 +4998,7 @@ "bar_style": "success", "description": "", "description_tooltip": null, +<<<<<<< Updated upstream "layout": "IPY_MODEL_c65d049fd24f4a1b9028ea930b51907f", "max": 1, "min": 0, @@ -3799,6 +5008,17 @@ } }, "8141d0ab228b4092b569dfe57e6c6218": { +======= + "layout": "IPY_MODEL_723e47c99a2a45eb8e0ad7d73a60e251", + "max": 53, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_f25c7e613ad04f728f92a8f0bbe057e2", + "value": 53 + } + }, + "81cf9f25de254d7f85683fb4f77a16c1": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -3813,6 +5033,7 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, +<<<<<<< Updated upstream "layout": "IPY_MODEL_fb8599946e43413fb39ea598f3293a69", "placeholder": "​", "style": "IPY_MODEL_32b5d09cd9d04cfb895837c8eb641e9c", @@ -3820,6 +5041,15 @@ } }, "f513cd873a074ef2900fd22d093476ca": { +======= + "layout": "IPY_MODEL_0a09259387304e4f978298aeab0b4655", + "placeholder": "​", + "style": "IPY_MODEL_e42fe5a7f70249578818b46a5c9c8483", + "value": " 53.0/53.0 [00:00<00:00, 3.00kB/s]" + } + }, + "f69a8c16ac844412959f04b82d2a7a7a": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3871,7 +5101,11 @@ "width": null } }, +<<<<<<< Updated upstream "d7252839fbeb4f33b889782d6bcc2b26": { +======= + "7d97adf6e937438d9ab29f61893f36cf": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3923,7 +5157,11 @@ "width": null } }, +<<<<<<< Updated upstream "e76f5bc57e494303b067cea56b75798d": { +======= + "516b23bf77ca4badadd60005d9275148": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -3938,7 +5176,11 @@ "description_width": "" } }, +<<<<<<< Updated upstream "c65d049fd24f4a1b9028ea930b51907f": { +======= + "723e47c99a2a45eb8e0ad7d73a60e251": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3990,7 +5232,11 @@ "width": null } }, +<<<<<<< Updated upstream "387f6669523244e590e925d7447a552d": { +======= + "f25c7e613ad04f728f92a8f0bbe057e2": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -4006,7 +5252,11 @@ "description_width": "" } }, +<<<<<<< Updated upstream "fb8599946e43413fb39ea598f3293a69": { +======= + "0a09259387304e4f978298aeab0b4655": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4058,7 +5308,11 @@ "width": null } }, +<<<<<<< Updated upstream "32b5d09cd9d04cfb895837c8eb641e9c": { +======= + "e42fe5a7f70249578818b46a5c9c8483": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -4073,7 +5327,11 @@ "description_width": "" } }, +<<<<<<< Updated upstream "8cdb6600d3ad4fd9ae7c843e9b5973f3": { +======= + "a9280bb243b6426c87e8295bf74f44e9": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -4088,6 +5346,7 @@ "_view_name": "HBoxView", "box_style": "", "children": [ +<<<<<<< Updated upstream "IPY_MODEL_4c738f46093d48f7be1db7843b4f7106", "IPY_MODEL_404b1ec6b9324fa593cb7d1ed83695e8", "IPY_MODEL_b79197026e4a45918a9c6e005157bfa9" @@ -4096,6 +5355,16 @@ } }, "4c738f46093d48f7be1db7843b4f7106": { +======= + "IPY_MODEL_845dccd7809d4105a8494d238796d203", + "IPY_MODEL_f70b158281904d009017191e8fb7f867", + "IPY_MODEL_2785f993e7a442d5a6961b2206f10696" + ], + "layout": "IPY_MODEL_0aa12df801754c778dd6f433d2c72192" + } + }, + "845dccd7809d4105a8494d238796d203": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -4110,6 +5379,7 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, +<<<<<<< Updated upstream "layout": "IPY_MODEL_478e655904bc4ebfa5b95e32c7d1be34", "placeholder": "​", "style": "IPY_MODEL_be9be7f039dc479ca7f8f6eef36e7afd", @@ -4117,6 +5387,15 @@ } }, "404b1ec6b9324fa593cb7d1ed83695e8": { +======= + "layout": "IPY_MODEL_9ad1925e1bdd42e4b1b25fd75c5c97cb", + "placeholder": "​", + "style": "IPY_MODEL_d615cfe64ba4424480fd0b524a93739e", + "value": "config.json: 100%" + } + }, + "f70b158281904d009017191e8fb7f867": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -4132,6 +5411,7 @@ "bar_style": "success", "description": "", "description_tooltip": null, +<<<<<<< Updated upstream "layout": "IPY_MODEL_3ca1fdf67c58426aacd9c07fed7cefd3", "max": 1, "min": 0, @@ -4141,6 +5421,17 @@ } }, "b79197026e4a45918a9c6e005157bfa9": { +======= + "layout": "IPY_MODEL_a5676481e43b42828c42c892c609c0f7", + "max": 612, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_415cc6dd095c4b4d9851520604e72b60", + "value": 612 + } + }, + "2785f993e7a442d5a6961b2206f10696": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -4155,6 +5446,7 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, +<<<<<<< Updated upstream "layout": "IPY_MODEL_e2503d7cb2a24394890ec803ac9958d8", "placeholder": "​", "style": "IPY_MODEL_9909c392be2c430e94a5a52b498fc1e7", @@ -4162,6 +5454,15 @@ } }, "b686f1677bfa448c954b3e6c682ba44a": { +======= + "layout": "IPY_MODEL_ccb4343892c142a6be6ae701dc57549f", + "placeholder": "​", + "style": "IPY_MODEL_1d8a85e7bc0442eb86180fb836052311", + "value": " 612/612 [00:00<00:00, 41.4kB/s]" + } + }, + "0aa12df801754c778dd6f433d2c72192": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4213,7 +5514,11 @@ "width": null } }, +<<<<<<< Updated upstream "478e655904bc4ebfa5b95e32c7d1be34": { +======= + "9ad1925e1bdd42e4b1b25fd75c5c97cb": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4265,7 +5570,11 @@ "width": null } }, +<<<<<<< Updated upstream "be9be7f039dc479ca7f8f6eef36e7afd": { +======= + "d615cfe64ba4424480fd0b524a93739e": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -4280,7 +5589,11 @@ "description_width": "" } }, +<<<<<<< Updated upstream "3ca1fdf67c58426aacd9c07fed7cefd3": { +======= + "a5676481e43b42828c42c892c609c0f7": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4332,7 +5645,11 @@ "width": null } }, +<<<<<<< Updated upstream "059d58ad66344f81bcd43c98778ead66": { +======= + "415cc6dd095c4b4d9851520604e72b60": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -4348,7 +5665,11 @@ "description_width": "" } }, +<<<<<<< Updated upstream "e2503d7cb2a24394890ec803ac9958d8": { +======= + "ccb4343892c142a6be6ae701dc57549f": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4400,7 +5721,11 @@ "width": null } }, +<<<<<<< Updated upstream "9909c392be2c430e94a5a52b498fc1e7": { +======= + "1d8a85e7bc0442eb86180fb836052311": { +>>>>>>> Stashed changes "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -4414,6 +5739,3771 @@ "_view_name": "StyleView", "description_width": "" } +<<<<<<< Updated upstream +======= + }, + "177d6b45a457405b893e84c35a0fa6ea": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_fb6640484564454f8eb34b54525472fb", + "IPY_MODEL_2d97884d94e14ad29cff6806aa868d0f", + "IPY_MODEL_3f33f2ebc9a6466c94fde8c11265fa14" + ], + "layout": "IPY_MODEL_fcf4503519cb42608581fcb1a4d5741f" + } + }, + "fb6640484564454f8eb34b54525472fb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_faa1034d12da468e89260ffd739cdd9b", + "placeholder": "​", + "style": "IPY_MODEL_7524409dadf5473890440649052ae5c5", + "value": "model.safetensors: 100%" + } + }, + "2d97884d94e14ad29cff6806aa868d0f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_af650f2c2fd24624aaaea1368091f18d", + "max": 90868376, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_181b804adce24bebba5c85440075a555", + "value": 90868376 + } + }, + "3f33f2ebc9a6466c94fde8c11265fa14": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e832c08d72e646539c353dd1f754b3e7", + "placeholder": "​", + "style": "IPY_MODEL_cbcbe3a1377e4407962b21069e93e858", + "value": " 90.9M/90.9M [00:00<00:00, 195MB/s]" + } + }, + "fcf4503519cb42608581fcb1a4d5741f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "faa1034d12da468e89260ffd739cdd9b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7524409dadf5473890440649052ae5c5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "af650f2c2fd24624aaaea1368091f18d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "181b804adce24bebba5c85440075a555": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e832c08d72e646539c353dd1f754b3e7": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cbcbe3a1377e4407962b21069e93e858": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8b1b0bef47d741369701bc9c6043682e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ed75df76ffcf4824a221c03d3da1ac51", + "IPY_MODEL_4e3e9f2ecee540d5abcff87038a36329", + "IPY_MODEL_08ece5d22eb546de86585cbe790db92a" + ], + "layout": "IPY_MODEL_50216956a1bc4da7b2895b0a5fc2510a" + } + }, + "ed75df76ffcf4824a221c03d3da1ac51": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fd63f59c20c241ecbc5a4eacc93a208b", + "placeholder": "​", + "style": "IPY_MODEL_0f5b3601f2414ae389d1a65d2d467303", + "value": "tokenizer_config.json: 100%" + } + }, + "4e3e9f2ecee540d5abcff87038a36329": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1773ba8aa7e34b34bf846534cc8524d7", + "max": 350, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_21dd62ce373743fea99e19026deb495b", + "value": 350 + } + }, + "08ece5d22eb546de86585cbe790db92a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_880eeafc981c43be8d5cbcca78360721", + "placeholder": "​", + "style": "IPY_MODEL_b883607853b64f50b1aa70679930bf62", + "value": " 350/350 [00:00<00:00, 25.1kB/s]" + } + }, + "50216956a1bc4da7b2895b0a5fc2510a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fd63f59c20c241ecbc5a4eacc93a208b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0f5b3601f2414ae389d1a65d2d467303": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1773ba8aa7e34b34bf846534cc8524d7": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "21dd62ce373743fea99e19026deb495b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "880eeafc981c43be8d5cbcca78360721": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b883607853b64f50b1aa70679930bf62": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4ff5e52281134d12ad092dbc5ec34a41": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_98a2e4db31d64fbf9b730234e059642d", + "IPY_MODEL_c19e191046a242ecad1d5a2922e4b4c1", + "IPY_MODEL_173b58b5a7ad4470bf52dc6664afdf5f" + ], + "layout": "IPY_MODEL_a01077466bab4b66bfd1f5f1e47655c6" + } + }, + "98a2e4db31d64fbf9b730234e059642d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_641688bbdd804e61ba91930b464515ae", + "placeholder": "​", + "style": "IPY_MODEL_bbb7d2b67aae4fff9b6cc0ffdd7ca392", + "value": "vocab.txt: 100%" + } + }, + "c19e191046a242ecad1d5a2922e4b4c1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c1b74a9bb5c4451f821bb7ad58fd2f4e", + "max": 231508, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_97c506ac0ea542deb87df26bcfe0cf38", + "value": 231508 + } + }, + "173b58b5a7ad4470bf52dc6664afdf5f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_28a8f5def41e42b98b79128a988c5d00", + "placeholder": "​", + "style": "IPY_MODEL_356c183407d647c6855624dcf0b5b7b4", + "value": " 232k/232k [00:00<00:00, 9.89MB/s]" + } + }, + "a01077466bab4b66bfd1f5f1e47655c6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "641688bbdd804e61ba91930b464515ae": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bbb7d2b67aae4fff9b6cc0ffdd7ca392": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c1b74a9bb5c4451f821bb7ad58fd2f4e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "97c506ac0ea542deb87df26bcfe0cf38": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "28a8f5def41e42b98b79128a988c5d00": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "356c183407d647c6855624dcf0b5b7b4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "478aa724d228479f956c276c07096a12": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b33f3ccf934545f5b67585e9f374638a", + "IPY_MODEL_0536331dd18c444db47d12d37859a5c7", + "IPY_MODEL_ccfff6f6b5bd4e199bbe0558d44060c6" + ], + "layout": "IPY_MODEL_bd8910dcc15f4b64a0b0ab46f5bae139" + } + }, + "b33f3ccf934545f5b67585e9f374638a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_826e65efc33947f5b2a181a49370320a", + "placeholder": "​", + "style": "IPY_MODEL_ae68b3263e3941ad931b444872c86223", + "value": "tokenizer.json: 100%" + } + }, + "0536331dd18c444db47d12d37859a5c7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_acb7285b033d429381194688c00bcefa", + "max": 466247, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_5f22c61c5dba4299837084ad0445f224", + "value": 466247 + } + }, + "ccfff6f6b5bd4e199bbe0558d44060c6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f47a188af6bd47529c4c04815eba3dec", + "placeholder": "​", + "style": "IPY_MODEL_352b3ab3c8854c2db924b49eb6ba2ff0", + "value": " 466k/466k [00:00<00:00, 3.63MB/s]" + } + }, + "bd8910dcc15f4b64a0b0ab46f5bae139": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "826e65efc33947f5b2a181a49370320a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ae68b3263e3941ad931b444872c86223": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "acb7285b033d429381194688c00bcefa": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5f22c61c5dba4299837084ad0445f224": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f47a188af6bd47529c4c04815eba3dec": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "352b3ab3c8854c2db924b49eb6ba2ff0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "cebb41c23b4b4c12999a5d61de4dae59": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8053a2996e9d4789b5e6ec4b17523bd8", + "IPY_MODEL_2e23bfa137c949d18c591417042d7173", + "IPY_MODEL_c140a3b214214b8887cea17aa7546b53" + ], + "layout": "IPY_MODEL_e38dcd664d624ed88b01015fed2349e4" + } + }, + "8053a2996e9d4789b5e6ec4b17523bd8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9bad8d9ba6d04483ac7ba3114bc3f5ae", + "placeholder": "​", + "style": "IPY_MODEL_e61865e0066448cf916a0fcc09febee2", + "value": "special_tokens_map.json: 100%" + } + }, + "2e23bfa137c949d18c591417042d7173": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a32887f7f4bd4818ae0c12c757f647a0", + "max": 112, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_9c19ac232996472da041e2b2b47867df", + "value": 112 + } + }, + "c140a3b214214b8887cea17aa7546b53": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d93bd41e0cba43baab9909276772646e", + "placeholder": "​", + "style": "IPY_MODEL_ab12ccc65ed540c8817f77b1719ac7b8", + "value": " 112/112 [00:00<00:00, 9.38kB/s]" + } + }, + "e38dcd664d624ed88b01015fed2349e4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9bad8d9ba6d04483ac7ba3114bc3f5ae": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e61865e0066448cf916a0fcc09febee2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a32887f7f4bd4818ae0c12c757f647a0": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9c19ac232996472da041e2b2b47867df": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d93bd41e0cba43baab9909276772646e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ab12ccc65ed540c8817f77b1719ac7b8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "dd526fb72c3846308c68652c744e67a8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_52575936204e491e980569b23d26c302", + "IPY_MODEL_2e785e67be9144279f6dfdc5879c913d", + "IPY_MODEL_e4738aed83af45f09c756557baaf73b5" + ], + "layout": "IPY_MODEL_dfe76645b10741b49a4d9db3779958a4" + } + }, + "52575936204e491e980569b23d26c302": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0ab861281ab344909d6aa1aaa6950cf2", + "placeholder": "​", + "style": "IPY_MODEL_c99ea417133f4e14aa06f673edbec30c", + "value": "1_Pooling/config.json: 100%" + } + }, + "2e785e67be9144279f6dfdc5879c913d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ce36fa215a38475ca1d5f8e9c438beae", + "max": 190, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_72ef7e41f45341808f81cf9b40685cbb", + "value": 190 + } + }, + "e4738aed83af45f09c756557baaf73b5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c39742ecf7954c59bbeeb03046c9e973", + "placeholder": "​", + "style": "IPY_MODEL_f4a42dc444474eb2ae8857b44a897839", + "value": " 190/190 [00:00<00:00, 8.14kB/s]" + } + }, + "dfe76645b10741b49a4d9db3779958a4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0ab861281ab344909d6aa1aaa6950cf2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c99ea417133f4e14aa06f673edbec30c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ce36fa215a38475ca1d5f8e9c438beae": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "72ef7e41f45341808f81cf9b40685cbb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c39742ecf7954c59bbeeb03046c9e973": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f4a42dc444474eb2ae8857b44a897839": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d90ae0a531b941b4841e1ad7407fd4fc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_51d8b257a8954557b3a057438f9c7c4e", + "IPY_MODEL_7ab5d9edbdb649e2b44dcb646889792c", + "IPY_MODEL_e07333c41e8f4f95ae1253ff3af96232" + ], + "layout": "IPY_MODEL_df158a470e1a4aec80f74c8d524a391b" + } + }, + "51d8b257a8954557b3a057438f9c7c4e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_116223f0414d47eb9a63a60751c474e9", + "placeholder": "​", + "style": "IPY_MODEL_ff47333fbc684a9f8bf916ce791254b6", + "value": "Batches: 100%" + } + }, + "7ab5d9edbdb649e2b44dcb646889792c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e7066ddf191e437faa1d84e44a5410ee", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_4355f8bc9c434b78b82a3a219f3a1b77", + "value": 1 + } + }, + "e07333c41e8f4f95ae1253ff3af96232": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_61399af883fd466aa13c35ae788e2cc3", + "placeholder": "​", + "style": "IPY_MODEL_64c5428d11134056ba1c84e7290d105a", + "value": " 1/1 [00:01<00:00,  1.22s/it]" + } + }, + "df158a470e1a4aec80f74c8d524a391b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "116223f0414d47eb9a63a60751c474e9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ff47333fbc684a9f8bf916ce791254b6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e7066ddf191e437faa1d84e44a5410ee": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4355f8bc9c434b78b82a3a219f3a1b77": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "61399af883fd466aa13c35ae788e2cc3": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "64c5428d11134056ba1c84e7290d105a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6762003e4d5c49349aabd82e944fbf8b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9259f686497140db8424dd5958a740ce", + "IPY_MODEL_5be4d9bfe4ca41ddb451527796e365ab", + "IPY_MODEL_e1c4cb8a3240434eb807e0122ef5f33a" + ], + "layout": "IPY_MODEL_49e457648bc145c7ba4ce448121c380f" + } + }, + "9259f686497140db8424dd5958a740ce": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d76185a6ff05423a98f9927c3d02feea", + "placeholder": "​", + "style": "IPY_MODEL_96cbf379d9bf41baa5e38db62d4b1e3d", + "value": "Batches: 100%" + } + }, + "5be4d9bfe4ca41ddb451527796e365ab": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fd8f04c37df94cdaa77aa78efd3f3c73", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_a3c076e149104d0f8c50eae37dcc3def", + "value": 1 + } + }, + "e1c4cb8a3240434eb807e0122ef5f33a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1d9fd701a7ea467ab2f3d17e0e978f8c", + "placeholder": "​", + "style": "IPY_MODEL_bc09309977b34483bee47453aa2c7a62", + "value": " 1/1 [00:00<00:00, 15.52it/s]" + } + }, + "49e457648bc145c7ba4ce448121c380f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d76185a6ff05423a98f9927c3d02feea": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "96cbf379d9bf41baa5e38db62d4b1e3d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "fd8f04c37df94cdaa77aa78efd3f3c73": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a3c076e149104d0f8c50eae37dcc3def": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1d9fd701a7ea467ab2f3d17e0e978f8c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bc09309977b34483bee47453aa2c7a62": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "77ba019b3e414410b330971b0e62c9cc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_75f2ed98417e4f5b8653057b66c5def7", + "IPY_MODEL_44b5ece960d746438c720e0e0a9aa22d", + "IPY_MODEL_98a85a047d034c018151b9356cb6d641" + ], + "layout": "IPY_MODEL_6fb7d255e5e540b6b12235954ef1ec8d" + } + }, + "75f2ed98417e4f5b8653057b66c5def7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a9496e2bf3794874af30212172dc62b9", + "placeholder": "​", + "style": "IPY_MODEL_3413c41edf514291a1495d2478e01eac", + "value": "Batches: 100%" + } + }, + "44b5ece960d746438c720e0e0a9aa22d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_25959703abf84ef5a70094644a7a1691", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_ffa86fa04e1040d5a7f6900e924abf61", + "value": 1 + } + }, + "98a85a047d034c018151b9356cb6d641": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a885e06b118f4895b3f3881a618c6426", + "placeholder": "​", + "style": "IPY_MODEL_9a0a2851ad7f4a53ac931bff7150eb27", + "value": " 1/1 [00:00<00:00, 16.31it/s]" + } + }, + "6fb7d255e5e540b6b12235954ef1ec8d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a9496e2bf3794874af30212172dc62b9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3413c41edf514291a1495d2478e01eac": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "25959703abf84ef5a70094644a7a1691": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ffa86fa04e1040d5a7f6900e924abf61": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a885e06b118f4895b3f3881a618c6426": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9a0a2851ad7f4a53ac931bff7150eb27": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f5390948e7fc480f86e2f60843b0418e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_171e8a4cabac4b2ca64cd30970c8f21c", + "IPY_MODEL_c9756fc8f7c94174a265c878606dc376", + "IPY_MODEL_d5e18738455149f4928aacc48f0967e4" + ], + "layout": "IPY_MODEL_ca932a302deb429982db22944598f503" + } + }, + "171e8a4cabac4b2ca64cd30970c8f21c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_96c5c997e80b4579a33e54f3542da86a", + "placeholder": "​", + "style": "IPY_MODEL_88dc1cc48508416fbdce6c05ad25f06d", + "value": "Batches: 100%" + } + }, + "c9756fc8f7c94174a265c878606dc376": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9ff97d20245e4217aab115b1bb62d897", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_40d203e27ddc4a929b27d0928434f23a", + "value": 1 + } + }, + "d5e18738455149f4928aacc48f0967e4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e18157e06e464fe8b3ee412b7f1b6c9b", + "placeholder": "​", + "style": "IPY_MODEL_2ca57033b1854af586ec96a77c96dd2c", + "value": " 1/1 [00:00<00:00, 13.19it/s]" + } + }, + "ca932a302deb429982db22944598f503": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "96c5c997e80b4579a33e54f3542da86a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "88dc1cc48508416fbdce6c05ad25f06d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9ff97d20245e4217aab115b1bb62d897": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "40d203e27ddc4a929b27d0928434f23a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e18157e06e464fe8b3ee412b7f1b6c9b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2ca57033b1854af586ec96a77c96dd2c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4d9cb8791fde4b85983f5a83fe30975c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e51fda70dd054b40b867cb59694419db", + "IPY_MODEL_96c295f6ae6e4a449b6f8acad2943993", + "IPY_MODEL_9eca8287cc5d4c96a99b70d2870eb830" + ], + "layout": "IPY_MODEL_b0ec76eb983c4ccba08df2cfe8f65f2a" + } + }, + "e51fda70dd054b40b867cb59694419db": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_703eea437c04465eb2095b37ac30bb56", + "placeholder": "​", + "style": "IPY_MODEL_df2e980119a6471297c65348a5152066", + "value": "Batches: 100%" + } + }, + "96c295f6ae6e4a449b6f8acad2943993": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c8e1576d9e1e4674ba789e68bd5fba92", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_1cd91700b19d456db5d0cf107dc7c1c0", + "value": 1 + } + }, + "9eca8287cc5d4c96a99b70d2870eb830": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_337df483bf7d4d8a81445137d7c66d13", + "placeholder": "​", + "style": "IPY_MODEL_575b6200c7a246dba15f94930b7f4487", + "value": " 1/1 [00:00<00:00, 13.49it/s]" + } + }, + "b0ec76eb983c4ccba08df2cfe8f65f2a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "703eea437c04465eb2095b37ac30bb56": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "df2e980119a6471297c65348a5152066": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c8e1576d9e1e4674ba789e68bd5fba92": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1cd91700b19d456db5d0cf107dc7c1c0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "337df483bf7d4d8a81445137d7c66d13": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "575b6200c7a246dba15f94930b7f4487": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } +>>>>>>> Stashed changes } } }