mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-23 00:12:24 +00:00
agents to use tools api
This commit is contained in:
parent
596afc6497
commit
f90e9c2003
21 changed files with 538 additions and 329 deletions
|
|
@ -22,6 +22,8 @@ async def get_provider_impl(
|
|||
deps[Api.memory],
|
||||
deps[Api.safety],
|
||||
deps[Api.memory_banks],
|
||||
deps[Api.tool_runtime],
|
||||
deps[Api.tool_groups],
|
||||
)
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
|
|||
|
|
@ -4,25 +4,21 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import asyncio
|
||||
import copy
|
||||
import logging
|
||||
import os
|
||||
import re
|
||||
import secrets
|
||||
import string
|
||||
import uuid
|
||||
from datetime import datetime
|
||||
from typing import AsyncGenerator, Dict, List, Optional, Tuple
|
||||
from typing import AsyncGenerator, Dict, List
|
||||
from urllib.parse import urlparse
|
||||
|
||||
import httpx
|
||||
|
||||
from llama_models.llama3.api.datatypes import BuiltinTool
|
||||
|
||||
from llama_stack.apis.agents import (
|
||||
AgentConfig,
|
||||
AgentTool,
|
||||
AgentTurnCreateRequest,
|
||||
AgentTurnResponseEvent,
|
||||
AgentTurnResponseEventType,
|
||||
|
|
@ -36,8 +32,6 @@ from llama_stack.apis.agents import (
|
|||
CodeInterpreterToolDefinition,
|
||||
FunctionCallToolDefinition,
|
||||
InferenceStep,
|
||||
MemoryRetrievalStep,
|
||||
MemoryToolDefinition,
|
||||
PhotogenToolDefinition,
|
||||
SearchToolDefinition,
|
||||
ShieldCallStep,
|
||||
|
|
@ -46,11 +40,9 @@ from llama_stack.apis.agents import (
|
|||
Turn,
|
||||
WolframAlphaToolDefinition,
|
||||
)
|
||||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
InterleavedContent,
|
||||
TextContentItem,
|
||||
URL,
|
||||
TextContentItem,
|
||||
)
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionResponseEventType,
|
||||
|
|
@ -62,30 +54,26 @@ from llama_stack.apis.inference import (
|
|||
SystemMessage,
|
||||
ToolCallDelta,
|
||||
ToolCallParseStatus,
|
||||
ToolChoice,
|
||||
ToolDefinition,
|
||||
ToolResponse,
|
||||
ToolResponseMessage,
|
||||
UserMessage,
|
||||
)
|
||||
from llama_stack.apis.memory import Memory, MemoryBankDocument, QueryDocumentsResponse
|
||||
from llama_stack.apis.memory_banks import MemoryBanks, VectorMemoryBankParams
|
||||
from llama_stack.apis.memory import Memory
|
||||
from llama_stack.apis.memory_banks import MemoryBanks
|
||||
from llama_stack.apis.safety import Safety
|
||||
|
||||
from llama_stack.providers.utils.kvstore import KVStore
|
||||
from llama_stack.providers.utils.memory.vector_store import concat_interleaved_content
|
||||
from llama_stack.providers.utils.telemetry import tracing
|
||||
|
||||
from .persistence import AgentPersistence
|
||||
from .rag.context_retriever import generate_rag_query
|
||||
from .safety import SafetyException, ShieldRunnerMixin
|
||||
from .tools.base import BaseTool
|
||||
from .tools.builtin import (
|
||||
CodeInterpreterTool,
|
||||
interpret_content_as_attachment,
|
||||
PhotogenTool,
|
||||
SearchTool,
|
||||
WolframAlphaTool,
|
||||
interpret_content_as_attachment,
|
||||
)
|
||||
from .tools.safety import SafeTool
|
||||
|
||||
|
|
@ -108,6 +96,8 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
memory_api: Memory,
|
||||
memory_banks_api: MemoryBanks,
|
||||
safety_api: Safety,
|
||||
tool_runtime_api: ToolRuntime,
|
||||
tool_groups_api: ToolGroups,
|
||||
persistence_store: KVStore,
|
||||
):
|
||||
self.agent_id = agent_id
|
||||
|
|
@ -118,6 +108,8 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
self.memory_banks_api = memory_banks_api
|
||||
self.safety_api = safety_api
|
||||
self.storage = AgentPersistence(agent_id, persistence_store)
|
||||
self.tool_runtime_api = tool_runtime_api
|
||||
self.tool_groups_api = tool_groups_api
|
||||
|
||||
builtin_tools = []
|
||||
for tool_defn in agent_config.tools:
|
||||
|
|
@ -392,62 +384,50 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
sampling_params: SamplingParams,
|
||||
stream: bool = False,
|
||||
) -> AsyncGenerator:
|
||||
enabled_tools = set(t.type for t in self.agent_config.tools)
|
||||
need_rag_context = await self._should_retrieve_context(
|
||||
input_messages, attachments
|
||||
)
|
||||
if need_rag_context:
|
||||
step_id = str(uuid.uuid4())
|
||||
yield AgentTurnResponseStreamChunk(
|
||||
event=AgentTurnResponseEvent(
|
||||
payload=AgentTurnResponseStepStartPayload(
|
||||
step_type=StepType.memory_retrieval.value,
|
||||
step_id=step_id,
|
||||
if self.agent_config.preprocessing_tools:
|
||||
with tracing.span("preprocessing_tools") as span:
|
||||
for tool_name in self.agent_config.preprocessing_tools:
|
||||
yield AgentTurnResponseStreamChunk(
|
||||
event=AgentTurnResponseEvent(
|
||||
payload=AgentTurnResponseStepStartPayload(
|
||||
step_type=StepType.tool_execution.value,
|
||||
step_id=str(uuid.uuid4()),
|
||||
)
|
||||
)
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
# TODO: find older context from the session and either replace it
|
||||
# or append with a sliding window. this is really a very simplistic implementation
|
||||
with tracing.span("retrieve_rag_context") as span:
|
||||
rag_context, bank_ids = await self._retrieve_context(
|
||||
session_id, input_messages, attachments
|
||||
)
|
||||
span.set_attribute(
|
||||
"input", [m.model_dump_json() for m in input_messages]
|
||||
)
|
||||
span.set_attribute("output", rag_context)
|
||||
span.set_attribute("bank_ids", bank_ids)
|
||||
|
||||
step_id = str(uuid.uuid4())
|
||||
yield AgentTurnResponseStreamChunk(
|
||||
event=AgentTurnResponseEvent(
|
||||
payload=AgentTurnResponseStepCompletePayload(
|
||||
step_type=StepType.memory_retrieval.value,
|
||||
step_id=step_id,
|
||||
step_details=MemoryRetrievalStep(
|
||||
turn_id=turn_id,
|
||||
step_id=step_id,
|
||||
memory_bank_ids=bank_ids,
|
||||
inserted_context=rag_context or "",
|
||||
),
|
||||
args = dict(
|
||||
session_id=session_id,
|
||||
input_messages=input_messages,
|
||||
attachments=attachments,
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
if rag_context:
|
||||
last_message = input_messages[-1]
|
||||
last_message.context = rag_context
|
||||
|
||||
elif attachments and AgentTool.code_interpreter.value in enabled_tools:
|
||||
urls = [a.content for a in attachments if isinstance(a.content, URL)]
|
||||
# TODO: we need to migrate URL away from str type
|
||||
pattern = re.compile("^(https?://|file://|data:)")
|
||||
urls += [
|
||||
URL(uri=a.content) for a in attachments if pattern.match(a.content)
|
||||
]
|
||||
msg = await attachment_message(self.tempdir, urls)
|
||||
input_messages.append(msg)
|
||||
result = await self.tool_runtime_api.invoke_tool(
|
||||
tool_name=tool_name,
|
||||
args=args,
|
||||
)
|
||||
yield AgentTurnResponseStreamChunk(
|
||||
event=AgentTurnResponseEvent(
|
||||
payload=AgentTurnResponseStepProgressPayload(
|
||||
step_type=StepType.tool_execution.value,
|
||||
step_id=str(uuid.uuid4()),
|
||||
tool_call_delta=ToolCallDelta(
|
||||
parse_status=ToolCallParseStatus.success,
|
||||
content=ToolCall(
|
||||
call_id="", tool_name=tool_name, arguments={}
|
||||
),
|
||||
),
|
||||
)
|
||||
)
|
||||
)
|
||||
span.set_attribute(
|
||||
"input", [m.model_dump_json() for m in input_messages]
|
||||
)
|
||||
span.set_attribute("output", result.content)
|
||||
span.set_attribute("error_code", result.error_code)
|
||||
span.set_attribute("error_message", result.error_message)
|
||||
span.set_attribute("tool_name", tool_name)
|
||||
if result.error_code != 0 and result.content:
|
||||
last_message = input_messages[-1]
|
||||
last_message.context = result.content
|
||||
|
||||
output_attachments = []
|
||||
|
||||
|
|
@ -659,129 +639,6 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
|
||||
n_iter += 1
|
||||
|
||||
async def _ensure_memory_bank(self, session_id: str) -> str:
|
||||
session_info = await self.storage.get_session_info(session_id)
|
||||
if session_info is None:
|
||||
raise ValueError(f"Session {session_id} not found")
|
||||
|
||||
if session_info.memory_bank_id is None:
|
||||
bank_id = f"memory_bank_{session_id}"
|
||||
await self.memory_banks_api.register_memory_bank(
|
||||
memory_bank_id=bank_id,
|
||||
params=VectorMemoryBankParams(
|
||||
embedding_model="all-MiniLM-L6-v2",
|
||||
chunk_size_in_tokens=512,
|
||||
),
|
||||
)
|
||||
await self.storage.add_memory_bank_to_session(session_id, bank_id)
|
||||
else:
|
||||
bank_id = session_info.memory_bank_id
|
||||
|
||||
return bank_id
|
||||
|
||||
async def _should_retrieve_context(
|
||||
self, messages: List[Message], attachments: List[Attachment]
|
||||
) -> bool:
|
||||
enabled_tools = set(t.type for t in self.agent_config.tools)
|
||||
if attachments:
|
||||
if (
|
||||
AgentTool.code_interpreter.value in enabled_tools
|
||||
and self.agent_config.tool_choice == ToolChoice.required
|
||||
):
|
||||
return False
|
||||
else:
|
||||
return True
|
||||
|
||||
return AgentTool.memory.value in enabled_tools
|
||||
|
||||
def _memory_tool_definition(self) -> Optional[MemoryToolDefinition]:
|
||||
for t in self.agent_config.tools:
|
||||
if t.type == AgentTool.memory.value:
|
||||
return t
|
||||
|
||||
return None
|
||||
|
||||
async def _retrieve_context(
|
||||
self, session_id: str, messages: List[Message], attachments: List[Attachment]
|
||||
) -> Tuple[Optional[InterleavedContent], List[int]]: # (rag_context, bank_ids)
|
||||
bank_ids = []
|
||||
|
||||
memory = self._memory_tool_definition()
|
||||
assert memory is not None, "Memory tool not configured"
|
||||
bank_ids.extend(c.bank_id for c in memory.memory_bank_configs)
|
||||
|
||||
if attachments:
|
||||
bank_id = await self._ensure_memory_bank(session_id)
|
||||
bank_ids.append(bank_id)
|
||||
|
||||
documents = [
|
||||
MemoryBankDocument(
|
||||
document_id=str(uuid.uuid4()),
|
||||
content=a.content,
|
||||
mime_type=a.mime_type,
|
||||
metadata={},
|
||||
)
|
||||
for a in attachments
|
||||
]
|
||||
with tracing.span("insert_documents"):
|
||||
await self.memory_api.insert_documents(bank_id, documents)
|
||||
else:
|
||||
session_info = await self.storage.get_session_info(session_id)
|
||||
if session_info.memory_bank_id:
|
||||
bank_ids.append(session_info.memory_bank_id)
|
||||
|
||||
if not bank_ids:
|
||||
# this can happen if the per-session memory bank is not yet populated
|
||||
# (i.e., no prior turns uploaded an Attachment)
|
||||
return None, []
|
||||
|
||||
query = await generate_rag_query(
|
||||
memory.query_generator_config, messages, inference_api=self.inference_api
|
||||
)
|
||||
tasks = [
|
||||
self.memory_api.query_documents(
|
||||
bank_id=bank_id,
|
||||
query=query,
|
||||
params={
|
||||
"max_chunks": 5,
|
||||
},
|
||||
)
|
||||
for bank_id in bank_ids
|
||||
]
|
||||
results: List[QueryDocumentsResponse] = await asyncio.gather(*tasks)
|
||||
chunks = [c for r in results for c in r.chunks]
|
||||
scores = [s for r in results for s in r.scores]
|
||||
|
||||
if not chunks:
|
||||
return None, bank_ids
|
||||
|
||||
# sort by score
|
||||
chunks, scores = zip(
|
||||
*sorted(zip(chunks, scores), key=lambda x: x[1], reverse=True)
|
||||
)
|
||||
|
||||
tokens = 0
|
||||
picked = []
|
||||
for c in chunks[: memory.max_chunks]:
|
||||
tokens += c.token_count
|
||||
if tokens > memory.max_tokens_in_context:
|
||||
log.error(
|
||||
f"Using {len(picked)} chunks; reached max tokens in context: {tokens}",
|
||||
)
|
||||
break
|
||||
picked.append(f"id:{c.document_id}; content:{c.content}")
|
||||
|
||||
return (
|
||||
concat_interleaved_content(
|
||||
[
|
||||
"Here are the retrieved documents for relevant context:\n=== START-RETRIEVED-CONTEXT ===\n",
|
||||
*picked,
|
||||
"\n=== END-RETRIEVED-CONTEXT ===\n",
|
||||
]
|
||||
),
|
||||
bank_ids,
|
||||
)
|
||||
|
||||
def _get_tools(self) -> List[ToolDefinition]:
|
||||
ret = []
|
||||
for t in self.agent_config.tools:
|
||||
|
|
|
|||
|
|
@ -24,12 +24,11 @@ from llama_stack.apis.agents import (
|
|||
Session,
|
||||
Turn,
|
||||
)
|
||||
|
||||
from llama_stack.apis.inference import Inference, ToolResponseMessage, UserMessage
|
||||
from llama_stack.apis.memory import Memory
|
||||
from llama_stack.apis.memory_banks import MemoryBanks
|
||||
from llama_stack.apis.safety import Safety
|
||||
|
||||
from llama_stack.apis.tools import ToolGroups, ToolRuntime
|
||||
from llama_stack.providers.utils.kvstore import InmemoryKVStoreImpl, kvstore_impl
|
||||
|
||||
from .agent_instance import ChatAgent
|
||||
|
|
@ -47,12 +46,16 @@ class MetaReferenceAgentsImpl(Agents):
|
|||
memory_api: Memory,
|
||||
safety_api: Safety,
|
||||
memory_banks_api: MemoryBanks,
|
||||
tool_runtime_api: ToolRuntime,
|
||||
tool_groups_api: ToolGroups,
|
||||
):
|
||||
self.config = config
|
||||
self.inference_api = inference_api
|
||||
self.memory_api = memory_api
|
||||
self.safety_api = safety_api
|
||||
self.memory_banks_api = memory_banks_api
|
||||
self.tool_runtime_api = tool_runtime_api
|
||||
self.tool_groups_api = tool_groups_api
|
||||
|
||||
self.in_memory_store = InmemoryKVStoreImpl()
|
||||
self.tempdir = tempfile.mkdtemp()
|
||||
|
|
@ -112,6 +115,8 @@ class MetaReferenceAgentsImpl(Agents):
|
|||
safety_api=self.safety_api,
|
||||
memory_api=self.memory_api,
|
||||
memory_banks_api=self.memory_banks_api,
|
||||
tool_runtime_api=self.tool_runtime_api,
|
||||
tool_groups_api=self.tool_groups_api,
|
||||
persistence_store=(
|
||||
self.persistence_store
|
||||
if agent_config.enable_session_persistence
|
||||
|
|
|
|||
|
|
@ -8,13 +8,11 @@ import json
|
|||
import logging
|
||||
import uuid
|
||||
from datetime import datetime
|
||||
|
||||
from typing import List, Optional
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.apis.agents import Turn
|
||||
|
||||
from llama_stack.providers.utils.kvstore import KVStore
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
|
|
@ -23,7 +21,6 @@ log = logging.getLogger(__name__)
|
|||
class AgentSessionInfo(BaseModel):
|
||||
session_id: str
|
||||
session_name: str
|
||||
memory_bank_id: Optional[str] = None
|
||||
started_at: datetime
|
||||
|
||||
|
||||
|
|
@ -54,17 +51,6 @@ class AgentPersistence:
|
|||
|
||||
return AgentSessionInfo(**json.loads(value))
|
||||
|
||||
async def add_memory_bank_to_session(self, session_id: str, bank_id: str):
|
||||
session_info = await self.get_session_info(session_id)
|
||||
if session_info is None:
|
||||
raise ValueError(f"Session {session_id} not found")
|
||||
|
||||
session_info.memory_bank_id = bank_id
|
||||
await self.kvstore.set(
|
||||
key=f"session:{self.agent_id}:{session_id}",
|
||||
value=session_info.model_dump_json(),
|
||||
)
|
||||
|
||||
async def add_turn_to_session(self, session_id: str, turn: Turn):
|
||||
await self.kvstore.set(
|
||||
key=f"session:{self.agent_id}:{session_id}:{turn.turn_id}",
|
||||
|
|
|
|||
|
|
@ -1,72 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import List
|
||||
|
||||
from jinja2 import Template
|
||||
|
||||
from llama_stack.apis.agents import (
|
||||
DefaultMemoryQueryGeneratorConfig,
|
||||
LLMMemoryQueryGeneratorConfig,
|
||||
MemoryQueryGenerator,
|
||||
MemoryQueryGeneratorConfig,
|
||||
)
|
||||
from llama_stack.apis.inference import Message, UserMessage
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
interleaved_content_as_str,
|
||||
)
|
||||
|
||||
|
||||
async def generate_rag_query(
|
||||
config: MemoryQueryGeneratorConfig,
|
||||
messages: List[Message],
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Generates a query that will be used for
|
||||
retrieving relevant information from the memory bank.
|
||||
"""
|
||||
if config.type == MemoryQueryGenerator.default.value:
|
||||
query = await default_rag_query_generator(config, messages, **kwargs)
|
||||
elif config.type == MemoryQueryGenerator.llm.value:
|
||||
query = await llm_rag_query_generator(config, messages, **kwargs)
|
||||
else:
|
||||
raise NotImplementedError(f"Unsupported memory query generator {config.type}")
|
||||
return query
|
||||
|
||||
|
||||
async def default_rag_query_generator(
|
||||
config: DefaultMemoryQueryGeneratorConfig,
|
||||
messages: List[Message],
|
||||
**kwargs,
|
||||
):
|
||||
return config.sep.join(interleaved_content_as_str(m.content) for m in messages)
|
||||
|
||||
|
||||
async def llm_rag_query_generator(
|
||||
config: LLMMemoryQueryGeneratorConfig,
|
||||
messages: List[Message],
|
||||
**kwargs,
|
||||
):
|
||||
assert "inference_api" in kwargs, "LLMRAGQueryGenerator needs inference_api"
|
||||
inference_api = kwargs["inference_api"]
|
||||
|
||||
m_dict = {"messages": [m.model_dump() for m in messages]}
|
||||
|
||||
template = Template(config.template)
|
||||
content = template.render(m_dict)
|
||||
|
||||
model = config.model
|
||||
message = UserMessage(content=content)
|
||||
response = await inference_api.chat_completion(
|
||||
model_id=model,
|
||||
messages=[message],
|
||||
stream=False,
|
||||
)
|
||||
|
||||
query = response.completion_message.content
|
||||
|
||||
return query
|
||||
Loading…
Add table
Add a link
Reference in a new issue