mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-03 19:57:35 +00:00
resolve conflcits
This commit is contained in:
parent
28bbbcf2c1
commit
f91f869d0e
12 changed files with 782 additions and 42 deletions
|
@ -11,8 +11,6 @@
|
|||
import uuid
|
||||
from typing import Annotated, Any, Literal, Protocol, runtime_checkable
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.apis.inference import InterleavedContent
|
||||
from llama_stack.apis.vector_dbs import VectorDB
|
||||
from llama_stack.apis.version import LLAMA_STACK_API_V1
|
||||
|
@ -21,6 +19,8 @@ from llama_stack.providers.utils.vector_io.vector_utils import generate_chunk_id
|
|||
from llama_stack.schema_utils import json_schema_type, webmethod
|
||||
from llama_stack.strong_typing.schema import register_schema
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ChunkMetadata(BaseModel):
|
||||
|
@ -350,7 +350,12 @@ class VectorStoreFileLastError(BaseModel):
|
|||
message: str
|
||||
|
||||
|
||||
VectorStoreFileStatus = Literal["completed"] | Literal["in_progress"] | Literal["cancelled"] | Literal["failed"]
|
||||
VectorStoreFileStatus = (
|
||||
Literal["completed"]
|
||||
| Literal["in_progress"]
|
||||
| Literal["cancelled"]
|
||||
| Literal["failed"]
|
||||
)
|
||||
register_schema(VectorStoreFileStatus, name="VectorStoreFileStatus")
|
||||
|
||||
|
||||
|
@ -556,7 +561,9 @@ class VectorIO(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/vector_stores/{vector_store_id}", method="GET", level=LLAMA_STACK_API_V1)
|
||||
@webmethod(
|
||||
route="/vector_stores/{vector_store_id}", method="GET", level=LLAMA_STACK_API_V1
|
||||
)
|
||||
async def openai_retrieve_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
|
|
|
@ -344,6 +344,64 @@ class VectorIORouter(VectorIO):
|
|||
file_id=file_id,
|
||||
)
|
||||
|
||||
async def openai_create_vector_store_file_batch(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
file_ids: list[str],
|
||||
attributes: dict[str, Any] | None = None,
|
||||
chunking_strategy: VectorStoreChunkingStrategy | None = None,
|
||||
) -> VectorStoreFileBatchObject:
|
||||
logger.debug(f"VectorIORouter.openai_create_vector_store_file_batch: {vector_store_id}, {len(file_ids)} files")
|
||||
return await self.routing_table.openai_create_vector_store_file_batch(
|
||||
vector_store_id=vector_store_id,
|
||||
file_ids=file_ids,
|
||||
attributes=attributes,
|
||||
chunking_strategy=chunking_strategy,
|
||||
)
|
||||
|
||||
async def openai_retrieve_vector_store_file_batch(
|
||||
self,
|
||||
batch_id: str,
|
||||
vector_store_id: str,
|
||||
) -> VectorStoreFileBatchObject:
|
||||
logger.debug(f"VectorIORouter.openai_retrieve_vector_store_file_batch: {batch_id}, {vector_store_id}")
|
||||
return await self.routing_table.openai_retrieve_vector_store_file_batch(
|
||||
batch_id=batch_id,
|
||||
vector_store_id=vector_store_id,
|
||||
)
|
||||
|
||||
async def openai_list_files_in_vector_store_file_batch(
|
||||
self,
|
||||
batch_id: str,
|
||||
vector_store_id: str,
|
||||
after: str | None = None,
|
||||
before: str | None = None,
|
||||
filter: str | None = None,
|
||||
limit: int | None = 20,
|
||||
order: str | None = "desc",
|
||||
) -> VectorStoreFilesListInBatchResponse:
|
||||
logger.debug(f"VectorIORouter.openai_list_files_in_vector_store_file_batch: {batch_id}, {vector_store_id}")
|
||||
return await self.routing_table.openai_list_files_in_vector_store_file_batch(
|
||||
batch_id=batch_id,
|
||||
vector_store_id=vector_store_id,
|
||||
after=after,
|
||||
before=before,
|
||||
filter=filter,
|
||||
limit=limit,
|
||||
order=order,
|
||||
)
|
||||
|
||||
async def openai_cancel_vector_store_file_batch(
|
||||
self,
|
||||
batch_id: str,
|
||||
vector_store_id: str,
|
||||
) -> VectorStoreFileBatchObject:
|
||||
logger.debug(f"VectorIORouter.openai_cancel_vector_store_file_batch: {batch_id}, {vector_store_id}")
|
||||
return await self.routing_table.openai_cancel_vector_store_file_batch(
|
||||
batch_id=batch_id,
|
||||
vector_store_id=vector_store_id,
|
||||
)
|
||||
|
||||
async def health(self) -> dict[str, HealthResponse]:
|
||||
health_statuses = {}
|
||||
timeout = 1 # increasing the timeout to 1 second for health checks
|
||||
|
|
|
@ -245,3 +245,65 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl, VectorDBs):
|
|||
vector_store_id=vector_store_id,
|
||||
file_id=file_id,
|
||||
)
|
||||
|
||||
async def openai_create_vector_store_file_batch(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
file_ids: list[str],
|
||||
attributes: dict[str, Any] | None = None,
|
||||
chunking_strategy: Any | None = None,
|
||||
):
|
||||
await self.assert_action_allowed("update", "vector_db", vector_store_id)
|
||||
provider = await self.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_create_vector_store_file_batch(
|
||||
vector_store_id=vector_store_id,
|
||||
file_ids=file_ids,
|
||||
attributes=attributes,
|
||||
chunking_strategy=chunking_strategy,
|
||||
)
|
||||
|
||||
async def openai_retrieve_vector_store_file_batch(
|
||||
self,
|
||||
batch_id: str,
|
||||
vector_store_id: str,
|
||||
):
|
||||
await self.assert_action_allowed("read", "vector_db", vector_store_id)
|
||||
provider = await self.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_retrieve_vector_store_file_batch(
|
||||
batch_id=batch_id,
|
||||
vector_store_id=vector_store_id,
|
||||
)
|
||||
|
||||
async def openai_list_files_in_vector_store_file_batch(
|
||||
self,
|
||||
batch_id: str,
|
||||
vector_store_id: str,
|
||||
after: str | None = None,
|
||||
before: str | None = None,
|
||||
filter: str | None = None,
|
||||
limit: int | None = 20,
|
||||
order: str | None = "desc",
|
||||
):
|
||||
await self.assert_action_allowed("read", "vector_db", vector_store_id)
|
||||
provider = await self.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_list_files_in_vector_store_file_batch(
|
||||
batch_id=batch_id,
|
||||
vector_store_id=vector_store_id,
|
||||
after=after,
|
||||
before=before,
|
||||
filter=filter,
|
||||
limit=limit,
|
||||
order=order,
|
||||
)
|
||||
|
||||
async def openai_cancel_vector_store_file_batch(
|
||||
self,
|
||||
batch_id: str,
|
||||
vector_store_id: str,
|
||||
):
|
||||
await self.assert_action_allowed("update", "vector_db", vector_store_id)
|
||||
provider = await self.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_cancel_vector_store_file_batch(
|
||||
batch_id=batch_id,
|
||||
vector_store_id=vector_store_id,
|
||||
)
|
||||
|
|
|
@ -206,6 +206,7 @@ class FaissVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPr
|
|||
self.cache: dict[str, VectorDBWithIndex] = {}
|
||||
self.kvstore: KVStore | None = None
|
||||
self.openai_vector_stores: dict[str, dict[str, Any]] = {}
|
||||
self.openai_file_batches: dict[str, dict[str, Any]] = {}
|
||||
|
||||
async def initialize(self) -> None:
|
||||
self.kvstore = await kvstore_impl(self.config.kvstore)
|
||||
|
|
|
@ -415,6 +415,7 @@ class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoc
|
|||
self.files_api = files_api
|
||||
self.cache: dict[str, VectorDBWithIndex] = {}
|
||||
self.openai_vector_stores: dict[str, dict[str, Any]] = {}
|
||||
self.openai_file_batches: dict[str, dict[str, Any]] = {}
|
||||
self.kvstore: KVStore | None = None
|
||||
|
||||
async def initialize(self) -> None:
|
||||
|
|
|
@ -166,6 +166,7 @@ class ChromaVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
|
|||
log.info(f"Connecting to Chroma local db at: {self.config.db_path}")
|
||||
self.client = chromadb.PersistentClient(path=self.config.db_path)
|
||||
self.openai_vector_stores = await self._load_openai_vector_stores()
|
||||
self.openai_file_batches: dict[str, dict[str, Any]] = {}
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
|
|
@ -317,6 +317,7 @@ class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
|
|||
self.kvstore: KVStore | None = None
|
||||
self.vector_db_store = None
|
||||
self.openai_vector_stores: dict[str, dict[str, Any]] = {}
|
||||
self.openai_file_batches: dict[str, dict[str, Any]] = {}
|
||||
self.metadata_collection_name = "openai_vector_stores_metadata"
|
||||
|
||||
async def initialize(self) -> None:
|
||||
|
|
|
@ -353,6 +353,7 @@ class PGVectorVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoco
|
|||
self.kvstore: KVStore | None = None
|
||||
self.vector_db_store = None
|
||||
self.openai_vector_stores: dict[str, dict[str, Any]] = {}
|
||||
self.openai_file_batches: dict[str, dict[str, Any]] = {}
|
||||
self.metadata_collection_name = "openai_vector_stores_metadata"
|
||||
|
||||
async def initialize(self) -> None:
|
||||
|
|
|
@ -170,6 +170,7 @@ class QdrantVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
|
|||
self.vector_db_store = None
|
||||
self.kvstore: KVStore | None = None
|
||||
self.openai_vector_stores: dict[str, dict[str, Any]] = {}
|
||||
self.openai_file_batches: dict[str, dict[str, Any]] = {}
|
||||
self._qdrant_lock = asyncio.Lock()
|
||||
|
||||
async def initialize(self) -> None:
|
||||
|
|
|
@ -170,6 +170,7 @@ class WeaviateVectorIOAdapter(
|
|||
self.kvstore: KVStore | None = None
|
||||
self.vector_db_store = None
|
||||
self.openai_vector_stores: dict[str, dict[str, Any]] = {}
|
||||
self.openai_file_batches: dict[str, dict[str, Any]] = {}
|
||||
self.metadata_collection_name = "openai_vector_stores_metadata"
|
||||
|
||||
def _get_client(self) -> weaviate.Client:
|
||||
|
|
|
@ -55,7 +55,9 @@ VERSION = "v3"
|
|||
VECTOR_DBS_PREFIX = f"vector_dbs:{VERSION}::"
|
||||
OPENAI_VECTOR_STORES_PREFIX = f"openai_vector_stores:{VERSION}::"
|
||||
OPENAI_VECTOR_STORES_FILES_PREFIX = f"openai_vector_stores_files:{VERSION}::"
|
||||
OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX = f"openai_vector_stores_files_contents:{VERSION}::"
|
||||
OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX = (
|
||||
f"openai_vector_stores_files_contents:{VERSION}::"
|
||||
)
|
||||
|
||||
|
||||
class OpenAIVectorStoreMixin(ABC):
|
||||
|
@ -67,11 +69,14 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
|
||||
# These should be provided by the implementing class
|
||||
openai_vector_stores: dict[str, dict[str, Any]]
|
||||
openai_file_batches: dict[str, dict[str, Any]]
|
||||
files_api: Files | None
|
||||
# KV store for persisting OpenAI vector store metadata
|
||||
kvstore: KVStore | None
|
||||
|
||||
async def _save_openai_vector_store(self, store_id: str, store_info: dict[str, Any]) -> None:
|
||||
async def _save_openai_vector_store(
|
||||
self, store_id: str, store_info: dict[str, Any]
|
||||
) -> None:
|
||||
"""Save vector store metadata to persistent storage."""
|
||||
assert self.kvstore
|
||||
key = f"{OPENAI_VECTOR_STORES_PREFIX}{store_id}"
|
||||
|
@ -92,7 +97,9 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
stores[info["id"]] = info
|
||||
return stores
|
||||
|
||||
async def _update_openai_vector_store(self, store_id: str, store_info: dict[str, Any]) -> None:
|
||||
async def _update_openai_vector_store(
|
||||
self, store_id: str, store_info: dict[str, Any]
|
||||
) -> None:
|
||||
"""Update vector store metadata in persistent storage."""
|
||||
assert self.kvstore
|
||||
key = f"{OPENAI_VECTOR_STORES_PREFIX}{store_id}"
|
||||
|
@ -119,18 +126,26 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
assert self.kvstore
|
||||
meta_key = f"{OPENAI_VECTOR_STORES_FILES_PREFIX}{store_id}:{file_id}"
|
||||
await self.kvstore.set(key=meta_key, value=json.dumps(file_info))
|
||||
contents_prefix = f"{OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX}{store_id}:{file_id}:"
|
||||
contents_prefix = (
|
||||
f"{OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX}{store_id}:{file_id}:"
|
||||
)
|
||||
for idx, chunk in enumerate(file_contents):
|
||||
await self.kvstore.set(key=f"{contents_prefix}{idx}", value=json.dumps(chunk))
|
||||
await self.kvstore.set(
|
||||
key=f"{contents_prefix}{idx}", value=json.dumps(chunk)
|
||||
)
|
||||
|
||||
async def _load_openai_vector_store_file(self, store_id: str, file_id: str) -> dict[str, Any]:
|
||||
async def _load_openai_vector_store_file(
|
||||
self, store_id: str, file_id: str
|
||||
) -> dict[str, Any]:
|
||||
"""Load vector store file metadata from persistent storage."""
|
||||
assert self.kvstore
|
||||
key = f"{OPENAI_VECTOR_STORES_FILES_PREFIX}{store_id}:{file_id}"
|
||||
stored_data = await self.kvstore.get(key)
|
||||
return json.loads(stored_data) if stored_data else {}
|
||||
|
||||
async def _load_openai_vector_store_file_contents(self, store_id: str, file_id: str) -> list[dict[str, Any]]:
|
||||
async def _load_openai_vector_store_file_contents(
|
||||
self, store_id: str, file_id: str
|
||||
) -> list[dict[str, Any]]:
|
||||
"""Load vector store file contents from persistent storage."""
|
||||
assert self.kvstore
|
||||
prefix = f"{OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX}{store_id}:{file_id}:"
|
||||
|
@ -138,20 +153,26 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
raw_items = await self.kvstore.values_in_range(prefix, end_key)
|
||||
return [json.loads(item) for item in raw_items]
|
||||
|
||||
async def _update_openai_vector_store_file(self, store_id: str, file_id: str, file_info: dict[str, Any]) -> None:
|
||||
async def _update_openai_vector_store_file(
|
||||
self, store_id: str, file_id: str, file_info: dict[str, Any]
|
||||
) -> None:
|
||||
"""Update vector store file metadata in persistent storage."""
|
||||
assert self.kvstore
|
||||
key = f"{OPENAI_VECTOR_STORES_FILES_PREFIX}{store_id}:{file_id}"
|
||||
await self.kvstore.set(key=key, value=json.dumps(file_info))
|
||||
|
||||
async def _delete_openai_vector_store_file_from_storage(self, store_id: str, file_id: str) -> None:
|
||||
async def _delete_openai_vector_store_file_from_storage(
|
||||
self, store_id: str, file_id: str
|
||||
) -> None:
|
||||
"""Delete vector store file metadata from persistent storage."""
|
||||
assert self.kvstore
|
||||
|
||||
meta_key = f"{OPENAI_VECTOR_STORES_FILES_PREFIX}{store_id}:{file_id}"
|
||||
await self.kvstore.delete(meta_key)
|
||||
|
||||
contents_prefix = f"{OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX}{store_id}:{file_id}:"
|
||||
contents_prefix = (
|
||||
f"{OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX}{store_id}:{file_id}:"
|
||||
)
|
||||
end_key = f"{contents_prefix}\xff"
|
||||
# load all stored chunk values (values_in_range is implemented by all backends)
|
||||
raw_items = await self.kvstore.values_in_range(contents_prefix, end_key)
|
||||
|
@ -164,7 +185,9 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
self.openai_vector_stores = await self._load_openai_vector_stores()
|
||||
|
||||
@abstractmethod
|
||||
async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None:
|
||||
async def delete_chunks(
|
||||
self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]
|
||||
) -> None:
|
||||
"""Delete chunks from a vector store."""
|
||||
pass
|
||||
|
||||
|
@ -275,7 +298,10 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
|
||||
# Now that our vector store is created, attach any files that were provided
|
||||
file_ids = file_ids or []
|
||||
tasks = [self.openai_attach_file_to_vector_store(vector_db_id, file_id) for file_id in file_ids]
|
||||
tasks = [
|
||||
self.openai_attach_file_to_vector_store(vector_db_id, file_id)
|
||||
for file_id in file_ids
|
||||
]
|
||||
await asyncio.gather(*tasks)
|
||||
|
||||
# Get the updated store info and return it
|
||||
|
@ -302,7 +328,9 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
|
||||
# Apply cursor-based pagination
|
||||
if after:
|
||||
after_index = next((i for i, store in enumerate(all_stores) if store["id"] == after), -1)
|
||||
after_index = next(
|
||||
(i for i, store in enumerate(all_stores) if store["id"] == after), -1
|
||||
)
|
||||
if after_index >= 0:
|
||||
all_stores = all_stores[after_index + 1 :]
|
||||
|
||||
|
@ -391,7 +419,9 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
try:
|
||||
await self.unregister_vector_db(vector_store_id)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to delete underlying vector DB {vector_store_id}: {e}")
|
||||
logger.warning(
|
||||
f"Failed to delete underlying vector DB {vector_store_id}: {e}"
|
||||
)
|
||||
|
||||
return VectorStoreDeleteResponse(
|
||||
id=vector_store_id,
|
||||
|
@ -416,7 +446,9 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
# Validate search_mode
|
||||
valid_modes = {"keyword", "vector", "hybrid"}
|
||||
if search_mode not in valid_modes:
|
||||
raise ValueError(f"search_mode must be one of {valid_modes}, got {search_mode}")
|
||||
raise ValueError(
|
||||
f"search_mode must be one of {valid_modes}, got {search_mode}"
|
||||
)
|
||||
|
||||
if vector_store_id not in self.openai_vector_stores:
|
||||
raise VectorStoreNotFoundError(vector_store_id)
|
||||
|
@ -484,7 +516,9 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
next_page=None,
|
||||
)
|
||||
|
||||
def _matches_filters(self, metadata: dict[str, Any], filters: dict[str, Any]) -> bool:
|
||||
def _matches_filters(
|
||||
self, metadata: dict[str, Any], filters: dict[str, Any]
|
||||
) -> bool:
|
||||
"""Check if metadata matches the provided filters."""
|
||||
if not filters:
|
||||
return True
|
||||
|
@ -604,7 +638,9 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
try:
|
||||
file_response = await self.files_api.openai_retrieve_file(file_id)
|
||||
mime_type, _ = mimetypes.guess_type(file_response.filename)
|
||||
content_response = await self.files_api.openai_retrieve_file_content(file_id)
|
||||
content_response = await self.files_api.openai_retrieve_file_content(
|
||||
file_id
|
||||
)
|
||||
|
||||
content = content_from_data_and_mime_type(content_response.body, mime_type)
|
||||
|
||||
|
@ -643,7 +679,9 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
# Save vector store file to persistent storage (provider-specific)
|
||||
dict_chunks = [c.model_dump() for c in chunks]
|
||||
# This should be updated to include chunk_id
|
||||
await self._save_openai_vector_store_file(vector_store_id, file_id, file_info, dict_chunks)
|
||||
await self._save_openai_vector_store_file(
|
||||
vector_store_id, file_id, file_info, dict_chunks
|
||||
)
|
||||
|
||||
# Update file_ids and file_counts in vector store metadata
|
||||
store_info = self.openai_vector_stores[vector_store_id].copy()
|
||||
|
@ -679,7 +717,9 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
|
||||
file_objects: list[VectorStoreFileObject] = []
|
||||
for file_id in store_info["file_ids"]:
|
||||
file_info = await self._load_openai_vector_store_file(vector_store_id, file_id)
|
||||
file_info = await self._load_openai_vector_store_file(
|
||||
vector_store_id, file_id
|
||||
)
|
||||
file_object = VectorStoreFileObject(**file_info)
|
||||
if filter and file_object.status != filter:
|
||||
continue
|
||||
|
@ -691,7 +731,9 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
|
||||
# Apply cursor-based pagination
|
||||
if after:
|
||||
after_index = next((i for i, file in enumerate(file_objects) if file.id == after), -1)
|
||||
after_index = next(
|
||||
(i for i, file in enumerate(file_objects) if file.id == after), -1
|
||||
)
|
||||
if after_index >= 0:
|
||||
file_objects = file_objects[after_index + 1 :]
|
||||
|
||||
|
@ -728,7 +770,9 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
|
||||
store_info = self.openai_vector_stores[vector_store_id]
|
||||
if file_id not in store_info["file_ids"]:
|
||||
raise ValueError(f"File {file_id} not found in vector store {vector_store_id}")
|
||||
raise ValueError(
|
||||
f"File {file_id} not found in vector store {vector_store_id}"
|
||||
)
|
||||
|
||||
file_info = await self._load_openai_vector_store_file(vector_store_id, file_id)
|
||||
return VectorStoreFileObject(**file_info)
|
||||
|
@ -743,7 +787,9 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
raise VectorStoreNotFoundError(vector_store_id)
|
||||
|
||||
file_info = await self._load_openai_vector_store_file(vector_store_id, file_id)
|
||||
dict_chunks = await self._load_openai_vector_store_file_contents(vector_store_id, file_id)
|
||||
dict_chunks = await self._load_openai_vector_store_file_contents(
|
||||
vector_store_id, file_id
|
||||
)
|
||||
chunks = [Chunk.model_validate(c) for c in dict_chunks]
|
||||
content = []
|
||||
for chunk in chunks:
|
||||
|
@ -767,7 +813,9 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
|
||||
store_info = self.openai_vector_stores[vector_store_id]
|
||||
if file_id not in store_info["file_ids"]:
|
||||
raise ValueError(f"File {file_id} not found in vector store {vector_store_id}")
|
||||
raise ValueError(
|
||||
f"File {file_id} not found in vector store {vector_store_id}"
|
||||
)
|
||||
|
||||
file_info = await self._load_openai_vector_store_file(vector_store_id, file_id)
|
||||
file_info["attributes"] = attributes
|
||||
|
@ -783,7 +831,9 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
if vector_store_id not in self.openai_vector_stores:
|
||||
raise VectorStoreNotFoundError(vector_store_id)
|
||||
|
||||
dict_chunks = await self._load_openai_vector_store_file_contents(vector_store_id, file_id)
|
||||
dict_chunks = await self._load_openai_vector_store_file_contents(
|
||||
vector_store_id, file_id
|
||||
)
|
||||
chunks = [Chunk.model_validate(c) for c in dict_chunks]
|
||||
|
||||
# Create ChunkForDeletion objects with both chunk_id and document_id
|
||||
|
@ -794,9 +844,15 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
c.chunk_metadata.document_id if c.chunk_metadata else None
|
||||
)
|
||||
if document_id:
|
||||
chunks_for_deletion.append(ChunkForDeletion(chunk_id=str(c.chunk_id), document_id=document_id))
|
||||
chunks_for_deletion.append(
|
||||
ChunkForDeletion(
|
||||
chunk_id=str(c.chunk_id), document_id=document_id
|
||||
)
|
||||
)
|
||||
else:
|
||||
logger.warning(f"Chunk {c.chunk_id} has no document_id, skipping deletion")
|
||||
logger.warning(
|
||||
f"Chunk {c.chunk_id} has no document_id, skipping deletion"
|
||||
)
|
||||
|
||||
if chunks_for_deletion:
|
||||
await self.delete_chunks(vector_store_id, chunks_for_deletion)
|
||||
|
@ -804,7 +860,9 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
store_info = self.openai_vector_stores[vector_store_id].copy()
|
||||
|
||||
file = await self.openai_retrieve_vector_store_file(vector_store_id, file_id)
|
||||
await self._delete_openai_vector_store_file_from_storage(vector_store_id, file_id)
|
||||
await self._delete_openai_vector_store_file_from_storage(
|
||||
vector_store_id, file_id
|
||||
)
|
||||
|
||||
# Update in-memory cache
|
||||
store_info["file_ids"].remove(file_id)
|
||||
|
@ -828,7 +886,156 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
chunking_strategy: VectorStoreChunkingStrategy | None = None,
|
||||
) -> VectorStoreFileBatchObject:
|
||||
"""Create a vector store file batch."""
|
||||
raise NotImplementedError("openai_create_vector_store_file_batch is not implemented yet")
|
||||
if vector_store_id not in self.openai_vector_stores:
|
||||
raise VectorStoreNotFoundError(vector_store_id)
|
||||
|
||||
chunking_strategy = chunking_strategy or VectorStoreChunkingStrategyAuto()
|
||||
|
||||
created_at = int(time.time())
|
||||
batch_id = f"batch_{uuid.uuid4()}"
|
||||
|
||||
# Initialize batch file counts - all files start as in_progress
|
||||
file_counts = VectorStoreFileCounts(
|
||||
completed=0,
|
||||
cancelled=0,
|
||||
failed=0,
|
||||
in_progress=len(file_ids),
|
||||
total=len(file_ids),
|
||||
)
|
||||
|
||||
# Create batch object immediately with in_progress status
|
||||
batch_object = VectorStoreFileBatchObject(
|
||||
id=batch_id,
|
||||
created_at=created_at,
|
||||
vector_store_id=vector_store_id,
|
||||
status="in_progress",
|
||||
file_counts=file_counts,
|
||||
)
|
||||
|
||||
# Store batch object and file_ids in memory
|
||||
self.openai_file_batches[batch_id] = {
|
||||
"batch_object": batch_object,
|
||||
"file_ids": file_ids,
|
||||
}
|
||||
|
||||
# Start background processing of files
|
||||
asyncio.create_task(
|
||||
self._process_file_batch_async(
|
||||
batch_id, file_ids, attributes, chunking_strategy
|
||||
)
|
||||
)
|
||||
|
||||
return batch_object
|
||||
|
||||
async def _process_file_batch_async(
|
||||
self,
|
||||
batch_id: str,
|
||||
file_ids: list[str],
|
||||
attributes: dict[str, Any] | None,
|
||||
chunking_strategy: VectorStoreChunkingStrategy | None,
|
||||
) -> None:
|
||||
"""Process files in a batch asynchronously in the background."""
|
||||
batch_info = self.openai_file_batches[batch_id]
|
||||
batch_object = batch_info["batch_object"]
|
||||
vector_store_id = batch_object.vector_store_id
|
||||
|
||||
for file_id in file_ids:
|
||||
try:
|
||||
# Process each file
|
||||
await self.openai_attach_file_to_vector_store(
|
||||
vector_store_id=vector_store_id,
|
||||
file_id=file_id,
|
||||
attributes=attributes,
|
||||
chunking_strategy=chunking_strategy,
|
||||
)
|
||||
|
||||
# Update counts atomically
|
||||
batch_object.file_counts.completed += 1
|
||||
batch_object.file_counts.in_progress -= 1
|
||||
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Failed to process file {file_id} in batch {batch_id}: {e}"
|
||||
)
|
||||
batch_object.file_counts.failed += 1
|
||||
batch_object.file_counts.in_progress -= 1
|
||||
|
||||
# Update final status when all files are processed
|
||||
if batch_object.file_counts.failed == 0:
|
||||
batch_object.status = "completed"
|
||||
elif batch_object.file_counts.completed == 0:
|
||||
batch_object.status = "failed"
|
||||
else:
|
||||
batch_object.status = "completed" # Partial success counts as completed
|
||||
|
||||
logger.info(
|
||||
f"File batch {batch_id} processing completed with status: {batch_object.status}"
|
||||
)
|
||||
|
||||
def _get_and_validate_batch(
|
||||
self, batch_id: str, vector_store_id: str
|
||||
) -> tuple[dict[str, Any], VectorStoreFileBatchObject]:
|
||||
"""Get and validate batch exists and belongs to vector store."""
|
||||
if vector_store_id not in self.openai_vector_stores:
|
||||
raise VectorStoreNotFoundError(vector_store_id)
|
||||
|
||||
if batch_id not in self.openai_file_batches:
|
||||
raise ValueError(f"File batch {batch_id} not found")
|
||||
|
||||
batch_info = self.openai_file_batches[batch_id]
|
||||
batch_object = batch_info["batch_object"]
|
||||
|
||||
if batch_object.vector_store_id != vector_store_id:
|
||||
raise ValueError(
|
||||
f"File batch {batch_id} does not belong to vector store {vector_store_id}"
|
||||
)
|
||||
|
||||
return batch_info, batch_object
|
||||
|
||||
def _paginate_objects(
|
||||
self,
|
||||
objects: list[Any],
|
||||
limit: int | None = 20,
|
||||
after: str | None = None,
|
||||
before: str | None = None,
|
||||
) -> tuple[list[Any], bool, str | None, str | None]:
|
||||
"""Apply pagination to a list of objects with id fields."""
|
||||
limit = min(limit or 20, 100) # Cap at 100 as per OpenAI
|
||||
|
||||
# Find start index
|
||||
start_idx = 0
|
||||
if after:
|
||||
for i, obj in enumerate(objects):
|
||||
if obj.id == after:
|
||||
start_idx = i + 1
|
||||
break
|
||||
|
||||
# Find end index
|
||||
end_idx = start_idx + limit
|
||||
if before:
|
||||
for i, obj in enumerate(objects[start_idx:], start_idx):
|
||||
if obj.id == before:
|
||||
end_idx = i
|
||||
break
|
||||
|
||||
# Apply pagination
|
||||
paginated_objects = objects[start_idx:end_idx]
|
||||
|
||||
# Determine pagination info
|
||||
has_more = end_idx < len(objects)
|
||||
first_id = paginated_objects[0].id if paginated_objects else None
|
||||
last_id = paginated_objects[-1].id if paginated_objects else None
|
||||
|
||||
return paginated_objects, has_more, first_id, last_id
|
||||
|
||||
async def openai_retrieve_vector_store_file_batch(
|
||||
self,
|
||||
batch_id: str,
|
||||
vector_store_id: str,
|
||||
) -> VectorStoreFileBatchObject:
|
||||
"""Retrieve a vector store file batch."""
|
||||
_, batch_object = self._get_and_validate_batch(batch_id, vector_store_id)
|
||||
return batch_object
|
||||
|
||||
async def openai_list_files_in_vector_store_file_batch(
|
||||
self,
|
||||
|
@ -841,15 +1048,45 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
order: str | None = "desc",
|
||||
) -> VectorStoreFilesListInBatchResponse:
|
||||
"""Returns a list of vector store files in a batch."""
|
||||
raise NotImplementedError("openai_list_files_in_vector_store_file_batch is not implemented yet")
|
||||
batch_info, _ = self._get_and_validate_batch(batch_id, vector_store_id)
|
||||
batch_file_ids = batch_info["file_ids"]
|
||||
|
||||
async def openai_retrieve_vector_store_file_batch(
|
||||
self,
|
||||
batch_id: str,
|
||||
vector_store_id: str,
|
||||
) -> VectorStoreFileBatchObject:
|
||||
"""Retrieve a vector store file batch."""
|
||||
raise NotImplementedError("openai_retrieve_vector_store_file_batch is not implemented yet")
|
||||
# Load file objects for files in this batch
|
||||
batch_file_objects = []
|
||||
|
||||
for file_id in batch_file_ids:
|
||||
try:
|
||||
file_info = await self._load_openai_vector_store_file(
|
||||
vector_store_id, file_id
|
||||
)
|
||||
file_object = VectorStoreFileObject(**file_info)
|
||||
|
||||
# Apply status filter if provided
|
||||
if filter and file_object.status != filter:
|
||||
continue
|
||||
|
||||
batch_file_objects.append(file_object)
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
f"Could not load file {file_id} from batch {batch_id}: {e}"
|
||||
)
|
||||
continue
|
||||
|
||||
# Sort by created_at
|
||||
reverse_order = order == "desc"
|
||||
batch_file_objects.sort(key=lambda x: x.created_at, reverse=reverse_order)
|
||||
|
||||
# Apply pagination using helper
|
||||
paginated_files, has_more, first_id, last_id = self._paginate_objects(
|
||||
batch_file_objects, limit, after, before
|
||||
)
|
||||
|
||||
return VectorStoreFilesListInBatchResponse(
|
||||
data=paginated_files,
|
||||
first_id=first_id,
|
||||
last_id=last_id,
|
||||
has_more=has_more,
|
||||
)
|
||||
|
||||
async def openai_cancel_vector_store_file_batch(
|
||||
self,
|
||||
|
@ -857,4 +1094,28 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
vector_store_id: str,
|
||||
) -> VectorStoreFileBatchObject:
|
||||
"""Cancel a vector store file batch."""
|
||||
raise NotImplementedError("openai_cancel_vector_store_file_batch is not implemented yet")
|
||||
batch_info, batch_object = self._get_and_validate_batch(
|
||||
batch_id, vector_store_id
|
||||
)
|
||||
|
||||
# Only allow cancellation if batch is in progress
|
||||
if batch_object.status not in ["in_progress"]:
|
||||
raise ValueError(
|
||||
f"Cannot cancel batch {batch_id} with status {batch_object.status}"
|
||||
)
|
||||
|
||||
# Create updated batch object with cancelled status
|
||||
updated_batch = VectorStoreFileBatchObject(
|
||||
id=batch_object.id,
|
||||
object=batch_object.object,
|
||||
created_at=batch_object.created_at,
|
||||
vector_store_id=batch_object.vector_store_id,
|
||||
status="cancelled",
|
||||
file_counts=batch_object.file_counts,
|
||||
)
|
||||
|
||||
# Update the stored batch info
|
||||
batch_info["batch_object"] = updated_batch
|
||||
self.openai_file_batches[batch_id] = batch_info
|
||||
|
||||
return updated_batch
|
||||
|
|
|
@ -11,11 +11,12 @@ from unittest.mock import AsyncMock
|
|||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from llama_stack.apis.common.errors import VectorStoreNotFoundError
|
||||
from llama_stack.apis.vector_dbs import VectorDB
|
||||
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse
|
||||
from llama_stack.providers.remote.vector_io.milvus.milvus import VECTOR_DBS_PREFIX
|
||||
|
||||
# This test is a unit test for the inline VectoerIO providers. This should only contain
|
||||
# This test is a unit test for the inline VectorIO providers. This should only contain
|
||||
# tests which are specific to this class. More general (API-level) tests should be placed in
|
||||
# tests/integration/vector_io/
|
||||
#
|
||||
|
@ -294,3 +295,347 @@ async def test_delete_openai_vector_store_file_from_storage(vector_io_adapter, t
|
|||
assert loaded_file_info == {}
|
||||
loaded_contents = await vector_io_adapter._load_openai_vector_store_file_contents(store_id, file_id)
|
||||
assert loaded_contents == []
|
||||
|
||||
|
||||
async def test_create_vector_store_file_batch(vector_io_adapter):
|
||||
"""Test creating a file batch."""
|
||||
store_id = "vs_1234"
|
||||
file_ids = ["file_1", "file_2", "file_3"]
|
||||
|
||||
# Setup vector store
|
||||
vector_io_adapter.openai_vector_stores[store_id] = {
|
||||
"id": store_id,
|
||||
"name": "Test Store",
|
||||
"files": {},
|
||||
"file_ids": [],
|
||||
}
|
||||
|
||||
# Mock attach method to avoid actual processing
|
||||
vector_io_adapter.openai_attach_file_to_vector_store = AsyncMock(return_value={"status": "completed"})
|
||||
|
||||
batch = await vector_io_adapter.openai_create_vector_store_file_batch(
|
||||
vector_store_id=store_id,
|
||||
file_ids=file_ids,
|
||||
)
|
||||
|
||||
assert batch.vector_store_id == store_id
|
||||
assert batch.status == "in_progress"
|
||||
assert batch.file_counts.total == len(file_ids)
|
||||
assert batch.file_counts.in_progress == len(file_ids)
|
||||
assert batch.id in vector_io_adapter.openai_file_batches
|
||||
|
||||
|
||||
async def test_retrieve_vector_store_file_batch(vector_io_adapter):
|
||||
"""Test retrieving a file batch."""
|
||||
store_id = "vs_1234"
|
||||
file_ids = ["file_1", "file_2"]
|
||||
|
||||
# Setup vector store
|
||||
vector_io_adapter.openai_vector_stores[store_id] = {
|
||||
"id": store_id,
|
||||
"name": "Test Store",
|
||||
"files": {},
|
||||
"file_ids": [],
|
||||
}
|
||||
|
||||
vector_io_adapter.openai_attach_file_to_vector_store = AsyncMock()
|
||||
|
||||
# Create batch first
|
||||
created_batch = await vector_io_adapter.openai_create_vector_store_file_batch(
|
||||
vector_store_id=store_id,
|
||||
file_ids=file_ids,
|
||||
)
|
||||
|
||||
# Retrieve batch
|
||||
retrieved_batch = await vector_io_adapter.openai_retrieve_vector_store_file_batch(
|
||||
batch_id=created_batch.id,
|
||||
vector_store_id=store_id,
|
||||
)
|
||||
|
||||
assert retrieved_batch.id == created_batch.id
|
||||
assert retrieved_batch.vector_store_id == store_id
|
||||
assert retrieved_batch.status == "in_progress"
|
||||
|
||||
|
||||
async def test_cancel_vector_store_file_batch(vector_io_adapter):
|
||||
"""Test cancelling a file batch."""
|
||||
store_id = "vs_1234"
|
||||
file_ids = ["file_1"]
|
||||
|
||||
# Setup vector store
|
||||
vector_io_adapter.openai_vector_stores[store_id] = {
|
||||
"id": store_id,
|
||||
"name": "Test Store",
|
||||
"files": {},
|
||||
"file_ids": [],
|
||||
}
|
||||
|
||||
vector_io_adapter.openai_attach_file_to_vector_store = AsyncMock()
|
||||
|
||||
# Create batch
|
||||
batch = await vector_io_adapter.openai_create_vector_store_file_batch(
|
||||
vector_store_id=store_id,
|
||||
file_ids=file_ids,
|
||||
)
|
||||
|
||||
# Cancel batch
|
||||
cancelled_batch = await vector_io_adapter.openai_cancel_vector_store_file_batch(
|
||||
batch_id=batch.id,
|
||||
vector_store_id=store_id,
|
||||
)
|
||||
|
||||
assert cancelled_batch.status == "cancelled"
|
||||
|
||||
|
||||
async def test_list_files_in_vector_store_file_batch(vector_io_adapter):
|
||||
"""Test listing files in a batch."""
|
||||
store_id = "vs_1234"
|
||||
file_ids = ["file_1", "file_2"]
|
||||
|
||||
# Setup vector store with files
|
||||
from llama_stack.apis.vector_io import VectorStoreChunkingStrategyAuto, VectorStoreFileObject
|
||||
|
||||
files = {}
|
||||
for i, file_id in enumerate(file_ids):
|
||||
files[file_id] = VectorStoreFileObject(
|
||||
id=file_id,
|
||||
object="vector_store.file",
|
||||
usage_bytes=1000,
|
||||
created_at=int(time.time()) + i,
|
||||
vector_store_id=store_id,
|
||||
status="completed",
|
||||
chunking_strategy=VectorStoreChunkingStrategyAuto(),
|
||||
)
|
||||
|
||||
vector_io_adapter.openai_vector_stores[store_id] = {
|
||||
"id": store_id,
|
||||
"name": "Test Store",
|
||||
"files": files,
|
||||
"file_ids": file_ids,
|
||||
}
|
||||
|
||||
# Mock file loading
|
||||
async def mock_load_file(vs_id, f_id):
|
||||
return files[f_id].model_dump()
|
||||
|
||||
vector_io_adapter._load_openai_vector_store_file = mock_load_file
|
||||
vector_io_adapter.openai_attach_file_to_vector_store = AsyncMock()
|
||||
|
||||
# Create batch
|
||||
batch = await vector_io_adapter.openai_create_vector_store_file_batch(
|
||||
vector_store_id=store_id,
|
||||
file_ids=file_ids,
|
||||
)
|
||||
|
||||
# List files
|
||||
response = await vector_io_adapter.openai_list_files_in_vector_store_file_batch(
|
||||
batch_id=batch.id,
|
||||
vector_store_id=store_id,
|
||||
)
|
||||
|
||||
assert len(response.data) == len(file_ids)
|
||||
assert response.first_id is not None
|
||||
assert response.last_id is not None
|
||||
|
||||
|
||||
async def test_file_batch_validation_errors(vector_io_adapter):
|
||||
"""Test file batch validation errors."""
|
||||
# Test nonexistent vector store
|
||||
with pytest.raises(VectorStoreNotFoundError):
|
||||
await vector_io_adapter.openai_create_vector_store_file_batch(
|
||||
vector_store_id="nonexistent",
|
||||
file_ids=["file_1"],
|
||||
)
|
||||
|
||||
# Setup store for remaining tests
|
||||
store_id = "vs_test"
|
||||
vector_io_adapter.openai_vector_stores[store_id] = {"id": store_id, "files": {}, "file_ids": []}
|
||||
|
||||
# Test nonexistent batch
|
||||
with pytest.raises(ValueError, match="File batch .* not found"):
|
||||
await vector_io_adapter.openai_retrieve_vector_store_file_batch(
|
||||
batch_id="nonexistent_batch",
|
||||
vector_store_id=store_id,
|
||||
)
|
||||
|
||||
# Test wrong vector store for batch
|
||||
vector_io_adapter.openai_attach_file_to_vector_store = AsyncMock()
|
||||
batch = await vector_io_adapter.openai_create_vector_store_file_batch(
|
||||
vector_store_id=store_id,
|
||||
file_ids=["file_1"],
|
||||
)
|
||||
|
||||
# Create wrong_store so it exists but the batch doesn't belong to it
|
||||
wrong_store_id = "wrong_store"
|
||||
vector_io_adapter.openai_vector_stores[wrong_store_id] = {"id": wrong_store_id, "files": {}, "file_ids": []}
|
||||
|
||||
with pytest.raises(ValueError, match="does not belong to vector store"):
|
||||
await vector_io_adapter.openai_retrieve_vector_store_file_batch(
|
||||
batch_id=batch.id,
|
||||
vector_store_id=wrong_store_id,
|
||||
)
|
||||
|
||||
|
||||
async def test_file_batch_pagination(vector_io_adapter):
|
||||
"""Test file batch pagination."""
|
||||
store_id = "vs_1234"
|
||||
file_ids = ["file_1", "file_2", "file_3", "file_4", "file_5"]
|
||||
|
||||
# Setup vector store with multiple files
|
||||
from llama_stack.apis.vector_io import VectorStoreChunkingStrategyAuto, VectorStoreFileObject
|
||||
|
||||
files = {}
|
||||
for i, file_id in enumerate(file_ids):
|
||||
files[file_id] = VectorStoreFileObject(
|
||||
id=file_id,
|
||||
object="vector_store.file",
|
||||
usage_bytes=1000,
|
||||
created_at=int(time.time()) + i,
|
||||
vector_store_id=store_id,
|
||||
status="completed",
|
||||
chunking_strategy=VectorStoreChunkingStrategyAuto(),
|
||||
)
|
||||
|
||||
vector_io_adapter.openai_vector_stores[store_id] = {
|
||||
"id": store_id,
|
||||
"name": "Test Store",
|
||||
"files": files,
|
||||
"file_ids": file_ids,
|
||||
}
|
||||
|
||||
# Mock file loading
|
||||
async def mock_load_file(vs_id, f_id):
|
||||
return files[f_id].model_dump()
|
||||
|
||||
vector_io_adapter._load_openai_vector_store_file = mock_load_file
|
||||
vector_io_adapter.openai_attach_file_to_vector_store = AsyncMock()
|
||||
|
||||
# Create batch
|
||||
batch = await vector_io_adapter.openai_create_vector_store_file_batch(
|
||||
vector_store_id=store_id,
|
||||
file_ids=file_ids,
|
||||
)
|
||||
|
||||
# Test pagination with limit
|
||||
response = await vector_io_adapter.openai_list_files_in_vector_store_file_batch(
|
||||
batch_id=batch.id,
|
||||
vector_store_id=store_id,
|
||||
limit=3,
|
||||
)
|
||||
|
||||
assert len(response.data) == 3
|
||||
assert response.has_more is True
|
||||
|
||||
# Test pagination with after cursor
|
||||
first_page = await vector_io_adapter.openai_list_files_in_vector_store_file_batch(
|
||||
batch_id=batch.id,
|
||||
vector_store_id=store_id,
|
||||
limit=2,
|
||||
)
|
||||
|
||||
second_page = await vector_io_adapter.openai_list_files_in_vector_store_file_batch(
|
||||
batch_id=batch.id,
|
||||
vector_store_id=store_id,
|
||||
limit=2,
|
||||
after=first_page.last_id,
|
||||
)
|
||||
|
||||
assert len(first_page.data) == 2
|
||||
assert len(second_page.data) == 2
|
||||
assert first_page.data[0].id != second_page.data[0].id
|
||||
|
||||
|
||||
async def test_file_batch_status_filtering(vector_io_adapter):
|
||||
"""Test file batch status filtering."""
|
||||
store_id = "vs_1234"
|
||||
file_ids = ["file_1", "file_2", "file_3"]
|
||||
|
||||
# Setup vector store with files having different statuses
|
||||
from llama_stack.apis.vector_io import VectorStoreChunkingStrategyAuto, VectorStoreFileObject
|
||||
|
||||
files = {}
|
||||
statuses = ["completed", "in_progress", "completed"]
|
||||
for i, (file_id, status) in enumerate(zip(file_ids, statuses, strict=False)):
|
||||
files[file_id] = VectorStoreFileObject(
|
||||
id=file_id,
|
||||
object="vector_store.file",
|
||||
usage_bytes=1000,
|
||||
created_at=int(time.time()) + i,
|
||||
vector_store_id=store_id,
|
||||
status=status,
|
||||
chunking_strategy=VectorStoreChunkingStrategyAuto(),
|
||||
)
|
||||
|
||||
vector_io_adapter.openai_vector_stores[store_id] = {
|
||||
"id": store_id,
|
||||
"name": "Test Store",
|
||||
"files": files,
|
||||
"file_ids": file_ids,
|
||||
}
|
||||
|
||||
# Mock file loading
|
||||
async def mock_load_file(vs_id, f_id):
|
||||
return files[f_id].model_dump()
|
||||
|
||||
vector_io_adapter._load_openai_vector_store_file = mock_load_file
|
||||
vector_io_adapter.openai_attach_file_to_vector_store = AsyncMock()
|
||||
|
||||
# Create batch
|
||||
batch = await vector_io_adapter.openai_create_vector_store_file_batch(
|
||||
vector_store_id=store_id,
|
||||
file_ids=file_ids,
|
||||
)
|
||||
|
||||
# Test filtering by completed status
|
||||
response = await vector_io_adapter.openai_list_files_in_vector_store_file_batch(
|
||||
batch_id=batch.id,
|
||||
vector_store_id=store_id,
|
||||
filter="completed",
|
||||
)
|
||||
|
||||
assert len(response.data) == 2 # Only 2 completed files
|
||||
for file_obj in response.data:
|
||||
assert file_obj.status == "completed"
|
||||
|
||||
# Test filtering by in_progress status
|
||||
response = await vector_io_adapter.openai_list_files_in_vector_store_file_batch(
|
||||
batch_id=batch.id,
|
||||
vector_store_id=store_id,
|
||||
filter="in_progress",
|
||||
)
|
||||
|
||||
assert len(response.data) == 1 # Only 1 in_progress file
|
||||
assert response.data[0].status == "in_progress"
|
||||
|
||||
|
||||
async def test_cancel_completed_batch_fails(vector_io_adapter):
|
||||
"""Test that cancelling completed batch fails."""
|
||||
store_id = "vs_1234"
|
||||
file_ids = ["file_1"]
|
||||
|
||||
# Setup vector store
|
||||
vector_io_adapter.openai_vector_stores[store_id] = {
|
||||
"id": store_id,
|
||||
"name": "Test Store",
|
||||
"files": {},
|
||||
"file_ids": [],
|
||||
}
|
||||
|
||||
vector_io_adapter.openai_attach_file_to_vector_store = AsyncMock()
|
||||
|
||||
# Create batch
|
||||
batch = await vector_io_adapter.openai_create_vector_store_file_batch(
|
||||
vector_store_id=store_id,
|
||||
file_ids=file_ids,
|
||||
)
|
||||
|
||||
# Manually update status to completed
|
||||
batch_info = vector_io_adapter.openai_file_batches[batch.id]
|
||||
batch_info["batch_object"].status = "completed"
|
||||
|
||||
# Try to cancel - should fail
|
||||
with pytest.raises(ValueError, match="Cannot cancel batch .* with status completed"):
|
||||
await vector_io_adapter.openai_cancel_vector_store_file_batch(
|
||||
batch_id=batch.id,
|
||||
vector_store_id=store_id,
|
||||
)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue