Merge branch 'main' into fix/nvidia-safety-provider-endpoint-4189

This commit is contained in:
Roy Belio 2025-11-20 13:30:11 +02:00 committed by GitHub
commit f8f28344a5
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
117 changed files with 16294 additions and 769 deletions

View file

@ -211,3 +211,23 @@ def test_asymmetric_embeddings(llama_stack_client, embedding_model_id):
assert query_response.embeddings is not None
```
## TypeScript Client Replays
TypeScript SDK tests can run alongside Python tests when testing against `server:<config>` stacks. Set `TS_CLIENT_PATH` to the path or version of `llama-stack-client-typescript` to enable:
```bash
# Use published npm package (responses suite)
TS_CLIENT_PATH=^0.3.2 scripts/integration-tests.sh --stack-config server:ci-tests --suite responses --setup gpt
# Use local checkout from ~/.cache (recommended for development)
git clone https://github.com/llamastack/llama-stack-client-typescript.git ~/.cache/llama-stack-client-typescript
TS_CLIENT_PATH=~/.cache/llama-stack-client-typescript scripts/integration-tests.sh --stack-config server:ci-tests --suite responses --setup gpt
# Run base suite with TypeScript tests
TS_CLIENT_PATH=~/.cache/llama-stack-client-typescript scripts/integration-tests.sh --stack-config server:ci-tests --suite base --setup ollama
```
TypeScript tests run immediately after Python tests pass, using the same replay fixtures. The mapping between Python suites/setups and TypeScript test files is defined in `tests/integration/client-typescript/suites.json`.
If `TS_CLIENT_PATH` is unset, TypeScript tests are skipped entirely.

View file

@ -516,169 +516,3 @@ def test_response_with_instructions(openai_client, client_with_models, text_mode
# Verify instructions from previous response was not carried over to the next response
assert response_with_instructions2.instructions == instructions2
@pytest.mark.skip(reason="Tool calling is not reliable.")
def test_max_tool_calls_with_function_tools(openai_client, client_with_models, text_model_id):
"""Test handling of max_tool_calls with function tools in responses."""
if isinstance(client_with_models, LlamaStackAsLibraryClient):
pytest.skip("OpenAI responses are not supported when testing with library client yet.")
client = openai_client
max_tool_calls = 1
tools = [
{
"type": "function",
"name": "get_weather",
"description": "Get weather information for a specified location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city name (e.g., 'New York', 'London')",
},
},
},
},
{
"type": "function",
"name": "get_time",
"description": "Get current time for a specified location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city name (e.g., 'New York', 'London')",
},
},
},
},
]
# First create a response that triggers function tools
response = client.responses.create(
model=text_model_id,
input="Can you tell me the weather in Paris and the current time?",
tools=tools,
stream=False,
max_tool_calls=max_tool_calls,
)
# Verify we got two function calls and that the max_tool_calls do not affect function tools
assert len(response.output) == 2
assert response.output[0].type == "function_call"
assert response.output[0].name == "get_weather"
assert response.output[0].status == "completed"
assert response.output[1].type == "function_call"
assert response.output[1].name == "get_time"
assert response.output[0].status == "completed"
# Verify we have a valid max_tool_calls field
assert response.max_tool_calls == max_tool_calls
def test_max_tool_calls_invalid(openai_client, client_with_models, text_model_id):
"""Test handling of invalid max_tool_calls in responses."""
if isinstance(client_with_models, LlamaStackAsLibraryClient):
pytest.skip("OpenAI responses are not supported when testing with library client yet.")
client = openai_client
input = "Search for today's top technology news."
invalid_max_tool_calls = 0
tools = [
{"type": "web_search"},
]
# Create a response with an invalid max_tool_calls value i.e. 0
# Handle ValueError from LLS and BadRequestError from OpenAI client
with pytest.raises((ValueError, BadRequestError)) as excinfo:
client.responses.create(
model=text_model_id,
input=input,
tools=tools,
stream=False,
max_tool_calls=invalid_max_tool_calls,
)
error_message = str(excinfo.value)
assert f"Invalid max_tool_calls={invalid_max_tool_calls}; should be >= 1" in error_message, (
f"Expected error message about invalid max_tool_calls, got: {error_message}"
)
def test_max_tool_calls_with_builtin_tools(openai_client, client_with_models, text_model_id):
"""Test handling of max_tool_calls with built-in tools in responses."""
if isinstance(client_with_models, LlamaStackAsLibraryClient):
pytest.skip("OpenAI responses are not supported when testing with library client yet.")
client = openai_client
input = "Search for today's top technology and a positive news story. You MUST make exactly two separate web search calls."
max_tool_calls = [1, 5]
tools = [
{"type": "web_search"},
]
# First create a response that triggers web_search tools without max_tool_calls
response = client.responses.create(
model=text_model_id,
input=input,
tools=tools,
stream=False,
)
# Verify we got two web search calls followed by a message
assert len(response.output) == 3
assert response.output[0].type == "web_search_call"
assert response.output[0].status == "completed"
assert response.output[1].type == "web_search_call"
assert response.output[1].status == "completed"
assert response.output[2].type == "message"
assert response.output[2].status == "completed"
assert response.output[2].role == "assistant"
# Next create a response that triggers web_search tools with max_tool_calls set to 1
response_2 = client.responses.create(
model=text_model_id,
input=input,
tools=tools,
stream=False,
max_tool_calls=max_tool_calls[0],
)
# Verify we got one web search tool call followed by a message
assert len(response_2.output) == 2
assert response_2.output[0].type == "web_search_call"
assert response_2.output[0].status == "completed"
assert response_2.output[1].type == "message"
assert response_2.output[1].status == "completed"
assert response_2.output[1].role == "assistant"
# Verify we have a valid max_tool_calls field
assert response_2.max_tool_calls == max_tool_calls[0]
# Finally create a response that triggers web_search tools with max_tool_calls set to 5
response_3 = client.responses.create(
model=text_model_id,
input=input,
tools=tools,
stream=False,
max_tool_calls=max_tool_calls[1],
)
# Verify we got two web search calls followed by a message
assert len(response_3.output) == 3
assert response_3.output[0].type == "web_search_call"
assert response_3.output[0].status == "completed"
assert response_3.output[1].type == "web_search_call"
assert response_3.output[1].status == "completed"
assert response_3.output[2].type == "message"
assert response_3.output[2].status == "completed"
assert response_3.output[2].role == "assistant"
# Verify we have a valid max_tool_calls field
assert response_3.max_tool_calls == max_tool_calls[1]

View file

@ -0,0 +1,104 @@
// Copyright (c) Meta Platforms, Inc. and affiliates.
// All rights reserved.
//
// This source code is licensed under the terms described in the LICENSE file in
// the root directory of this source tree.
/**
* Integration tests for Inference API (Chat Completions).
* Ported from: llama-stack/tests/integration/inference/test_openai_completion.py
*
* IMPORTANT: Test cases must match EXACTLY with Python tests to use recorded API responses.
*/
import { createTestClient, requireTextModel } from '../setup';
describe('Inference API - Chat Completions', () => {
// Test cases matching llama-stack/tests/integration/test_cases/inference/chat_completion.json
const chatCompletionTestCases = [
{
id: 'non_streaming_01',
question: 'Which planet do humans live on?',
expected: 'earth',
testId:
'tests/integration/inference/test_openai_completion.py::test_openai_chat_completion_non_streaming[client_with_models-txt=ollama/llama3.2:3b-instruct-fp16-inference:chat_completion:non_streaming_01]',
},
{
id: 'non_streaming_02',
question: 'Which planet has rings around it with a name starting with letter S?',
expected: 'saturn',
testId:
'tests/integration/inference/test_openai_completion.py::test_openai_chat_completion_non_streaming[client_with_models-txt=ollama/llama3.2:3b-instruct-fp16-inference:chat_completion:non_streaming_02]',
},
];
const streamingTestCases = [
{
id: 'streaming_01',
question: "What's the name of the Sun in latin?",
expected: 'sol',
testId:
'tests/integration/inference/test_openai_completion.py::test_openai_chat_completion_streaming[client_with_models-txt=ollama/llama3.2:3b-instruct-fp16-inference:chat_completion:streaming_01]',
},
{
id: 'streaming_02',
question: 'What is the name of the US captial?',
expected: 'washington',
testId:
'tests/integration/inference/test_openai_completion.py::test_openai_chat_completion_streaming[client_with_models-txt=ollama/llama3.2:3b-instruct-fp16-inference:chat_completion:streaming_02]',
},
];
test.each(chatCompletionTestCases)(
'chat completion non-streaming: $id',
async ({ question, expected, testId }) => {
const client = createTestClient(testId);
const textModel = requireTextModel();
const response = await client.chat.completions.create({
model: textModel,
messages: [
{
role: 'user',
content: question,
},
],
stream: false,
});
// Non-streaming responses have choices with message property
const choice = response.choices[0];
expect(choice).toBeDefined();
if (!choice || !('message' in choice)) {
throw new Error('Expected non-streaming response with message');
}
const content = choice.message.content;
expect(content).toBeDefined();
const messageContent = typeof content === 'string' ? content.toLowerCase().trim() : '';
expect(messageContent.length).toBeGreaterThan(0);
expect(messageContent).toContain(expected.toLowerCase());
},
);
test.each(streamingTestCases)('chat completion streaming: $id', async ({ question, expected, testId }) => {
const client = createTestClient(testId);
const textModel = requireTextModel();
const stream = await client.chat.completions.create({
model: textModel,
messages: [{ role: 'user', content: question }],
stream: true,
});
const streamedContent: string[] = [];
for await (const chunk of stream) {
if (chunk.choices && chunk.choices.length > 0 && chunk.choices[0]?.delta?.content) {
streamedContent.push(chunk.choices[0].delta.content);
}
}
expect(streamedContent.length).toBeGreaterThan(0);
const fullContent = streamedContent.join('').toLowerCase().trim();
expect(fullContent).toContain(expected.toLowerCase());
});
});

View file

@ -0,0 +1,132 @@
// Copyright (c) Meta Platforms, Inc. and affiliates.
// All rights reserved.
//
// This source code is licensed under the terms described in the LICENSE file in
// the root directory of this source tree.
/**
* Integration tests for Responses API.
* Ported from: llama-stack/tests/integration/responses/test_basic_responses.py
*
* IMPORTANT: Test cases and IDs must match EXACTLY with Python tests to use recorded API responses.
*/
import { createTestClient, requireTextModel, getResponseOutputText } from '../setup';
describe('Responses API - Basic', () => {
// Test cases matching llama-stack/tests/integration/responses/fixtures/test_cases.py
const basicTestCases = [
{
id: 'earth',
input: 'Which planet do humans live on?',
expected: 'earth',
// Use client_with_models fixture to match non-streaming recordings
testId:
'tests/integration/responses/test_basic_responses.py::test_response_non_streaming_basic[client_with_models-txt=openai/gpt-4o-earth]',
},
{
id: 'saturn',
input: 'Which planet has rings around it with a name starting with letter S?',
expected: 'saturn',
testId:
'tests/integration/responses/test_basic_responses.py::test_response_non_streaming_basic[client_with_models-txt=openai/gpt-4o-saturn]',
},
];
test.each(basicTestCases)('non-streaming basic response: $id', async ({ input, expected, testId }) => {
// Create client with test_id for all requests
const client = createTestClient(testId);
const textModel = requireTextModel();
// Create a response
const response = await client.responses.create({
model: textModel,
input,
stream: false,
});
// Verify response has content
const outputText = getResponseOutputText(response).toLowerCase().trim();
expect(outputText.length).toBeGreaterThan(0);
expect(outputText).toContain(expected.toLowerCase());
// Verify usage is reported
expect(response.usage).toBeDefined();
expect(response.usage!.input_tokens).toBeGreaterThan(0);
expect(response.usage!.output_tokens).toBeGreaterThan(0);
expect(response.usage!.total_tokens).toBe(response.usage!.input_tokens + response.usage!.output_tokens);
// Verify stored response matches
const retrievedResponse = await client.responses.retrieve(response.id);
expect(getResponseOutputText(retrievedResponse)).toBe(getResponseOutputText(response));
// Test follow-up with previous_response_id
const nextResponse = await client.responses.create({
model: textModel,
input: 'Repeat your previous response in all caps.',
previous_response_id: response.id,
});
const nextOutputText = getResponseOutputText(nextResponse).trim();
expect(nextOutputText).toContain(expected.toUpperCase());
});
test.each(basicTestCases)('streaming basic response: $id', async ({ input, expected, testId }) => {
// Modify test_id for streaming variant
const streamingTestId = testId.replace(
'test_response_non_streaming_basic',
'test_response_streaming_basic',
);
const client = createTestClient(streamingTestId);
const textModel = requireTextModel();
// Create a streaming response
const stream = await client.responses.create({
model: textModel,
input,
stream: true,
});
const events: any[] = [];
let responseId = '';
for await (const chunk of stream) {
events.push(chunk);
if (chunk.type === 'response.created') {
// Verify response.created is the first event
expect(events.length).toBe(1);
expect(chunk.response.status).toBe('in_progress');
responseId = chunk.response.id;
} else if (chunk.type === 'response.completed') {
// Verify response.completed comes after response.created
expect(events.length).toBeGreaterThanOrEqual(2);
expect(chunk.response.status).toBe('completed');
expect(chunk.response.id).toBe(responseId);
// Verify content quality
const outputText = getResponseOutputText(chunk.response).toLowerCase().trim();
expect(outputText.length).toBeGreaterThan(0);
expect(outputText).toContain(expected.toLowerCase());
// Verify usage is reported
expect(chunk.response.usage).toBeDefined();
expect(chunk.response.usage!.input_tokens).toBeGreaterThan(0);
expect(chunk.response.usage!.output_tokens).toBeGreaterThan(0);
expect(chunk.response.usage!.total_tokens).toBe(
chunk.response.usage!.input_tokens + chunk.response.usage!.output_tokens,
);
}
}
// Verify we got both events
expect(events.length).toBeGreaterThanOrEqual(2);
const firstEvent = events[0];
const lastEvent = events[events.length - 1];
expect(firstEvent.type).toBe('response.created');
expect(lastEvent.type).toBe('response.completed');
// Verify stored response matches streamed response
const retrievedResponse = await client.responses.retrieve(responseId);
expect(getResponseOutputText(retrievedResponse)).toBe(getResponseOutputText(lastEvent.response));
});
});

View file

@ -0,0 +1,31 @@
// Copyright (c) Meta Platforms, Inc. and affiliates.
// All rights reserved.
//
// This source code is licensed under the terms described in the LICENSE file in
// the root directory of this source tree.
/** @type {import('ts-jest').JestConfigWithTsJest} */
module.exports = {
preset: 'ts-jest/presets/default-esm',
testEnvironment: 'node',
extensionsToTreatAsEsm: ['.ts'],
moduleNameMapper: {
'^(\\.{1,2}/.*)\\.js$': '$1',
},
transform: {
'^.+\\.tsx?$': [
'ts-jest',
{
useESM: true,
tsconfig: {
module: 'ES2022',
moduleResolution: 'bundler',
},
},
],
},
testMatch: ['<rootDir>/__tests__/**/*.test.ts'],
setupFilesAfterEnv: ['<rootDir>/setup.ts'],
testTimeout: 60000, // 60 seconds (integration tests can be slow)
watchman: false, // Disable watchman to avoid permission issues
};

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,18 @@
{
"name": "llama-stack-typescript-integration-tests",
"version": "0.0.1",
"private": true,
"description": "TypeScript client integration tests for Llama Stack",
"scripts": {
"test": "node run-tests.js"
},
"devDependencies": {
"@swc/core": "^1.3.102",
"@swc/jest": "^0.2.29",
"@types/jest": "^29.4.0",
"@types/node": "^20.0.0",
"jest": "^29.4.0",
"ts-jest": "^29.1.0",
"typescript": "^5.0.0"
}
}

View file

@ -0,0 +1,63 @@
#!/usr/bin/env node
// Copyright (c) Meta Platforms, Inc. and affiliates.
// All rights reserved.
//
// This source code is licensed under the terms described in the LICENSE file in
// the root directory of this source tree.
/**
* Test runner that finds and executes TypeScript tests based on suite/setup mapping.
* Called by integration-tests.sh via npm test.
*/
const fs = require('fs');
const path = require('path');
const { execSync } = require('child_process');
const suite = process.env.LLAMA_STACK_TEST_SUITE;
const setup = process.env.LLAMA_STACK_TEST_SETUP || '';
if (!suite) {
console.error('Error: LLAMA_STACK_TEST_SUITE environment variable is required');
process.exit(1);
}
// Read suites.json to find matching test files
const suitesPath = path.join(__dirname, 'suites.json');
if (!fs.existsSync(suitesPath)) {
console.log(`No TypeScript tests configured (${suitesPath} not found)`);
process.exit(0);
}
const suites = JSON.parse(fs.readFileSync(suitesPath, 'utf-8'));
// Find matching entry
let testFiles = [];
for (const entry of suites) {
if (entry.suite !== suite) {
continue;
}
const entrySetup = entry.setup || '';
if (entrySetup && entrySetup !== setup) {
continue;
}
testFiles = entry.files || [];
break;
}
if (testFiles.length === 0) {
console.log(`No TypeScript integration tests mapped for suite ${suite} (setup ${setup})`);
process.exit(0);
}
console.log(`Running TypeScript tests for suite ${suite} (setup ${setup}): ${testFiles.join(', ')}`);
// Run Jest with the mapped test files
try {
execSync(`npx jest --config jest.integration.config.js ${testFiles.join(' ')}`, {
stdio: 'inherit',
cwd: __dirname,
});
} catch (error) {
process.exit(error.status || 1);
}

View file

@ -0,0 +1,162 @@
// Copyright (c) Meta Platforms, Inc. and affiliates.
// All rights reserved.
//
// This source code is licensed under the terms described in the LICENSE file in
// the root directory of this source tree.
/**
* Global setup for integration tests.
* This file mimics pytest's fixture system by providing shared test configuration.
*/
import LlamaStackClient from 'llama-stack-client';
/**
* Load test configuration from the Python setup system.
* This reads setup definitions from tests/integration/suites.py via get_setup_env.py.
*/
function loadTestConfig() {
const baseURL = process.env['TEST_API_BASE_URL'];
const setupName = process.env['LLAMA_STACK_TEST_SETUP'];
const textModel = process.env['LLAMA_STACK_TEST_TEXT_MODEL'];
const embeddingModel = process.env['LLAMA_STACK_TEST_EMBEDDING_MODEL'];
if (!baseURL) {
throw new Error(
'TEST_API_BASE_URL is required for integration tests. ' +
'Run tests using: ./scripts/integration-test.sh',
);
}
return {
baseURL,
textModel,
embeddingModel,
setupName,
};
}
// Read configuration from environment variables (set by scripts/integration-test.sh)
export const TEST_CONFIG = loadTestConfig();
// Validate required configuration
beforeAll(() => {
console.log('\n=== Integration Test Configuration ===');
console.log(`Base URL: ${TEST_CONFIG.baseURL}`);
console.log(`Setup: ${TEST_CONFIG.setupName || 'NOT SET'}`);
console.log(
`Text Model: ${TEST_CONFIG.textModel || 'NOT SET - tests requiring text model will be skipped'}`,
);
console.log(
`Embedding Model: ${
TEST_CONFIG.embeddingModel || 'NOT SET - tests requiring embedding model will be skipped'
}`,
);
console.log('=====================================\n');
});
/**
* Create a client instance for integration tests.
* Mimics pytest's `llama_stack_client` fixture.
*
* @param testId - Test ID to send in X-LlamaStack-Provider-Data header for replay mode.
* Format: "tests/integration/responses/test_basic_responses.py::test_name[params]"
*/
export function createTestClient(testId?: string): LlamaStackClient {
const headers: Record<string, string> = {};
// In server mode with replay, send test ID for recording isolation
if (process.env['LLAMA_STACK_TEST_STACK_CONFIG_TYPE'] === 'server' && testId) {
headers['X-LlamaStack-Provider-Data'] = JSON.stringify({
__test_id: testId,
});
}
return new LlamaStackClient({
baseURL: TEST_CONFIG.baseURL,
timeout: 60000, // 60 seconds
defaultHeaders: headers,
});
}
/**
* Skip test if required model is not configured.
* Mimics pytest's `skip_if_no_model` autouse fixture.
*/
export function skipIfNoModel(modelType: 'text' | 'embedding'): typeof test {
const model = modelType === 'text' ? TEST_CONFIG.textModel : TEST_CONFIG.embeddingModel;
if (!model) {
const envVar = modelType === 'text' ? 'LLAMA_STACK_TEST_TEXT_MODEL' : 'LLAMA_STACK_TEST_EMBEDDING_MODEL';
const message = `Skipping: ${modelType} model not configured (set ${envVar})`;
return test.skip.bind(test) as typeof test;
}
return test;
}
/**
* Get the configured text model, throwing if not set.
* Use this in tests that absolutely require a text model.
*/
export function requireTextModel(): string {
if (!TEST_CONFIG.textModel) {
throw new Error(
'LLAMA_STACK_TEST_TEXT_MODEL environment variable is required. ' +
'Run tests using: ./scripts/integration-test.sh',
);
}
return TEST_CONFIG.textModel;
}
/**
* Get the configured embedding model, throwing if not set.
* Use this in tests that absolutely require an embedding model.
*/
export function requireEmbeddingModel(): string {
if (!TEST_CONFIG.embeddingModel) {
throw new Error(
'LLAMA_STACK_TEST_EMBEDDING_MODEL environment variable is required. ' +
'Run tests using: ./scripts/integration-test.sh',
);
}
return TEST_CONFIG.embeddingModel;
}
/**
* Extracts aggregated text output from a ResponseObject.
* This concatenates all text content from the response's output array.
*
* Copied from llama-stack-client's response-helpers until it's available in published version.
*/
export function getResponseOutputText(response: any): string {
const pieces: string[] = [];
for (const output of response.output ?? []) {
if (!output || output.type !== 'message') {
continue;
}
const content = output.content;
if (typeof content === 'string') {
pieces.push(content);
continue;
}
if (!Array.isArray(content)) {
continue;
}
for (const item of content) {
if (typeof item === 'string') {
pieces.push(item);
continue;
}
if (item && item.type === 'output_text' && 'text' in item && typeof item.text === 'string') {
pieces.push(item.text);
}
}
}
return pieces.join('');
}

View file

@ -0,0 +1,12 @@
[
{
"suite": "responses",
"setup": "gpt",
"files": ["__tests__/responses.test.ts"]
},
{
"suite": "base",
"setup": "ollama",
"files": ["__tests__/inference.test.ts"]
}
]

View file

@ -0,0 +1,16 @@
{
"compilerOptions": {
"target": "ES2022",
"module": "ES2022",
"lib": ["ES2022"],
"moduleResolution": "bundler",
"esModuleInterop": true,
"allowSyntheticDefaultImports": true,
"strict": true,
"skipLibCheck": true,
"resolveJsonModule": true,
"types": ["jest", "node"]
},
"include": ["**/*.ts"],
"exclude": ["node_modules"]
}

View file

@ -0,0 +1,773 @@
{
"test_id": "tests/integration/responses/test_tool_responses.py::test_max_tool_calls_with_mcp_tools[client_with_models-txt=openai/gpt-4o]",
"request": {
"method": "POST",
"url": "https://api.openai.com/v1/v1/chat/completions",
"headers": {},
"body": {
"model": "gpt-4o",
"messages": [
{
"role": "user",
"content": "Get the experiment ID for 'boiling_point' and get the user ID for 'charlie'"
}
],
"stream": true,
"stream_options": {
"include_usage": true
},
"tools": [
{
"type": "function",
"function": {
"name": "get_user_id",
"description": "\n Get the user ID for a given username. This ID is needed for other operations.\n\n :param username: The username to look up\n :return: The user ID for the username\n ",
"parameters": {
"properties": {
"username": {
"title": "Username",
"type": "string"
}
},
"required": [
"username"
],
"title": "get_user_idArguments",
"type": "object"
}
}
},
{
"type": "function",
"function": {
"name": "get_user_permissions",
"description": "\n Get the permissions for a user ID. Requires a valid user ID from get_user_id.\n\n :param user_id: The user ID to check permissions for\n :return: The permissions for the user\n ",
"parameters": {
"properties": {
"user_id": {
"title": "User Id",
"type": "string"
}
},
"required": [
"user_id"
],
"title": "get_user_permissionsArguments",
"type": "object"
}
}
},
{
"type": "function",
"function": {
"name": "check_file_access",
"description": "\n Check if a user can access a specific file. Requires a valid user ID.\n\n :param user_id: The user ID to check access for\n :param filename: The filename to check access to\n :return: Whether the user can access the file (yes/no)\n ",
"parameters": {
"properties": {
"user_id": {
"title": "User Id",
"type": "string"
},
"filename": {
"title": "Filename",
"type": "string"
}
},
"required": [
"user_id",
"filename"
],
"title": "check_file_accessArguments",
"type": "object"
}
}
},
{
"type": "function",
"function": {
"name": "get_experiment_id",
"description": "\n Get the experiment ID for a given experiment name. This ID is needed to get results.\n\n :param experiment_name: The name of the experiment\n :return: The experiment ID\n ",
"parameters": {
"properties": {
"experiment_name": {
"title": "Experiment Name",
"type": "string"
}
},
"required": [
"experiment_name"
],
"title": "get_experiment_idArguments",
"type": "object"
}
}
},
{
"type": "function",
"function": {
"name": "get_experiment_results",
"description": "\n Get the results for an experiment ID. Requires a valid experiment ID from get_experiment_id.\n\n :param experiment_id: The experiment ID to get results for\n :return: The experiment results\n ",
"parameters": {
"properties": {
"experiment_id": {
"title": "Experiment Id",
"type": "string"
}
},
"required": [
"experiment_id"
],
"title": "get_experiment_resultsArguments",
"type": "object"
}
}
}
]
},
"endpoint": "/v1/chat/completions",
"model": "gpt-4o"
},
"response": {
"body": [
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-1997dc007d20",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": "assistant",
"tool_calls": null
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_c98e05ca17",
"usage": null,
"obfuscation": "1V9w3bXnppL"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-1997dc007d20",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 0,
"id": "call_y8S7JKR2Qhu4Bh1uxdHRcNDg",
"function": {
"arguments": "",
"name": "get_experiment_id"
},
"type": "function"
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_c98e05ca17",
"usage": null,
"obfuscation": "YEsj"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-1997dc007d20",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 0,
"id": null,
"function": {
"arguments": "{\"ex",
"name": null
},
"type": null
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_c98e05ca17",
"usage": null,
"obfuscation": "n"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-1997dc007d20",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 0,
"id": null,
"function": {
"arguments": "perim",
"name": null
},
"type": null
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_c98e05ca17",
"usage": null,
"obfuscation": "Q"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-1997dc007d20",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 0,
"id": null,
"function": {
"arguments": "ent_na",
"name": null
},
"type": null
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_c98e05ca17",
"usage": null,
"obfuscation": ""
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-1997dc007d20",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 0,
"id": null,
"function": {
"arguments": "me\":",
"name": null
},
"type": null
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_c98e05ca17",
"usage": null,
"obfuscation": "U"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-1997dc007d20",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 0,
"id": null,
"function": {
"arguments": " \"boi",
"name": null
},
"type": null
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_c98e05ca17",
"usage": null,
"obfuscation": ""
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-1997dc007d20",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 0,
"id": null,
"function": {
"arguments": "ling_p",
"name": null
},
"type": null
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_c98e05ca17",
"usage": null,
"obfuscation": ""
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-1997dc007d20",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 0,
"id": null,
"function": {
"arguments": "oint",
"name": null
},
"type": null
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_c98e05ca17",
"usage": null,
"obfuscation": "ha"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-1997dc007d20",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 0,
"id": null,
"function": {
"arguments": "\"}",
"name": null
},
"type": null
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_c98e05ca17",
"usage": null,
"obfuscation": "d5D"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-1997dc007d20",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 1,
"id": "call_HELkyZOm2fzLx2CeTH3bEcS2",
"function": {
"arguments": "",
"name": "get_user_id"
},
"type": "function"
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_c98e05ca17",
"usage": null,
"obfuscation": "0LbsjDcKz6"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-1997dc007d20",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 1,
"id": null,
"function": {
"arguments": "{\"us",
"name": null
},
"type": null
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_c98e05ca17",
"usage": null,
"obfuscation": "c"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-1997dc007d20",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 1,
"id": null,
"function": {
"arguments": "ernam",
"name": null
},
"type": null
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_c98e05ca17",
"usage": null,
"obfuscation": "9"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-1997dc007d20",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 1,
"id": null,
"function": {
"arguments": "e\": \"c",
"name": null
},
"type": null
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_c98e05ca17",
"usage": null,
"obfuscation": "7C0WFn181I3y3l"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-1997dc007d20",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 1,
"id": null,
"function": {
"arguments": "harl",
"name": null
},
"type": null
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_c98e05ca17",
"usage": null,
"obfuscation": "wf"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-1997dc007d20",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 1,
"id": null,
"function": {
"arguments": "ie\"}",
"name": null
},
"type": null
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_c98e05ca17",
"usage": null,
"obfuscation": "r"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-1997dc007d20",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": null
},
"finish_reason": "tool_calls",
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_c98e05ca17",
"usage": null,
"obfuscation": "FAci"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-1997dc007d20",
"choices": [],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_c98e05ca17",
"usage": {
"completion_tokens": 51,
"prompt_tokens": 393,
"total_tokens": 444,
"completion_tokens_details": {
"accepted_prediction_tokens": 0,
"audio_tokens": 0,
"reasoning_tokens": 0,
"rejected_prediction_tokens": 0
},
"prompt_tokens_details": {
"audio_tokens": 0,
"cached_tokens": 0
}
},
"obfuscation": "6xgpRRdKjviPT"
}
}
],
"is_streaming": true
},
"id_normalization_mapping": {}
}

View file

@ -0,0 +1,593 @@
{
"test_id": "tests/integration/responses/test_tool_responses.py::test_max_tool_calls_with_function_tools[openai_client-txt=openai/gpt-4o]",
"request": {
"method": "POST",
"url": "https://api.openai.com/v1/v1/chat/completions",
"headers": {},
"body": {
"model": "gpt-4o",
"messages": [
{
"role": "user",
"content": "Can you tell me the weather in Paris and the current time?"
}
],
"stream": true,
"stream_options": {
"include_usage": true
},
"tools": [
{
"type": "function",
"function": {
"type": "function",
"name": "get_weather",
"description": "Get weather information for a specified location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city name (e.g., 'New York', 'London')"
}
}
},
"strict": null
}
},
{
"type": "function",
"function": {
"type": "function",
"name": "get_time",
"description": "Get current time for a specified location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city name (e.g., 'New York', 'London')"
}
}
},
"strict": null
}
}
]
},
"endpoint": "/v1/chat/completions",
"model": "gpt-4o"
},
"response": {
"body": [
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-463ab0e2f291",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": "assistant",
"tool_calls": null
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_b1442291a8",
"usage": null,
"obfuscation": "QmTXstGvpa8"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-463ab0e2f291",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 0,
"id": "call_HJMoLtHXfCzhlMQOfqIKt0n3",
"function": {
"arguments": "",
"name": "get_weather"
},
"type": "function"
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_b1442291a8",
"usage": null,
"obfuscation": "iFjmkK23KL"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-463ab0e2f291",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 0,
"id": null,
"function": {
"arguments": "{\"lo",
"name": null
},
"type": null
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_b1442291a8",
"usage": null,
"obfuscation": "7"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-463ab0e2f291",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 0,
"id": null,
"function": {
"arguments": "catio",
"name": null
},
"type": null
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_b1442291a8",
"usage": null,
"obfuscation": "L"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-463ab0e2f291",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 0,
"id": null,
"function": {
"arguments": "n\": \"P",
"name": null
},
"type": null
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_b1442291a8",
"usage": null,
"obfuscation": "THa6gWbrWhVmZ6"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-463ab0e2f291",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 0,
"id": null,
"function": {
"arguments": "aris",
"name": null
},
"type": null
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_b1442291a8",
"usage": null,
"obfuscation": "eL"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-463ab0e2f291",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 0,
"id": null,
"function": {
"arguments": "\"}",
"name": null
},
"type": null
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_b1442291a8",
"usage": null,
"obfuscation": "jng"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-463ab0e2f291",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 1,
"id": "call_vGKvTKZM7aALMaUw3Jas7lRg",
"function": {
"arguments": "",
"name": "get_time"
},
"type": "function"
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_b1442291a8",
"usage": null,
"obfuscation": "LSailgMcgSl54"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-463ab0e2f291",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 1,
"id": null,
"function": {
"arguments": "{\"lo",
"name": null
},
"type": null
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_b1442291a8",
"usage": null,
"obfuscation": "z"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-463ab0e2f291",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 1,
"id": null,
"function": {
"arguments": "catio",
"name": null
},
"type": null
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_b1442291a8",
"usage": null,
"obfuscation": "4"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-463ab0e2f291",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 1,
"id": null,
"function": {
"arguments": "n\": \"P",
"name": null
},
"type": null
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_b1442291a8",
"usage": null,
"obfuscation": "0engr6vRvqXTEP"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-463ab0e2f291",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 1,
"id": null,
"function": {
"arguments": "aris",
"name": null
},
"type": null
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_b1442291a8",
"usage": null,
"obfuscation": "Pe"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-463ab0e2f291",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 1,
"id": null,
"function": {
"arguments": "\"}",
"name": null
},
"type": null
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_b1442291a8",
"usage": null,
"obfuscation": "LU9"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-463ab0e2f291",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": null
},
"finish_reason": "tool_calls",
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_b1442291a8",
"usage": null,
"obfuscation": "kD7d"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-463ab0e2f291",
"choices": [],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_b1442291a8",
"usage": {
"completion_tokens": 44,
"prompt_tokens": 110,
"total_tokens": 154,
"completion_tokens_details": {
"accepted_prediction_tokens": 0,
"audio_tokens": 0,
"reasoning_tokens": 0,
"rejected_prediction_tokens": 0
},
"prompt_tokens_details": {
"audio_tokens": 0,
"cached_tokens": 0
}
},
"obfuscation": "R4ICoxqTqj7ZY"
}
}
],
"is_streaming": true
},
"id_normalization_mapping": {}
}

View file

@ -0,0 +1,773 @@
{
"test_id": "tests/integration/responses/test_tool_responses.py::test_max_tool_calls_with_mcp_tools[openai_client-txt=openai/gpt-4o]",
"request": {
"method": "POST",
"url": "https://api.openai.com/v1/v1/chat/completions",
"headers": {},
"body": {
"model": "gpt-4o",
"messages": [
{
"role": "user",
"content": "Get the experiment ID for 'boiling_point' and get the user ID for 'charlie'"
}
],
"stream": true,
"stream_options": {
"include_usage": true
},
"tools": [
{
"type": "function",
"function": {
"name": "get_user_id",
"description": "\n Get the user ID for a given username. This ID is needed for other operations.\n\n :param username: The username to look up\n :return: The user ID for the username\n ",
"parameters": {
"properties": {
"username": {
"title": "Username",
"type": "string"
}
},
"required": [
"username"
],
"title": "get_user_idArguments",
"type": "object"
}
}
},
{
"type": "function",
"function": {
"name": "get_user_permissions",
"description": "\n Get the permissions for a user ID. Requires a valid user ID from get_user_id.\n\n :param user_id: The user ID to check permissions for\n :return: The permissions for the user\n ",
"parameters": {
"properties": {
"user_id": {
"title": "User Id",
"type": "string"
}
},
"required": [
"user_id"
],
"title": "get_user_permissionsArguments",
"type": "object"
}
}
},
{
"type": "function",
"function": {
"name": "check_file_access",
"description": "\n Check if a user can access a specific file. Requires a valid user ID.\n\n :param user_id: The user ID to check access for\n :param filename: The filename to check access to\n :return: Whether the user can access the file (yes/no)\n ",
"parameters": {
"properties": {
"user_id": {
"title": "User Id",
"type": "string"
},
"filename": {
"title": "Filename",
"type": "string"
}
},
"required": [
"user_id",
"filename"
],
"title": "check_file_accessArguments",
"type": "object"
}
}
},
{
"type": "function",
"function": {
"name": "get_experiment_id",
"description": "\n Get the experiment ID for a given experiment name. This ID is needed to get results.\n\n :param experiment_name: The name of the experiment\n :return: The experiment ID\n ",
"parameters": {
"properties": {
"experiment_name": {
"title": "Experiment Name",
"type": "string"
}
},
"required": [
"experiment_name"
],
"title": "get_experiment_idArguments",
"type": "object"
}
}
},
{
"type": "function",
"function": {
"name": "get_experiment_results",
"description": "\n Get the results for an experiment ID. Requires a valid experiment ID from get_experiment_id.\n\n :param experiment_id: The experiment ID to get results for\n :return: The experiment results\n ",
"parameters": {
"properties": {
"experiment_id": {
"title": "Experiment Id",
"type": "string"
}
},
"required": [
"experiment_id"
],
"title": "get_experiment_resultsArguments",
"type": "object"
}
}
}
]
},
"endpoint": "/v1/chat/completions",
"model": "gpt-4o"
},
"response": {
"body": [
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-b218af7fa066",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": "assistant",
"tool_calls": null
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_c98e05ca17",
"usage": null,
"obfuscation": "N5OTLR9CfmU"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-b218af7fa066",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 0,
"id": "call_z8P1RQv54BLxyMlRdMFkcCGd",
"function": {
"arguments": "",
"name": "get_experiment_id"
},
"type": "function"
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_c98e05ca17",
"usage": null,
"obfuscation": "3EKK"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-b218af7fa066",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 0,
"id": null,
"function": {
"arguments": "{\"ex",
"name": null
},
"type": null
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_c98e05ca17",
"usage": null,
"obfuscation": "R"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-b218af7fa066",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 0,
"id": null,
"function": {
"arguments": "perim",
"name": null
},
"type": null
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_c98e05ca17",
"usage": null,
"obfuscation": "Q"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-b218af7fa066",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 0,
"id": null,
"function": {
"arguments": "ent_na",
"name": null
},
"type": null
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_c98e05ca17",
"usage": null,
"obfuscation": ""
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-b218af7fa066",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 0,
"id": null,
"function": {
"arguments": "me\":",
"name": null
},
"type": null
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_c98e05ca17",
"usage": null,
"obfuscation": "6"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-b218af7fa066",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 0,
"id": null,
"function": {
"arguments": " \"boi",
"name": null
},
"type": null
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_c98e05ca17",
"usage": null,
"obfuscation": ""
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-b218af7fa066",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 0,
"id": null,
"function": {
"arguments": "ling_p",
"name": null
},
"type": null
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_c98e05ca17",
"usage": null,
"obfuscation": ""
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-b218af7fa066",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 0,
"id": null,
"function": {
"arguments": "oint",
"name": null
},
"type": null
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_c98e05ca17",
"usage": null,
"obfuscation": "pw"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-b218af7fa066",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 0,
"id": null,
"function": {
"arguments": "\"}",
"name": null
},
"type": null
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_c98e05ca17",
"usage": null,
"obfuscation": "Gfk"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-b218af7fa066",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 1,
"id": "call_I5tcLgyMADoVwLKDj9HkTCs5",
"function": {
"arguments": "",
"name": "get_user_id"
},
"type": "function"
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_c98e05ca17",
"usage": null,
"obfuscation": "Yp7IueDs5V"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-b218af7fa066",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 1,
"id": null,
"function": {
"arguments": "{\"us",
"name": null
},
"type": null
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_c98e05ca17",
"usage": null,
"obfuscation": "8"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-b218af7fa066",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 1,
"id": null,
"function": {
"arguments": "ernam",
"name": null
},
"type": null
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_c98e05ca17",
"usage": null,
"obfuscation": "X"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-b218af7fa066",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 1,
"id": null,
"function": {
"arguments": "e\": \"c",
"name": null
},
"type": null
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_c98e05ca17",
"usage": null,
"obfuscation": "2oif8BwVnTCnAF"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-b218af7fa066",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 1,
"id": null,
"function": {
"arguments": "harl",
"name": null
},
"type": null
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_c98e05ca17",
"usage": null,
"obfuscation": "hv"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-b218af7fa066",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 1,
"id": null,
"function": {
"arguments": "ie\"}",
"name": null
},
"type": null
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_c98e05ca17",
"usage": null,
"obfuscation": "C"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-b218af7fa066",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": null
},
"finish_reason": "tool_calls",
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_c98e05ca17",
"usage": null,
"obfuscation": "ctjO"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-b218af7fa066",
"choices": [],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_c98e05ca17",
"usage": {
"completion_tokens": 51,
"prompt_tokens": 393,
"total_tokens": 444,
"completion_tokens_details": {
"accepted_prediction_tokens": 0,
"audio_tokens": 0,
"reasoning_tokens": 0,
"rejected_prediction_tokens": 0
},
"prompt_tokens_details": {
"audio_tokens": 0,
"cached_tokens": 0
}
},
"obfuscation": "fclbZeBSSKN4C"
}
}
],
"is_streaming": true
},
"id_normalization_mapping": {}
}

View file

@ -0,0 +1,593 @@
{
"test_id": "tests/integration/responses/test_tool_responses.py::test_max_tool_calls_with_function_tools[client_with_models-txt=openai/gpt-4o]",
"request": {
"method": "POST",
"url": "https://api.openai.com/v1/v1/chat/completions",
"headers": {},
"body": {
"model": "gpt-4o",
"messages": [
{
"role": "user",
"content": "Can you tell me the weather in Paris and the current time?"
}
],
"stream": true,
"stream_options": {
"include_usage": true
},
"tools": [
{
"type": "function",
"function": {
"type": "function",
"name": "get_weather",
"description": "Get weather information for a specified location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city name (e.g., 'New York', 'London')"
}
}
},
"strict": null
}
},
{
"type": "function",
"function": {
"type": "function",
"name": "get_time",
"description": "Get current time for a specified location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city name (e.g., 'New York', 'London')"
}
}
},
"strict": null
}
}
]
},
"endpoint": "/v1/chat/completions",
"model": "gpt-4o"
},
"response": {
"body": [
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-d073f434d28c",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": "assistant",
"tool_calls": null
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_b1442291a8",
"usage": null,
"obfuscation": "iUduPiCYBRb"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-d073f434d28c",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 0,
"id": "call_Wv3G8aEQOJLNXGRaK3hAWzq3",
"function": {
"arguments": "",
"name": "get_weather"
},
"type": "function"
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_b1442291a8",
"usage": null,
"obfuscation": "cqZKgzm65y"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-d073f434d28c",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 0,
"id": null,
"function": {
"arguments": "{\"lo",
"name": null
},
"type": null
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_b1442291a8",
"usage": null,
"obfuscation": "8"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-d073f434d28c",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 0,
"id": null,
"function": {
"arguments": "catio",
"name": null
},
"type": null
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_b1442291a8",
"usage": null,
"obfuscation": "L"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-d073f434d28c",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 0,
"id": null,
"function": {
"arguments": "n\": \"P",
"name": null
},
"type": null
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_b1442291a8",
"usage": null,
"obfuscation": "zbBLzavvnEdLz0"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-d073f434d28c",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 0,
"id": null,
"function": {
"arguments": "aris",
"name": null
},
"type": null
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_b1442291a8",
"usage": null,
"obfuscation": "Gj"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-d073f434d28c",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 0,
"id": null,
"function": {
"arguments": "\"}",
"name": null
},
"type": null
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_b1442291a8",
"usage": null,
"obfuscation": "LQo"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-d073f434d28c",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 1,
"id": "call_8xkOmOgJpV77n5W2dSx6ytW6",
"function": {
"arguments": "",
"name": "get_time"
},
"type": "function"
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_b1442291a8",
"usage": null,
"obfuscation": "eltoncGlxI8Go"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-d073f434d28c",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 1,
"id": null,
"function": {
"arguments": "{\"lo",
"name": null
},
"type": null
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_b1442291a8",
"usage": null,
"obfuscation": "S"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-d073f434d28c",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 1,
"id": null,
"function": {
"arguments": "catio",
"name": null
},
"type": null
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_b1442291a8",
"usage": null,
"obfuscation": "N"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-d073f434d28c",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 1,
"id": null,
"function": {
"arguments": "n\": \"P",
"name": null
},
"type": null
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_b1442291a8",
"usage": null,
"obfuscation": "2bTn1MaAXYFoVK"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-d073f434d28c",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 1,
"id": null,
"function": {
"arguments": "aris",
"name": null
},
"type": null
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_b1442291a8",
"usage": null,
"obfuscation": "VF"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-d073f434d28c",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": [
{
"index": 1,
"id": null,
"function": {
"arguments": "\"}",
"name": null
},
"type": null
}
]
},
"finish_reason": null,
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_b1442291a8",
"usage": null,
"obfuscation": "BHi"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-d073f434d28c",
"choices": [
{
"delta": {
"content": null,
"function_call": null,
"refusal": null,
"role": null,
"tool_calls": null
},
"finish_reason": "tool_calls",
"index": 0,
"logprobs": null
}
],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_b1442291a8",
"usage": null,
"obfuscation": "WaYG"
}
},
{
"__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk",
"__data__": {
"id": "rec-d073f434d28c",
"choices": [],
"created": 0,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion.chunk",
"service_tier": "default",
"system_fingerprint": "fp_b1442291a8",
"usage": {
"completion_tokens": 44,
"prompt_tokens": 110,
"total_tokens": 154,
"completion_tokens_details": {
"accepted_prediction_tokens": 0,
"audio_tokens": 0,
"reasoning_tokens": 0,
"rejected_prediction_tokens": 0
},
"prompt_tokens_details": {
"audio_tokens": 0,
"cached_tokens": 0
}
},
"obfuscation": "aevj6ZWLqfCK6"
}
}
],
"is_streaming": true
},
"id_normalization_mapping": {}
}

View file

@ -600,3 +600,155 @@ def test_response_streaming_multi_turn_tool_execution(responses_client, text_mod
assert expected_output.lower() in final_response.output_text.lower(), (
f"Expected '{expected_output}' to appear in response: {final_response.output_text}"
)
def test_max_tool_calls_with_function_tools(responses_client, text_model_id):
"""Test handling of max_tool_calls with function tools in responses."""
max_tool_calls = 1
tools = [
{
"type": "function",
"name": "get_weather",
"description": "Get weather information for a specified location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city name (e.g., 'New York', 'London')",
},
},
},
},
{
"type": "function",
"name": "get_time",
"description": "Get current time for a specified location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city name (e.g., 'New York', 'London')",
},
},
},
},
]
response = responses_client.responses.create(
model=text_model_id,
input="Can you tell me the weather in Paris and the current time?",
tools=tools,
stream=False,
max_tool_calls=max_tool_calls,
)
# Verify we got two function calls and that the max_tool_calls does not affect function tools
assert len(response.output) == 2
assert response.output[0].type == "function_call"
assert response.output[0].name == "get_weather"
assert response.output[0].status == "completed"
assert response.output[1].type == "function_call"
assert response.output[1].name == "get_time"
assert response.output[1].status == "completed"
# Verify we have a valid max_tool_calls field
assert response.max_tool_calls == max_tool_calls
def test_max_tool_calls_invalid(responses_client, text_model_id):
"""Test handling of invalid max_tool_calls in responses."""
input = "Search for today's top technology news."
invalid_max_tool_calls = 0
tools = [
{"type": "web_search"},
]
# Create a response with an invalid max_tool_calls value i.e. 0
# Handle ValueError from LLS and BadRequestError from OpenAI client
with pytest.raises((ValueError, llama_stack_client.BadRequestError, openai.BadRequestError)) as excinfo:
responses_client.responses.create(
model=text_model_id,
input=input,
tools=tools,
stream=False,
max_tool_calls=invalid_max_tool_calls,
)
error_message = str(excinfo.value)
assert f"Invalid max_tool_calls={invalid_max_tool_calls}; should be >= 1" in error_message, (
f"Expected error message about invalid max_tool_calls, got: {error_message}"
)
def test_max_tool_calls_with_mcp_tools(responses_client, text_model_id):
"""Test handling of max_tool_calls with mcp tools in responses."""
with make_mcp_server(tools=dependency_tools()) as mcp_server_info:
input = "Get the experiment ID for 'boiling_point' and get the user ID for 'charlie'"
max_tool_calls = [1, 5]
tools = [
{"type": "mcp", "server_label": "localmcp", "server_url": mcp_server_info["server_url"]},
]
# First create a response that triggers mcp tools without max_tool_calls
response = responses_client.responses.create(
model=text_model_id,
input=input,
tools=tools,
stream=False,
)
# Verify we got two mcp tool calls followed by a message
assert len(response.output) == 4
mcp_list_tools = [output for output in response.output if output.type == "mcp_list_tools"]
mcp_calls = [output for output in response.output if output.type == "mcp_call"]
message_outputs = [output for output in response.output if output.type == "message"]
assert len(mcp_list_tools) == 1
assert len(mcp_calls) == 2, f"Expected two mcp calls, got {len(mcp_calls)}"
assert len(message_outputs) == 1, f"Expected one message output, got {len(message_outputs)}"
# Next create a response that triggers mcp tools with max_tool_calls set to 1
response_2 = responses_client.responses.create(
model=text_model_id,
input=input,
tools=tools,
stream=False,
max_tool_calls=max_tool_calls[0],
)
# Verify we got one mcp tool call followed by a message
assert len(response_2.output) == 3
mcp_list_tools = [output for output in response_2.output if output.type == "mcp_list_tools"]
mcp_calls = [output for output in response_2.output if output.type == "mcp_call"]
message_outputs = [output for output in response_2.output if output.type == "message"]
assert len(mcp_list_tools) == 1
assert len(mcp_calls) == 1, f"Expected one mcp call, got {len(mcp_calls)}"
assert len(message_outputs) == 1, f"Expected one message output, got {len(message_outputs)}"
# Verify we have a valid max_tool_calls field
assert response_2.max_tool_calls == max_tool_calls[0]
# Finally create a response that triggers mcp tools with max_tool_calls set to 5
response_3 = responses_client.responses.create(
model=text_model_id,
input=input,
tools=tools,
stream=False,
max_tool_calls=max_tool_calls[1],
)
# Verify we got two mcp tool calls followed by a message
assert len(response_3.output) == 4
mcp_list_tools = [output for output in response_3.output if output.type == "mcp_list_tools"]
mcp_calls = [output for output in response_3.output if output.type == "mcp_call"]
message_outputs = [output for output in response_3.output if output.type == "message"]
assert len(mcp_list_tools) == 1
assert len(mcp_calls) == 2, f"Expected two mcp calls, got {len(mcp_calls)}"
assert len(message_outputs) == 1, f"Expected one message output, got {len(message_outputs)}"
# Verify we have a valid max_tool_calls field
assert response_3.max_tool_calls == max_tool_calls[1]

View file

@ -50,7 +50,7 @@ SETUP_DEFINITIONS: dict[str, Setup] = {
name="ollama",
description="Local Ollama provider with text + safety models",
env={
"OLLAMA_URL": "http://0.0.0.0:11434",
"OLLAMA_URL": "http://0.0.0.0:11434/v1",
"SAFETY_MODEL": "ollama/llama-guard3:1b",
},
defaults={
@ -64,7 +64,7 @@ SETUP_DEFINITIONS: dict[str, Setup] = {
name="ollama",
description="Local Ollama provider with a vision model",
env={
"OLLAMA_URL": "http://0.0.0.0:11434",
"OLLAMA_URL": "http://0.0.0.0:11434/v1",
},
defaults={
"vision_model": "ollama/llama3.2-vision:11b",
@ -75,7 +75,7 @@ SETUP_DEFINITIONS: dict[str, Setup] = {
name="ollama-postgres",
description="Server-mode tests with Postgres-backed persistence",
env={
"OLLAMA_URL": "http://0.0.0.0:11434",
"OLLAMA_URL": "http://0.0.0.0:11434/v1",
"SAFETY_MODEL": "ollama/llama-guard3:1b",
"POSTGRES_HOST": "127.0.0.1",
"POSTGRES_PORT": "5432",

View file

@ -25,6 +25,13 @@ from llama_stack.providers.utils.responses.responses_store import (
ResponsesStore,
_OpenAIResponseObjectWithInputAndMessages,
)
from llama_stack_api import (
OpenAIChatCompletionContentPartImageParam,
OpenAIFile,
OpenAIFileObject,
OpenAISystemMessageParam,
Prompt,
)
from llama_stack_api.agents import Order
from llama_stack_api.inference import (
OpenAIAssistantMessageParam,
@ -38,6 +45,8 @@ from llama_stack_api.inference import (
)
from llama_stack_api.openai_responses import (
ListOpenAIResponseInputItem,
OpenAIResponseInputMessageContentFile,
OpenAIResponseInputMessageContentImage,
OpenAIResponseInputMessageContentText,
OpenAIResponseInputToolFunction,
OpenAIResponseInputToolMCP,
@ -47,6 +56,7 @@ from llama_stack_api.openai_responses import (
OpenAIResponseOutputMessageFunctionToolCall,
OpenAIResponseOutputMessageMCPCall,
OpenAIResponseOutputMessageWebSearchToolCall,
OpenAIResponsePrompt,
OpenAIResponseText,
OpenAIResponseTextFormat,
WebSearchToolTypes,
@ -98,6 +108,19 @@ def mock_safety_api():
return safety_api
@pytest.fixture
def mock_prompts_api():
prompts_api = AsyncMock()
return prompts_api
@pytest.fixture
def mock_files_api():
"""Mock files API for testing."""
files_api = AsyncMock()
return files_api
@pytest.fixture
def openai_responses_impl(
mock_inference_api,
@ -107,6 +130,8 @@ def openai_responses_impl(
mock_vector_io_api,
mock_safety_api,
mock_conversations_api,
mock_prompts_api,
mock_files_api,
):
return OpenAIResponsesImpl(
inference_api=mock_inference_api,
@ -116,6 +141,8 @@ def openai_responses_impl(
vector_io_api=mock_vector_io_api,
safety_api=mock_safety_api,
conversations_api=mock_conversations_api,
prompts_api=mock_prompts_api,
files_api=mock_files_api,
)
@ -499,7 +526,7 @@ async def test_create_openai_response_with_tool_call_function_arguments_none(ope
mock_inference_api.openai_chat_completion.return_value = fake_stream_toolcall()
async def test_create_openai_response_with_multiple_messages(openai_responses_impl, mock_inference_api):
async def test_create_openai_response_with_multiple_messages(openai_responses_impl, mock_inference_api, mock_files_api):
"""Test creating an OpenAI response with multiple messages."""
# Setup
input_messages = [
@ -710,7 +737,7 @@ async def test_create_openai_response_with_instructions(openai_responses_impl, m
async def test_create_openai_response_with_instructions_and_multiple_messages(
openai_responses_impl, mock_inference_api
openai_responses_impl, mock_inference_api, mock_files_api
):
# Setup
input_messages = [
@ -1242,3 +1269,489 @@ async def test_create_openai_response_with_output_types_as_input(
assert stored_with_outputs.input == input_with_output_types
assert len(stored_with_outputs.input) == 3
async def test_create_openai_response_with_prompt(openai_responses_impl, mock_inference_api, mock_prompts_api):
"""Test creating an OpenAI response with a prompt."""
input_text = "What is the capital of Ireland?"
model = "meta-llama/Llama-3.1-8B-Instruct"
prompt_id = "pmpt_1234567890abcdef1234567890abcdef1234567890abcdef"
prompt = Prompt(
prompt="You are a helpful {{ area_name }} assistant at {{ company_name }}. Always provide accurate information.",
prompt_id=prompt_id,
version=1,
variables=["area_name", "company_name"],
is_default=True,
)
openai_response_prompt = OpenAIResponsePrompt(
id=prompt_id,
version="1",
variables={
"area_name": OpenAIResponseInputMessageContentText(text="geography"),
"company_name": OpenAIResponseInputMessageContentText(text="Dummy Company"),
},
)
mock_prompts_api.get_prompt.return_value = prompt
mock_inference_api.openai_chat_completion.return_value = fake_stream()
result = await openai_responses_impl.create_openai_response(
input=input_text,
model=model,
prompt=openai_response_prompt,
)
mock_prompts_api.get_prompt.assert_called_with(prompt_id, 1)
mock_inference_api.openai_chat_completion.assert_called()
call_args = mock_inference_api.openai_chat_completion.call_args
sent_messages = call_args.args[0].messages
assert len(sent_messages) == 2
system_messages = [msg for msg in sent_messages if msg.role == "system"]
assert len(system_messages) == 1
assert (
system_messages[0].content
== "You are a helpful geography assistant at Dummy Company. Always provide accurate information."
)
user_messages = [msg for msg in sent_messages if msg.role == "user"]
assert len(user_messages) == 1
assert user_messages[0].content == input_text
assert result.model == model
assert result.status == "completed"
assert isinstance(result.prompt, OpenAIResponsePrompt)
assert result.prompt.id == prompt_id
assert result.prompt.variables == openai_response_prompt.variables
assert result.prompt.version == "1"
async def test_prepend_prompt_successful_without_variables(openai_responses_impl, mock_prompts_api, mock_inference_api):
"""Test prepend_prompt function without variables."""
input_text = "What is the capital of Ireland?"
model = "meta-llama/Llama-3.1-8B-Instruct"
prompt_id = "pmpt_1234567890abcdef1234567890abcdef1234567890abcdef"
prompt = Prompt(
prompt="You are a helpful assistant. Always provide accurate information.",
prompt_id=prompt_id,
version=1,
variables=[],
is_default=True,
)
openai_response_prompt = OpenAIResponsePrompt(id=prompt_id, version="1")
mock_prompts_api.get_prompt.return_value = prompt
mock_inference_api.openai_chat_completion.return_value = fake_stream()
await openai_responses_impl.create_openai_response(
input=input_text,
model=model,
prompt=openai_response_prompt,
)
mock_prompts_api.get_prompt.assert_called_with(prompt_id, 1)
mock_inference_api.openai_chat_completion.assert_called()
call_args = mock_inference_api.openai_chat_completion.call_args
sent_messages = call_args.args[0].messages
assert len(sent_messages) == 2
system_messages = [msg for msg in sent_messages if msg.role == "system"]
assert system_messages[0].content == "You are a helpful assistant. Always provide accurate information."
async def test_prepend_prompt_invalid_variable(openai_responses_impl, mock_prompts_api):
"""Test error handling in prepend_prompt function when prompt parameters contain invalid variables."""
prompt_id = "pmpt_1234567890abcdef1234567890abcdef1234567890abcdef"
prompt = Prompt(
prompt="You are a {{ role }} assistant.",
prompt_id=prompt_id,
version=1,
variables=["role"], # Only "role" is valid
is_default=True,
)
openai_response_prompt = OpenAIResponsePrompt(
id=prompt_id,
version="1",
variables={
"role": OpenAIResponseInputMessageContentText(text="helpful"),
"company": OpenAIResponseInputMessageContentText(
text="Dummy Company"
), # company is not in prompt.variables
},
)
mock_prompts_api.get_prompt.return_value = prompt
# Initial messages
messages = [OpenAIUserMessageParam(content="Test prompt")]
# Execute - should raise ValueError for invalid variable
with pytest.raises(ValueError, match="Variable company not found in prompt"):
await openai_responses_impl._prepend_prompt(messages, openai_response_prompt)
# Verify
mock_prompts_api.get_prompt.assert_called_once_with(prompt_id, 1)
async def test_prepend_prompt_not_found(openai_responses_impl, mock_prompts_api):
"""Test prepend_prompt function when prompt is not found."""
prompt_id = "pmpt_nonexistent"
openai_response_prompt = OpenAIResponsePrompt(id=prompt_id, version="1")
mock_prompts_api.get_prompt.return_value = None # Prompt not found
# Initial messages
messages = [OpenAIUserMessageParam(content="Test prompt")]
initial_length = len(messages)
# Execute
result = await openai_responses_impl._prepend_prompt(messages, openai_response_prompt)
# Verify
mock_prompts_api.get_prompt.assert_called_once_with(prompt_id, 1)
# Should return None when prompt not found
assert result is None
# Messages should not be modified
assert len(messages) == initial_length
assert messages[0].content == "Test prompt"
async def test_prepend_prompt_variable_substitution(openai_responses_impl, mock_prompts_api):
"""Test complex variable substitution with multiple occurrences and special characters in prepend_prompt function."""
prompt_id = "pmpt_1234567890abcdef1234567890abcdef1234567890abcdef"
# Support all whitespace variations: {{name}}, {{ name }}, {{ name}}, {{name }}, etc.
prompt = Prompt(
prompt="Hello {{name}}! You are working at {{ company}}. Your role is {{role}} at {{company}}. Remember, {{ name }}, to be {{ tone }}.",
prompt_id=prompt_id,
version=1,
variables=["name", "company", "role", "tone"],
is_default=True,
)
openai_response_prompt = OpenAIResponsePrompt(
id=prompt_id,
version="1",
variables={
"name": OpenAIResponseInputMessageContentText(text="Alice"),
"company": OpenAIResponseInputMessageContentText(text="Dummy Company"),
"role": OpenAIResponseInputMessageContentText(text="AI Assistant"),
"tone": OpenAIResponseInputMessageContentText(text="professional"),
},
)
mock_prompts_api.get_prompt.return_value = prompt
# Initial messages
messages = [OpenAIUserMessageParam(content="Test")]
# Execute
await openai_responses_impl._prepend_prompt(messages, openai_response_prompt)
# Verify
assert len(messages) == 2
assert isinstance(messages[0], OpenAISystemMessageParam)
expected_content = "Hello Alice! You are working at Dummy Company. Your role is AI Assistant at Dummy Company. Remember, Alice, to be professional."
assert messages[0].content == expected_content
async def test_prepend_prompt_with_image_variable(openai_responses_impl, mock_prompts_api, mock_files_api):
"""Test prepend_prompt with image variable - should create placeholder in system message and append image as separate user message."""
prompt_id = "pmpt_1234567890abcdef1234567890abcdef1234567890abcdef"
prompt = Prompt(
prompt="Analyze this {{product_image}} and describe what you see.",
prompt_id=prompt_id,
version=1,
variables=["product_image"],
is_default=True,
)
# Mock file content and file metadata
mock_file_content = b"fake_image_data"
mock_files_api.openai_retrieve_file_content.return_value = type("obj", (object,), {"body": mock_file_content})()
mock_files_api.openai_retrieve_file.return_value = OpenAIFileObject(
object="file",
id="file-abc123",
bytes=len(mock_file_content),
created_at=1234567890,
expires_at=1234567890,
filename="product.jpg",
purpose="assistants",
)
openai_response_prompt = OpenAIResponsePrompt(
id=prompt_id,
version="1",
variables={
"product_image": OpenAIResponseInputMessageContentImage(
file_id="file-abc123",
detail="high",
)
},
)
mock_prompts_api.get_prompt.return_value = prompt
# Initial messages
messages = [OpenAIUserMessageParam(content="What do you think?")]
# Execute
await openai_responses_impl._prepend_prompt(messages, openai_response_prompt)
assert len(messages) == 3
# Check system message has placeholder
assert isinstance(messages[0], OpenAISystemMessageParam)
assert messages[0].content == "Analyze this [Image: product_image] and describe what you see."
# Check original user message is still there
assert isinstance(messages[1], OpenAIUserMessageParam)
assert messages[1].content == "What do you think?"
# Check new user message with image is appended
assert isinstance(messages[2], OpenAIUserMessageParam)
assert isinstance(messages[2].content, list)
assert len(messages[2].content) == 1
# Should be image with data URL
assert isinstance(messages[2].content[0], OpenAIChatCompletionContentPartImageParam)
assert messages[2].content[0].image_url.url.startswith("data:image/")
assert messages[2].content[0].image_url.detail == "high"
async def test_prepend_prompt_with_file_variable(openai_responses_impl, mock_prompts_api, mock_files_api):
"""Test prepend_prompt with file variable - should create placeholder in system message and append file as separate user message."""
prompt_id = "pmpt_1234567890abcdef1234567890abcdef1234567890abcdef"
prompt = Prompt(
prompt="Review the document {{contract_file}} and summarize key points.",
prompt_id=prompt_id,
version=1,
variables=["contract_file"],
is_default=True,
)
# Mock file retrieval
mock_file_content = b"fake_pdf_content"
mock_files_api.openai_retrieve_file_content.return_value = type("obj", (object,), {"body": mock_file_content})()
mock_files_api.openai_retrieve_file.return_value = OpenAIFileObject(
object="file",
id="file-contract-789",
bytes=len(mock_file_content),
created_at=1234567890,
expires_at=1234567890,
filename="contract.pdf",
purpose="assistants",
)
openai_response_prompt = OpenAIResponsePrompt(
id=prompt_id,
version="1",
variables={
"contract_file": OpenAIResponseInputMessageContentFile(
file_id="file-contract-789",
filename="contract.pdf",
)
},
)
mock_prompts_api.get_prompt.return_value = prompt
# Initial messages
messages = [OpenAIUserMessageParam(content="Please review this.")]
# Execute
await openai_responses_impl._prepend_prompt(messages, openai_response_prompt)
assert len(messages) == 3
# Check system message has placeholder
assert isinstance(messages[0], OpenAISystemMessageParam)
assert messages[0].content == "Review the document [File: contract_file] and summarize key points."
# Check original user message is still there
assert isinstance(messages[1], OpenAIUserMessageParam)
assert messages[1].content == "Please review this."
# Check new user message with file is appended
assert isinstance(messages[2], OpenAIUserMessageParam)
assert isinstance(messages[2].content, list)
assert len(messages[2].content) == 1
# First part should be file with data URL
assert isinstance(messages[2].content[0], OpenAIFile)
assert messages[2].content[0].file.file_data.startswith("data:application/pdf;base64,")
assert messages[2].content[0].file.filename == "contract.pdf"
assert messages[2].content[0].file.file_id is None
async def test_prepend_prompt_with_mixed_variables(openai_responses_impl, mock_prompts_api, mock_files_api):
"""Test prepend_prompt with text, image, and file variables mixed together."""
prompt_id = "pmpt_1234567890abcdef1234567890abcdef1234567890abcdef"
prompt = Prompt(
prompt="Hello {{name}}! Analyze {{photo}} and review {{document}}. Provide insights for {{company}}.",
prompt_id=prompt_id,
version=1,
variables=["name", "photo", "document", "company"],
is_default=True,
)
# Mock file retrieval for image and file
mock_image_content = b"fake_image_data"
mock_file_content = b"fake_doc_content"
async def mock_retrieve_file_content(file_id):
if file_id == "file-photo-123":
return type("obj", (object,), {"body": mock_image_content})()
elif file_id == "file-doc-456":
return type("obj", (object,), {"body": mock_file_content})()
mock_files_api.openai_retrieve_file_content.side_effect = mock_retrieve_file_content
def mock_retrieve_file(file_id):
if file_id == "file-photo-123":
return OpenAIFileObject(
object="file",
id="file-photo-123",
bytes=len(mock_image_content),
created_at=1234567890,
expires_at=1234567890,
filename="photo.jpg",
purpose="assistants",
)
elif file_id == "file-doc-456":
return OpenAIFileObject(
object="file",
id="file-doc-456",
bytes=len(mock_file_content),
created_at=1234567890,
expires_at=1234567890,
filename="doc.pdf",
purpose="assistants",
)
mock_files_api.openai_retrieve_file.side_effect = mock_retrieve_file
openai_response_prompt = OpenAIResponsePrompt(
id=prompt_id,
version="1",
variables={
"name": OpenAIResponseInputMessageContentText(text="Alice"),
"photo": OpenAIResponseInputMessageContentImage(file_id="file-photo-123", detail="auto"),
"document": OpenAIResponseInputMessageContentFile(file_id="file-doc-456", filename="doc.pdf"),
"company": OpenAIResponseInputMessageContentText(text="Acme Corp"),
},
)
mock_prompts_api.get_prompt.return_value = prompt
# Initial messages
messages = [OpenAIUserMessageParam(content="Here's my question.")]
# Execute
await openai_responses_impl._prepend_prompt(messages, openai_response_prompt)
assert len(messages) == 3
# Check system message has text and placeholders
assert isinstance(messages[0], OpenAISystemMessageParam)
expected_system = "Hello Alice! Analyze [Image: photo] and review [File: document]. Provide insights for Acme Corp."
assert messages[0].content == expected_system
# Check original user message is still there
assert isinstance(messages[1], OpenAIUserMessageParam)
assert messages[1].content == "Here's my question."
# Check new user message with media is appended (2 media items)
assert isinstance(messages[2], OpenAIUserMessageParam)
assert isinstance(messages[2].content, list)
assert len(messages[2].content) == 2
# First part should be image with data URL
assert isinstance(messages[2].content[0], OpenAIChatCompletionContentPartImageParam)
assert messages[2].content[0].image_url.url.startswith("data:image/")
# Second part should be file with data URL
assert isinstance(messages[2].content[1], OpenAIFile)
assert messages[2].content[1].file.file_data.startswith("data:application/pdf;base64,")
assert messages[2].content[1].file.filename == "doc.pdf"
assert messages[2].content[1].file.file_id is None
async def test_prepend_prompt_with_image_using_image_url(openai_responses_impl, mock_prompts_api):
"""Test prepend_prompt with image variable using image_url instead of file_id."""
prompt_id = "pmpt_1234567890abcdef1234567890abcdef1234567890abcdef"
prompt = Prompt(
prompt="Describe {{screenshot}}.",
prompt_id=prompt_id,
version=1,
variables=["screenshot"],
is_default=True,
)
openai_response_prompt = OpenAIResponsePrompt(
id=prompt_id,
version="1",
variables={
"screenshot": OpenAIResponseInputMessageContentImage(
image_url="https://example.com/screenshot.png",
detail="low",
)
},
)
mock_prompts_api.get_prompt.return_value = prompt
# Initial messages
messages = [OpenAIUserMessageParam(content="What is this?")]
# Execute
await openai_responses_impl._prepend_prompt(messages, openai_response_prompt)
assert len(messages) == 3
# Check system message has placeholder
assert isinstance(messages[0], OpenAISystemMessageParam)
assert messages[0].content == "Describe [Image: screenshot]."
# Check original user message is still there
assert isinstance(messages[1], OpenAIUserMessageParam)
assert messages[1].content == "What is this?"
# Check new user message with image is appended
assert isinstance(messages[2], OpenAIUserMessageParam)
assert isinstance(messages[2].content, list)
# Image should use the provided URL
assert isinstance(messages[2].content[0], OpenAIChatCompletionContentPartImageParam)
assert messages[2].content[0].image_url.url == "https://example.com/screenshot.png"
assert messages[2].content[0].image_url.detail == "low"
async def test_prepend_prompt_image_variable_missing_required_fields(openai_responses_impl, mock_prompts_api):
"""Test prepend_prompt with image variable that has neither file_id nor image_url - should raise error."""
prompt_id = "pmpt_1234567890abcdef1234567890abcdef1234567890abcdef"
prompt = Prompt(
prompt="Analyze {{bad_image}}.",
prompt_id=prompt_id,
version=1,
variables=["bad_image"],
is_default=True,
)
# Create image content with neither file_id nor image_url
openai_response_prompt = OpenAIResponsePrompt(
id=prompt_id,
version="1",
variables={"bad_image": OpenAIResponseInputMessageContentImage()}, # No file_id or image_url
)
mock_prompts_api.get_prompt.return_value = prompt
messages = [OpenAIUserMessageParam(content="Test")]
# Execute - should raise ValueError
with pytest.raises(ValueError, match="Image content must have either 'image_url' or 'file_id'"):
await openai_responses_impl._prepend_prompt(messages, openai_response_prompt)

View file

@ -39,6 +39,8 @@ def responses_impl_with_conversations(
mock_vector_io_api,
mock_conversations_api,
mock_safety_api,
mock_prompts_api,
mock_files_api,
):
"""Create OpenAIResponsesImpl instance with conversations API."""
return OpenAIResponsesImpl(
@ -49,6 +51,8 @@ def responses_impl_with_conversations(
vector_io_api=mock_vector_io_api,
conversations_api=mock_conversations_api,
safety_api=mock_safety_api,
prompts_api=mock_prompts_api,
files_api=mock_files_api,
)

View file

@ -5,6 +5,8 @@
# the root directory of this source tree.
from unittest.mock import AsyncMock
import pytest
from llama_stack.providers.inline.agents.meta_reference.responses.utils import (
@ -46,6 +48,12 @@ from llama_stack_api.openai_responses import (
)
@pytest.fixture
def mock_files_api():
"""Mock files API for testing."""
return AsyncMock()
class TestConvertChatChoiceToResponseMessage:
async def test_convert_string_content(self):
choice = OpenAIChoice(
@ -78,17 +86,17 @@ class TestConvertChatChoiceToResponseMessage:
class TestConvertResponseContentToChatContent:
async def test_convert_string_content(self):
result = await convert_response_content_to_chat_content("Simple string")
async def test_convert_string_content(self, mock_files_api):
result = await convert_response_content_to_chat_content("Simple string", mock_files_api)
assert result == "Simple string"
async def test_convert_text_content_parts(self):
async def test_convert_text_content_parts(self, mock_files_api):
content = [
OpenAIResponseInputMessageContentText(text="First part"),
OpenAIResponseOutputMessageContentOutputText(text="Second part"),
]
result = await convert_response_content_to_chat_content(content)
result = await convert_response_content_to_chat_content(content, mock_files_api)
assert len(result) == 2
assert isinstance(result[0], OpenAIChatCompletionContentPartTextParam)
@ -96,10 +104,10 @@ class TestConvertResponseContentToChatContent:
assert isinstance(result[1], OpenAIChatCompletionContentPartTextParam)
assert result[1].text == "Second part"
async def test_convert_image_content(self):
async def test_convert_image_content(self, mock_files_api):
content = [OpenAIResponseInputMessageContentImage(image_url="https://example.com/image.jpg", detail="high")]
result = await convert_response_content_to_chat_content(content)
result = await convert_response_content_to_chat_content(content, mock_files_api)
assert len(result) == 1
assert isinstance(result[0], OpenAIChatCompletionContentPartImageParam)

View file

@ -30,6 +30,8 @@ def mock_apis():
"vector_io_api": AsyncMock(),
"conversations_api": AsyncMock(),
"safety_api": AsyncMock(),
"prompts_api": AsyncMock(),
"files_api": AsyncMock(),
}

View file

@ -0,0 +1,214 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
"""Tests for making Safety API optional in meta-reference agents provider.
This test suite validates the changes introduced to fix issue #4165, which
allows running the meta-reference agents provider without the Safety API.
Safety API is now an optional dependency, and errors are raised at request time
when guardrails are explicitly requested without Safety API configured.
"""
from unittest.mock import AsyncMock, MagicMock, patch
import pytest
from llama_stack.core.datatypes import Api
from llama_stack.core.storage.datatypes import KVStoreReference, ResponsesStoreReference
from llama_stack.providers.inline.agents.meta_reference import get_provider_impl
from llama_stack.providers.inline.agents.meta_reference.config import (
AgentPersistenceConfig,
MetaReferenceAgentsImplConfig,
)
from llama_stack.providers.inline.agents.meta_reference.responses.utils import (
run_guardrails,
)
@pytest.fixture
def mock_persistence_config():
"""Create a mock persistence configuration."""
return AgentPersistenceConfig(
agent_state=KVStoreReference(
backend="kv_default",
namespace="agents",
),
responses=ResponsesStoreReference(
backend="sql_default",
table_name="responses",
),
)
@pytest.fixture
def mock_deps():
"""Create mock dependencies for the agents provider."""
# Create mock APIs
inference_api = AsyncMock()
vector_io_api = AsyncMock()
tool_runtime_api = AsyncMock()
tool_groups_api = AsyncMock()
conversations_api = AsyncMock()
prompts_api = AsyncMock()
files_api = AsyncMock()
return {
Api.inference: inference_api,
Api.vector_io: vector_io_api,
Api.tool_runtime: tool_runtime_api,
Api.tool_groups: tool_groups_api,
Api.conversations: conversations_api,
Api.prompts: prompts_api,
Api.files: files_api,
}
class TestProviderInitialization:
"""Test provider initialization with different safety API configurations."""
async def test_initialization_with_safety_api_present(self, mock_persistence_config, mock_deps):
"""Test successful initialization when Safety API is configured."""
config = MetaReferenceAgentsImplConfig(persistence=mock_persistence_config)
# Add safety API to deps
safety_api = AsyncMock()
mock_deps[Api.safety] = safety_api
# Mock the initialize method to avoid actual initialization
with patch(
"llama_stack.providers.inline.agents.meta_reference.agents.MetaReferenceAgentsImpl.initialize",
new_callable=AsyncMock,
):
# Should not raise any exception
provider = await get_provider_impl(config, mock_deps, policy=[], telemetry_enabled=False)
assert provider is not None
async def test_initialization_without_safety_api(self, mock_persistence_config, mock_deps):
"""Test successful initialization when Safety API is not configured."""
config = MetaReferenceAgentsImplConfig(persistence=mock_persistence_config)
# Safety API is NOT in mock_deps - provider should still start
# Mock the initialize method to avoid actual initialization
with patch(
"llama_stack.providers.inline.agents.meta_reference.agents.MetaReferenceAgentsImpl.initialize",
new_callable=AsyncMock,
):
# Should not raise any exception
provider = await get_provider_impl(config, mock_deps, policy=[], telemetry_enabled=False)
assert provider is not None
assert provider.safety_api is None
class TestGuardrailsFunctionality:
"""Test run_guardrails function with optional safety API."""
async def test_run_guardrails_with_none_safety_api(self):
"""Test that run_guardrails returns None when safety_api is None."""
result = await run_guardrails(safety_api=None, messages="test message", guardrail_ids=["llama-guard"])
assert result is None
async def test_run_guardrails_with_empty_messages(self):
"""Test that run_guardrails returns None for empty messages."""
# Test with None safety API
result = await run_guardrails(safety_api=None, messages="", guardrail_ids=["llama-guard"])
assert result is None
# Test with mock safety API
mock_safety_api = AsyncMock()
result = await run_guardrails(safety_api=mock_safety_api, messages="", guardrail_ids=["llama-guard"])
assert result is None
async def test_run_guardrails_with_none_safety_api_ignores_guardrails(self):
"""Test that guardrails are skipped when safety_api is None, even if guardrail_ids are provided."""
# Should not raise exception, just return None
result = await run_guardrails(
safety_api=None,
messages="potentially harmful content",
guardrail_ids=["llama-guard", "content-filter"],
)
assert result is None
async def test_create_response_rejects_guardrails_without_safety_api(self, mock_persistence_config, mock_deps):
"""Test that create_openai_response raises error when guardrails requested but Safety API unavailable."""
from llama_stack.providers.inline.agents.meta_reference.responses.openai_responses import (
OpenAIResponsesImpl,
)
from llama_stack_api import ResponseGuardrailSpec
# Create OpenAIResponsesImpl with no safety API
with patch("llama_stack.providers.inline.agents.meta_reference.responses.openai_responses.ResponsesStore"):
impl = OpenAIResponsesImpl(
inference_api=mock_deps[Api.inference],
tool_groups_api=mock_deps[Api.tool_groups],
tool_runtime_api=mock_deps[Api.tool_runtime],
responses_store=MagicMock(),
vector_io_api=mock_deps[Api.vector_io],
safety_api=None, # No Safety API
conversations_api=mock_deps[Api.conversations],
prompts_api=mock_deps[Api.prompts],
files_api=mock_deps[Api.files],
)
# Test with string guardrail
with pytest.raises(ValueError) as exc_info:
await impl.create_openai_response(
input="test input",
model="test-model",
guardrails=["llama-guard"],
)
assert "Cannot process guardrails: Safety API is not configured" in str(exc_info.value)
# Test with ResponseGuardrailSpec
with pytest.raises(ValueError) as exc_info:
await impl.create_openai_response(
input="test input",
model="test-model",
guardrails=[ResponseGuardrailSpec(type="llama-guard")],
)
assert "Cannot process guardrails: Safety API is not configured" in str(exc_info.value)
async def test_create_response_succeeds_without_guardrails_and_no_safety_api(
self, mock_persistence_config, mock_deps
):
"""Test that create_openai_response works when no guardrails requested and Safety API unavailable."""
from llama_stack.providers.inline.agents.meta_reference.responses.openai_responses import (
OpenAIResponsesImpl,
)
# Create OpenAIResponsesImpl with no safety API
with (
patch("llama_stack.providers.inline.agents.meta_reference.responses.openai_responses.ResponsesStore"),
patch.object(OpenAIResponsesImpl, "_create_streaming_response", new_callable=AsyncMock) as mock_stream,
):
# Mock the streaming response to return a simple async generator
async def mock_generator():
yield MagicMock()
mock_stream.return_value = mock_generator()
impl = OpenAIResponsesImpl(
inference_api=mock_deps[Api.inference],
tool_groups_api=mock_deps[Api.tool_groups],
tool_runtime_api=mock_deps[Api.tool_runtime],
responses_store=MagicMock(),
vector_io_api=mock_deps[Api.vector_io],
safety_api=None, # No Safety API
conversations_api=mock_deps[Api.conversations],
prompts_api=mock_deps[Api.prompts],
files_api=mock_deps[Api.files],
)
# Should not raise when no guardrails requested
# Note: This will still fail later in execution due to mocking, but should pass the validation
try:
await impl.create_openai_response(
input="test input",
model="test-model",
guardrails=None, # No guardrails
)
except Exception as e:
# Ensure the error is NOT about missing Safety API
assert "Cannot process guardrails: Safety API is not configured" not in str(e)

View file

@ -120,7 +120,7 @@ from llama_stack.providers.remote.inference.watsonx.watsonx import WatsonXInfere
VLLMInferenceAdapter,
"llama_stack.providers.remote.inference.vllm.VLLMProviderDataValidator",
{
"url": "http://fake",
"base_url": "http://fake",
},
),
],
@ -153,7 +153,7 @@ def test_litellm_provider_data_used(config_cls, adapter_cls, provider_data_valid
"""Validate data for LiteLLM-based providers. Similar to test_openai_provider_data_used, but without the
assumption that there is an OpenAI-compatible client object."""
inference_adapter = adapter_cls(config=config_cls())
inference_adapter = adapter_cls(config=config_cls(base_url="http://fake"))
inference_adapter.__provider_spec__ = MagicMock()
inference_adapter.__provider_spec__.provider_data_validator = provider_data_validator

View file

@ -40,7 +40,7 @@ from llama_stack_api import (
@pytest.fixture(scope="function")
async def vllm_inference_adapter():
config = VLLMInferenceAdapterConfig(url="http://mocked.localhost:12345")
config = VLLMInferenceAdapterConfig(base_url="http://mocked.localhost:12345")
inference_adapter = VLLMInferenceAdapter(config=config)
inference_adapter.model_store = AsyncMock()
await inference_adapter.initialize()
@ -204,7 +204,7 @@ async def test_vllm_completion_extra_body():
via extra_body to the underlying OpenAI client through the InferenceRouter.
"""
# Set up the vLLM adapter
config = VLLMInferenceAdapterConfig(url="http://mocked.localhost:12345")
config = VLLMInferenceAdapterConfig(base_url="http://mocked.localhost:12345")
vllm_adapter = VLLMInferenceAdapter(config=config)
vllm_adapter.__provider_id__ = "vllm"
await vllm_adapter.initialize()
@ -277,7 +277,7 @@ async def test_vllm_chat_completion_extra_body():
via extra_body to the underlying OpenAI client through the InferenceRouter for chat completion.
"""
# Set up the vLLM adapter
config = VLLMInferenceAdapterConfig(url="http://mocked.localhost:12345")
config = VLLMInferenceAdapterConfig(base_url="http://mocked.localhost:12345")
vllm_adapter = VLLMInferenceAdapter(config=config)
vllm_adapter.__provider_id__ = "vllm"
await vllm_adapter.initialize()

View file

@ -146,7 +146,7 @@ async def test_hosted_model_not_in_endpoint_mapping():
async def test_self_hosted_ignores_endpoint():
adapter = create_adapter(
config=NVIDIAConfig(url="http://localhost:8000", api_key=None),
config=NVIDIAConfig(base_url="http://localhost:8000", api_key=None),
rerank_endpoints={"test-model": "https://model.endpoint/rerank"}, # This should be ignored for self-hosted.
)
mock_session = MockSession(MockResponse())

View file

@ -4,8 +4,10 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import get_args, get_origin
import pytest
from pydantic import BaseModel
from pydantic import BaseModel, HttpUrl
from llama_stack.core.distribution import get_provider_registry, providable_apis
from llama_stack.core.utils.dynamic import instantiate_class_type
@ -41,3 +43,55 @@ class TestProviderConfigurations:
sample_config = config_type.sample_run_config(__distro_dir__="foobarbaz")
assert isinstance(sample_config, dict), f"{config_class_name}.sample_run_config() did not return a dict"
def test_remote_inference_url_standardization(self):
"""Verify all remote inference providers use standardized base_url configuration."""
provider_registry = get_provider_registry()
inference_providers = provider_registry.get("inference", {})
# Filter for remote providers only
remote_providers = {k: v for k, v in inference_providers.items() if k.startswith("remote::")}
failures = []
for provider_type, provider_spec in remote_providers.items():
try:
config_class_name = provider_spec.config_class
config_type = instantiate_class_type(config_class_name)
# Check that config has base_url field (not url)
if hasattr(config_type, "model_fields"):
fields = config_type.model_fields
# Should NOT have 'url' field (old pattern)
if "url" in fields:
failures.append(
f"{provider_type}: Uses deprecated 'url' field instead of 'base_url'. "
f"Please rename to 'base_url' for consistency."
)
# Should have 'base_url' field with HttpUrl | None type
if "base_url" in fields:
field_info = fields["base_url"]
annotation = field_info.annotation
# Check if it's HttpUrl or HttpUrl | None
# get_origin() returns Union for (X | Y), None for plain types
# get_args() returns the types inside Union, e.g. (HttpUrl, NoneType)
is_valid = False
if get_origin(annotation) is not None: # It's a Union/Optional
if HttpUrl in get_args(annotation):
is_valid = True
elif annotation == HttpUrl: # Plain HttpUrl without | None
is_valid = True
if not is_valid:
failures.append(
f"{provider_type}: base_url field has incorrect type annotation. "
f"Expected 'HttpUrl | None', got '{annotation}'"
)
except Exception as e:
failures.append(f"{provider_type}: Error checking URL standardization: {str(e)}")
if failures:
pytest.fail("URL standardization violations found:\n" + "\n".join(f" - {f}" for f in failures))

View file

@ -15,7 +15,14 @@ from pydantic import BaseModel, Field
from llama_stack.core.request_headers import request_provider_data_context
from llama_stack.providers.utils.inference.model_registry import RemoteInferenceProviderConfig
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
from llama_stack_api import Model, ModelType, OpenAIChatCompletionRequestWithExtraBody, OpenAIUserMessageParam
from llama_stack_api import (
Model,
ModelType,
OpenAIChatCompletionRequestWithExtraBody,
OpenAICompletionRequestWithExtraBody,
OpenAIEmbeddingsRequestWithExtraBody,
OpenAIUserMessageParam,
)
class OpenAIMixinImpl(OpenAIMixin):
@ -834,3 +841,96 @@ class TestOpenAIMixinProviderDataApiKey:
error_message = str(exc_info.value)
assert "test_api_key" in error_message
assert "x-llamastack-provider-data" in error_message
class TestOpenAIMixinAllowedModelsInference:
"""Test cases for allowed_models enforcement during inference requests"""
async def test_inference_with_allowed_models(self, mixin, mock_client_context):
"""Test that all inference methods succeed with allowed models"""
mixin.config.allowed_models = ["gpt-4", "text-davinci-003", "text-embedding-ada-002"]
mock_client = MagicMock()
mock_client.chat.completions.create = AsyncMock(return_value=MagicMock())
mock_client.completions.create = AsyncMock(return_value=MagicMock())
mock_embedding_response = MagicMock()
mock_embedding_response.data = [MagicMock(embedding=[0.1, 0.2, 0.3])]
mock_embedding_response.usage = MagicMock(prompt_tokens=5, total_tokens=5)
mock_client.embeddings.create = AsyncMock(return_value=mock_embedding_response)
with mock_client_context(mixin, mock_client):
# Test chat completion
await mixin.openai_chat_completion(
OpenAIChatCompletionRequestWithExtraBody(
model="gpt-4", messages=[OpenAIUserMessageParam(role="user", content="Hello")]
)
)
mock_client.chat.completions.create.assert_called_once()
# Test completion
await mixin.openai_completion(
OpenAICompletionRequestWithExtraBody(model="text-davinci-003", prompt="Hello")
)
mock_client.completions.create.assert_called_once()
# Test embeddings
await mixin.openai_embeddings(
OpenAIEmbeddingsRequestWithExtraBody(model="text-embedding-ada-002", input="test text")
)
mock_client.embeddings.create.assert_called_once()
async def test_inference_with_disallowed_models(self, mixin, mock_client_context):
"""Test that all inference methods fail with disallowed models"""
mixin.config.allowed_models = ["gpt-4"]
mock_client = MagicMock()
with mock_client_context(mixin, mock_client):
# Test chat completion with disallowed model
with pytest.raises(ValueError, match="Model 'gpt-4-turbo' is not in the allowed models list"):
await mixin.openai_chat_completion(
OpenAIChatCompletionRequestWithExtraBody(
model="gpt-4-turbo", messages=[OpenAIUserMessageParam(role="user", content="Hello")]
)
)
# Test completion with disallowed model
with pytest.raises(ValueError, match="Model 'text-davinci-002' is not in the allowed models list"):
await mixin.openai_completion(
OpenAICompletionRequestWithExtraBody(model="text-davinci-002", prompt="Hello")
)
# Test embeddings with disallowed model
with pytest.raises(ValueError, match="Model 'text-embedding-3-large' is not in the allowed models list"):
await mixin.openai_embeddings(
OpenAIEmbeddingsRequestWithExtraBody(model="text-embedding-3-large", input="test text")
)
mock_client.chat.completions.create.assert_not_called()
mock_client.completions.create.assert_not_called()
mock_client.embeddings.create.assert_not_called()
async def test_inference_with_no_restrictions(self, mixin, mock_client_context):
"""Test that inference succeeds when allowed_models is None or empty list blocks all"""
# Test with None (no restrictions)
assert mixin.config.allowed_models is None
mock_client = MagicMock()
mock_client.chat.completions.create = AsyncMock(return_value=MagicMock())
with mock_client_context(mixin, mock_client):
await mixin.openai_chat_completion(
OpenAIChatCompletionRequestWithExtraBody(
model="any-model", messages=[OpenAIUserMessageParam(role="user", content="Hello")]
)
)
mock_client.chat.completions.create.assert_called_once()
# Test with empty list (blocks all models)
mixin.config.allowed_models = []
with mock_client_context(mixin, mock_client):
with pytest.raises(ValueError, match="Model 'gpt-4' is not in the allowed models list"):
await mixin.openai_chat_completion(
OpenAIChatCompletionRequestWithExtraBody(
model="gpt-4", messages=[OpenAIUserMessageParam(role="user", content="Hello")]
)
)

View file

@ -5,7 +5,7 @@
# the root directory of this source tree.
from llama_stack.providers.utils.vector_io.vector_utils import generate_chunk_id
from llama_stack_api import Chunk, ChunkMetadata
from llama_stack_api import Chunk, ChunkMetadata, VectorStoreFileObject
# This test is a unit test for the chunk_utils.py helpers. This should only contain
# tests which are specific to this file. More general (API-level) tests should be placed in
@ -78,3 +78,77 @@ def test_chunk_serialization():
serialized_chunk = chunk.model_dump()
assert serialized_chunk["chunk_id"] == "test-chunk-id"
assert "chunk_id" in serialized_chunk
def test_vector_store_file_object_attributes_validation():
"""Test VectorStoreFileObject validates and sanitizes attributes at input boundary."""
# Test with metadata containing lists, nested dicts, and primitives
from llama_stack_api.vector_io import VectorStoreChunkingStrategyAuto
file_obj = VectorStoreFileObject(
id="file-123",
attributes={
"tags": ["transformers", "h100-compatible", "region:us"], # List -> string
"model_name": "granite-3.3-8b", # String preserved
"score": 0.95, # Float preserved
"active": True, # Bool preserved
"count": 42, # Int -> float
"nested": {"key": "value"}, # Dict filtered out
},
chunking_strategy=VectorStoreChunkingStrategyAuto(),
created_at=1234567890,
status="completed",
vector_store_id="vs-123",
)
# Lists converted to comma-separated strings
assert file_obj.attributes["tags"] == "transformers, h100-compatible, region:us"
# Primitives preserved
assert file_obj.attributes["model_name"] == "granite-3.3-8b"
assert file_obj.attributes["score"] == 0.95
assert file_obj.attributes["active"] is True
assert file_obj.attributes["count"] == 42.0 # int -> float
# Complex types filtered out
assert "nested" not in file_obj.attributes
def test_vector_store_file_object_attributes_constraints():
"""Test VectorStoreFileObject enforces OpenAPI constraints on attributes."""
from llama_stack_api.vector_io import VectorStoreChunkingStrategyAuto
# Test max 16 properties
many_attrs = {f"key{i}": f"value{i}" for i in range(20)}
file_obj = VectorStoreFileObject(
id="file-123",
attributes=many_attrs,
chunking_strategy=VectorStoreChunkingStrategyAuto(),
created_at=1234567890,
status="completed",
vector_store_id="vs-123",
)
assert len(file_obj.attributes) == 16 # Max 16 properties
# Test max 64 char keys are filtered
long_key_attrs = {"a" * 65: "value", "valid_key": "value"}
file_obj = VectorStoreFileObject(
id="file-124",
attributes=long_key_attrs,
chunking_strategy=VectorStoreChunkingStrategyAuto(),
created_at=1234567890,
status="completed",
vector_store_id="vs-123",
)
assert "a" * 65 not in file_obj.attributes
assert "valid_key" in file_obj.attributes
# Test max 512 char string values are truncated
long_value_attrs = {"key": "x" * 600}
file_obj = VectorStoreFileObject(
id="file-125",
attributes=long_value_attrs,
chunking_strategy=VectorStoreChunkingStrategyAuto(),
created_at=1234567890,
status="completed",
vector_store_id="vs-123",
)
assert len(file_obj.attributes["key"]) == 512