mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
using a property for Chunk.chunk_id
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
This commit is contained in:
parent
f90fce218e
commit
fa36b672f1
10 changed files with 163 additions and 86 deletions
22
docs/_static/llama-stack-spec.html
vendored
22
docs/_static/llama-stack-spec.html
vendored
|
@ -11221,7 +11221,7 @@
|
||||||
}
|
}
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
"description": "Metadata associated with the chunk that will be used during inference."
|
"description": "Metadata associated with the chunk that will be used in the model context during inference."
|
||||||
},
|
},
|
||||||
"embedding": {
|
"embedding": {
|
||||||
"type": "array",
|
"type": "array",
|
||||||
|
@ -11230,9 +11230,13 @@
|
||||||
},
|
},
|
||||||
"description": "Optional embedding for the chunk. If not provided, it will be computed later."
|
"description": "Optional embedding for the chunk. If not provided, it will be computed later."
|
||||||
},
|
},
|
||||||
|
"stored_chunk_id": {
|
||||||
|
"type": "string",
|
||||||
|
"description": "The chunk ID that is stored in the vector database. Used for backend functionality."
|
||||||
|
},
|
||||||
"chunk_metadata": {
|
"chunk_metadata": {
|
||||||
"$ref": "#/components/schemas/ChunkMetadata",
|
"$ref": "#/components/schemas/ChunkMetadata",
|
||||||
"description": "Metadata for the chunk that will NOT be inserted into the context during inference that is required backend functionality."
|
"description": "Metadata for the chunk that will NOT be used in the context during inference. The `chunk_metadata` is required backend functionality."
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"additionalProperties": false,
|
"additionalProperties": false,
|
||||||
|
@ -11246,16 +11250,17 @@
|
||||||
"ChunkMetadata": {
|
"ChunkMetadata": {
|
||||||
"type": "object",
|
"type": "object",
|
||||||
"properties": {
|
"properties": {
|
||||||
|
"chunk_id": {
|
||||||
|
"type": "string",
|
||||||
|
"description": "The ID of the chunk. If not set, it will be generated based on the document ID and content."
|
||||||
|
},
|
||||||
"document_id": {
|
"document_id": {
|
||||||
"type": "string",
|
"type": "string",
|
||||||
"description": "The ID of the document this chunk belongs to."
|
"description": "The ID of the document this chunk belongs to."
|
||||||
},
|
},
|
||||||
"chunk_id": {
|
|
||||||
"type": "string"
|
|
||||||
},
|
|
||||||
"source": {
|
"source": {
|
||||||
"type": "string",
|
"type": "string",
|
||||||
"description": "The source of the content, such as a URL or file path."
|
"description": "The source of the content, such as a URL, file path, or other identifier."
|
||||||
},
|
},
|
||||||
"created_timestamp": {
|
"created_timestamp": {
|
||||||
"type": "integer",
|
"type": "integer",
|
||||||
|
@ -11291,8 +11296,11 @@
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"additionalProperties": false,
|
"additionalProperties": false,
|
||||||
|
"required": [
|
||||||
|
"chunk_id"
|
||||||
|
],
|
||||||
"title": "ChunkMetadata",
|
"title": "ChunkMetadata",
|
||||||
"description": "`ChunkMetadata` is backend metadata for a `Chunk` that is used to store additional information about the chunk that will NOT be inserted into the context during inference, but is required for backend functionality. Use `metadata` in `Chunk` for metadata that will be used during inference."
|
"description": "`ChunkMetadata` is backend metadata for a `Chunk` that is used to store additional information about the chunk that will not be used in the context during inference, but is required for backend functionality. The `ChunkMetadata` is set during chunk creation in `MemoryToolRuntimeImpl().insert()`and is not expected to change after. Use `Chunk.metadata` for metadata that will be used in the context during inference."
|
||||||
},
|
},
|
||||||
"InsertChunksRequest": {
|
"InsertChunksRequest": {
|
||||||
"type": "object",
|
"type": "object",
|
||||||
|
|
30
docs/_static/llama-stack-spec.yaml
vendored
30
docs/_static/llama-stack-spec.yaml
vendored
|
@ -7886,7 +7886,8 @@ components:
|
||||||
- type: array
|
- type: array
|
||||||
- type: object
|
- type: object
|
||||||
description: >-
|
description: >-
|
||||||
Metadata associated with the chunk that will be used during inference.
|
Metadata associated with the chunk that will be used in the model context
|
||||||
|
during inference.
|
||||||
embedding:
|
embedding:
|
||||||
type: array
|
type: array
|
||||||
items:
|
items:
|
||||||
|
@ -7894,11 +7895,15 @@ components:
|
||||||
description: >-
|
description: >-
|
||||||
Optional embedding for the chunk. If not provided, it will be computed
|
Optional embedding for the chunk. If not provided, it will be computed
|
||||||
later.
|
later.
|
||||||
|
stored_chunk_id:
|
||||||
|
type: string
|
||||||
|
description: >-
|
||||||
|
The chunk ID that is stored in the vector database. Used for backend functionality.
|
||||||
chunk_metadata:
|
chunk_metadata:
|
||||||
$ref: '#/components/schemas/ChunkMetadata'
|
$ref: '#/components/schemas/ChunkMetadata'
|
||||||
description: >-
|
description: >-
|
||||||
Metadata for the chunk that will NOT be inserted into the context during
|
Metadata for the chunk that will NOT be used in the context during inference.
|
||||||
inference that is required backend functionality.
|
The `chunk_metadata` is required backend functionality.
|
||||||
additionalProperties: false
|
additionalProperties: false
|
||||||
required:
|
required:
|
||||||
- content
|
- content
|
||||||
|
@ -7909,16 +7914,19 @@ components:
|
||||||
ChunkMetadata:
|
ChunkMetadata:
|
||||||
type: object
|
type: object
|
||||||
properties:
|
properties:
|
||||||
|
chunk_id:
|
||||||
|
type: string
|
||||||
|
description: >-
|
||||||
|
The ID of the chunk. If not set, it will be generated based on the document
|
||||||
|
ID and content.
|
||||||
document_id:
|
document_id:
|
||||||
type: string
|
type: string
|
||||||
description: >-
|
description: >-
|
||||||
The ID of the document this chunk belongs to.
|
The ID of the document this chunk belongs to.
|
||||||
chunk_id:
|
|
||||||
type: string
|
|
||||||
source:
|
source:
|
||||||
type: string
|
type: string
|
||||||
description: >-
|
description: >-
|
||||||
The source of the content, such as a URL or file path.
|
The source of the content, such as a URL, file path, or other identifier.
|
||||||
created_timestamp:
|
created_timestamp:
|
||||||
type: integer
|
type: integer
|
||||||
description: >-
|
description: >-
|
||||||
|
@ -7952,12 +7960,16 @@ components:
|
||||||
description: >-
|
description: >-
|
||||||
The number of tokens in the metadata of the chunk.
|
The number of tokens in the metadata of the chunk.
|
||||||
additionalProperties: false
|
additionalProperties: false
|
||||||
|
required:
|
||||||
|
- chunk_id
|
||||||
title: ChunkMetadata
|
title: ChunkMetadata
|
||||||
description: >-
|
description: >-
|
||||||
`ChunkMetadata` is backend metadata for a `Chunk` that is used to store additional
|
`ChunkMetadata` is backend metadata for a `Chunk` that is used to store additional
|
||||||
information about the chunk that will NOT be inserted into the context
|
information about the chunk that will not be used in the context during
|
||||||
during inference, but is required for backend functionality. Use `metadata`
|
inference, but is required for backend functionality. The `ChunkMetadata` is
|
||||||
in `Chunk` for metadata that will be used during inference.
|
set during chunk creation in `MemoryToolRuntimeImpl().insert()`and is not
|
||||||
|
expected to change after. Use `Chunk.metadata` for metadata that will
|
||||||
|
be used in the context during inference.
|
||||||
InsertChunksRequest:
|
InsertChunksRequest:
|
||||||
type: object
|
type: object
|
||||||
properties:
|
properties:
|
||||||
|
|
|
@ -8,6 +8,7 @@
|
||||||
#
|
#
|
||||||
# This source code is licensed under the terms described in the LICENSE file in
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
# the root directory of this source tree.
|
# the root directory of this source tree.
|
||||||
|
import uuid
|
||||||
from typing import Annotated, Any, Literal, Protocol, runtime_checkable
|
from typing import Annotated, Any, Literal, Protocol, runtime_checkable
|
||||||
|
|
||||||
from pydantic import BaseModel, Field
|
from pydantic import BaseModel, Field
|
||||||
|
@ -15,6 +16,7 @@ from pydantic import BaseModel, Field
|
||||||
from llama_stack.apis.inference import InterleavedContent
|
from llama_stack.apis.inference import InterleavedContent
|
||||||
from llama_stack.apis.vector_dbs import VectorDB
|
from llama_stack.apis.vector_dbs import VectorDB
|
||||||
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
|
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
|
||||||
|
from llama_stack.providers.utils.vector_io.chunk_utils import generate_chunk_id
|
||||||
from llama_stack.schema_utils import json_schema_type, webmethod
|
from llama_stack.schema_utils import json_schema_type, webmethod
|
||||||
from llama_stack.strong_typing.schema import register_schema
|
from llama_stack.strong_typing.schema import register_schema
|
||||||
|
|
||||||
|
@ -23,10 +25,12 @@ from llama_stack.strong_typing.schema import register_schema
|
||||||
class ChunkMetadata(BaseModel):
|
class ChunkMetadata(BaseModel):
|
||||||
"""
|
"""
|
||||||
`ChunkMetadata` is backend metadata for a `Chunk` that is used to store additional information about the chunk that
|
`ChunkMetadata` is backend metadata for a `Chunk` that is used to store additional information about the chunk that
|
||||||
will NOT be inserted into the context during inference, but is required for backend functionality.
|
will not be used in the context during inference, but is required for backend functionality. The `ChunkMetadata`
|
||||||
Use `metadata` in `Chunk` for metadata that will be used during inference.
|
is set during chunk creation in `MemoryToolRuntimeImpl().insert()`and is not expected to change after.
|
||||||
|
Use `Chunk.metadata` for metadata that will be used in the context during inference.
|
||||||
|
:param chunk_id: The ID of the chunk. If not set, it will be generated based on the document ID and content.
|
||||||
:param document_id: The ID of the document this chunk belongs to.
|
:param document_id: The ID of the document this chunk belongs to.
|
||||||
:param source: The source of the content, such as a URL or file path.
|
:param source: The source of the content, such as a URL, file path, or other identifier.
|
||||||
:param created_timestamp: An optional timestamp indicating when the chunk was created.
|
:param created_timestamp: An optional timestamp indicating when the chunk was created.
|
||||||
:param updated_timestamp: An optional timestamp indicating when the chunk was last updated.
|
:param updated_timestamp: An optional timestamp indicating when the chunk was last updated.
|
||||||
:param chunk_window: The window of the chunk, which can be used to group related chunks together.
|
:param chunk_window: The window of the chunk, which can be used to group related chunks together.
|
||||||
|
@ -37,8 +41,8 @@ class ChunkMetadata(BaseModel):
|
||||||
:param metadata_token_count: The number of tokens in the metadata of the chunk.
|
:param metadata_token_count: The number of tokens in the metadata of the chunk.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
chunk_id: str = None
|
||||||
document_id: str | None = None
|
document_id: str | None = None
|
||||||
chunk_id: str | None = None
|
|
||||||
source: str | None = None
|
source: str | None = None
|
||||||
created_timestamp: int | None = None
|
created_timestamp: int | None = None
|
||||||
updated_timestamp: int | None = None
|
updated_timestamp: int | None = None
|
||||||
|
@ -56,16 +60,37 @@ class Chunk(BaseModel):
|
||||||
A chunk of content that can be inserted into a vector database.
|
A chunk of content that can be inserted into a vector database.
|
||||||
:param content: The content of the chunk, which can be interleaved text, images, or other types.
|
:param content: The content of the chunk, which can be interleaved text, images, or other types.
|
||||||
:param embedding: Optional embedding for the chunk. If not provided, it will be computed later.
|
:param embedding: Optional embedding for the chunk. If not provided, it will be computed later.
|
||||||
:param metadata: Metadata associated with the chunk that will be used during inference.
|
:param metadata: Metadata associated with the chunk that will be used in the model context during inference.
|
||||||
:param chunk_metadata: Metadata for the chunk that will NOT be inserted into the context during inference
|
:param stored_chunk_id: The chunk ID that is stored in the vector database. Used for backend functionality.
|
||||||
that is required backend functionality.
|
:param chunk_metadata: Metadata for the chunk that will NOT be used in the context during inference.
|
||||||
|
The `chunk_metadata` is required backend functionality.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
content: InterleavedContent
|
content: InterleavedContent
|
||||||
metadata: dict[str, Any] = Field(default_factory=dict)
|
metadata: dict[str, Any] = Field(default_factory=dict)
|
||||||
embedding: list[float] | None = None
|
embedding: list[float] | None = None
|
||||||
|
# The alias parameter serializes the field as "chunk_id" in JSON but keeps the internal name as "stored_chunk_id"
|
||||||
|
stored_chunk_id: str | None = Field(default=None, alias="chunk_id")
|
||||||
chunk_metadata: ChunkMetadata | None = None
|
chunk_metadata: ChunkMetadata | None = None
|
||||||
|
|
||||||
|
model_config = {"populate_by_name": True}
|
||||||
|
|
||||||
|
def model_post_init(self, __context):
|
||||||
|
# Extract chunk_id from metadata if present
|
||||||
|
if self.metadata and "chunk_id" in self.metadata:
|
||||||
|
self.stored_chunk_id = self.metadata.pop("chunk_id")
|
||||||
|
|
||||||
|
@property
|
||||||
|
def chunk_id(self) -> str:
|
||||||
|
"""Returns the chunk ID, which is either an input `chunk_id` or a generated one if not set."""
|
||||||
|
if self.stored_chunk_id:
|
||||||
|
return self.stored_chunk_id
|
||||||
|
|
||||||
|
if "document_id" in self.metadata:
|
||||||
|
return generate_chunk_id(self.metadata["document_id"], str(self.content))
|
||||||
|
|
||||||
|
return generate_chunk_id(str(uuid.uuid4()), str(self.content))
|
||||||
|
|
||||||
|
|
||||||
@json_schema_type
|
@json_schema_type
|
||||||
class QueryChunksResponse(BaseModel):
|
class QueryChunksResponse(BaseModel):
|
||||||
|
|
|
@ -81,6 +81,7 @@ class MemoryToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime, RAGToolRunti
|
||||||
chunks = []
|
chunks = []
|
||||||
for doc in documents:
|
for doc in documents:
|
||||||
content = await content_from_doc(doc)
|
content = await content_from_doc(doc)
|
||||||
|
# TODO: we should add enrichment here as URLs won't be added to the metadata by default
|
||||||
chunks.extend(
|
chunks.extend(
|
||||||
make_overlapped_chunks(
|
make_overlapped_chunks(
|
||||||
doc.document_id,
|
doc.document_id,
|
||||||
|
@ -161,18 +162,19 @@ class MemoryToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime, RAGToolRunti
|
||||||
break
|
break
|
||||||
|
|
||||||
metadata_fields_to_exclude_from_context = [
|
metadata_fields_to_exclude_from_context = [
|
||||||
"chunk_tokenizer",
|
|
||||||
"chunk_window",
|
|
||||||
"token_count",
|
|
||||||
"metadata_token_count",
|
|
||||||
"chunk_tokenizer",
|
|
||||||
"chunk_embedding_model",
|
|
||||||
"created_timestamp",
|
"created_timestamp",
|
||||||
"updated_timestamp",
|
"updated_timestamp",
|
||||||
"chunk_window",
|
"chunk_window",
|
||||||
|
"chunk_tokenizer",
|
||||||
|
"chunk_embedding_model",
|
||||||
|
"chunk_embedding_dimension",
|
||||||
|
"token_count",
|
||||||
"content_token_count",
|
"content_token_count",
|
||||||
|
"metadata_token_count",
|
||||||
]
|
]
|
||||||
metadata_subset = {k: v for k, v in metadata.items() if k not in metadata_fields_to_exclude_from_context}
|
metadata_subset = {
|
||||||
|
k: v for k, v in metadata.items() if k not in metadata_fields_to_exclude_from_context and v
|
||||||
|
}
|
||||||
text_content = query_config.chunk_template.format(index=i + 1, chunk=chunk, metadata=metadata_subset)
|
text_content = query_config.chunk_template.format(index=i + 1, chunk=chunk, metadata=metadata_subset)
|
||||||
picked.append(TextContentItem(text=text_content))
|
picked.append(TextContentItem(text=text_content))
|
||||||
|
|
||||||
|
|
|
@ -31,7 +31,6 @@ from llama_stack.providers.utils.memory.vector_store import (
|
||||||
EmbeddingIndex,
|
EmbeddingIndex,
|
||||||
VectorDBWithIndex,
|
VectorDBWithIndex,
|
||||||
)
|
)
|
||||||
from llama_stack.providers.utils.vector_io.chunk_utils import extract_or_generate_chunk_id
|
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
@ -200,9 +199,7 @@ class SQLiteVecIndex(EmbeddingIndex):
|
||||||
batch_embeddings = embeddings[i : i + batch_size]
|
batch_embeddings = embeddings[i : i + batch_size]
|
||||||
|
|
||||||
# Insert metadata
|
# Insert metadata
|
||||||
metadata_data = [
|
metadata_data = [(chunk.chunk_id, chunk.model_dump_json()) for chunk in batch_chunks]
|
||||||
(extract_or_generate_chunk_id(chunk), chunk.model_dump_json()) for chunk in batch_chunks
|
|
||||||
]
|
|
||||||
cur.executemany(
|
cur.executemany(
|
||||||
f"""
|
f"""
|
||||||
INSERT INTO {self.metadata_table} (id, chunk)
|
INSERT INTO {self.metadata_table} (id, chunk)
|
||||||
|
@ -216,7 +213,7 @@ class SQLiteVecIndex(EmbeddingIndex):
|
||||||
embedding_data = [
|
embedding_data = [
|
||||||
(
|
(
|
||||||
(
|
(
|
||||||
extract_or_generate_chunk_id(chunk),
|
chunk.chunk_id,
|
||||||
serialize_vector(emb.tolist()),
|
serialize_vector(emb.tolist()),
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
|
@ -228,7 +225,7 @@ class SQLiteVecIndex(EmbeddingIndex):
|
||||||
)
|
)
|
||||||
|
|
||||||
# Insert FTS content
|
# Insert FTS content
|
||||||
fts_data = [(extract_or_generate_chunk_id(chunk), chunk.content) for chunk in batch_chunks]
|
fts_data = [(chunk.chunk_id, chunk.content) for chunk in batch_chunks]
|
||||||
# DELETE existing entries with same IDs (FTS5 doesn't support ON CONFLICT)
|
# DELETE existing entries with same IDs (FTS5 doesn't support ON CONFLICT)
|
||||||
cur.executemany(
|
cur.executemany(
|
||||||
f"DELETE FROM {self.fts_table} WHERE id = ?;",
|
f"DELETE FROM {self.fts_table} WHERE id = ?;",
|
||||||
|
@ -376,13 +373,12 @@ class SQLiteVecIndex(EmbeddingIndex):
|
||||||
vector_response = await self.query_vector(embedding, k, score_threshold)
|
vector_response = await self.query_vector(embedding, k, score_threshold)
|
||||||
keyword_response = await self.query_keyword(query_string, k, score_threshold)
|
keyword_response = await self.query_keyword(query_string, k, score_threshold)
|
||||||
|
|
||||||
# Convert responses to score dictionaries using generate_chunk_id
|
# Convert responses to score dictionaries using chunk_id
|
||||||
vector_scores = {
|
vector_scores = {
|
||||||
extract_or_generate_chunk_id(chunk): score
|
chunk.chunk_id: score for chunk, score in zip(vector_response.chunks, vector_response.scores, strict=False)
|
||||||
for chunk, score in zip(vector_response.chunks, vector_response.scores, strict=False)
|
|
||||||
}
|
}
|
||||||
keyword_scores = {
|
keyword_scores = {
|
||||||
extract_or_generate_chunk_id(chunk): score
|
chunk.chunk_id: score
|
||||||
for chunk, score in zip(keyword_response.chunks, keyword_response.scores, strict=False)
|
for chunk, score in zip(keyword_response.chunks, keyword_response.scores, strict=False)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -405,10 +401,10 @@ class SQLiteVecIndex(EmbeddingIndex):
|
||||||
# Create a map of chunk_id to chunk for both responses
|
# Create a map of chunk_id to chunk for both responses
|
||||||
chunk_map = {}
|
chunk_map = {}
|
||||||
for c in vector_response.chunks:
|
for c in vector_response.chunks:
|
||||||
chunk_id = extract_or_generate_chunk_id(c)
|
chunk_id = c.chunk_id
|
||||||
chunk_map[chunk_id] = c
|
chunk_map[chunk_id] = c
|
||||||
for c in keyword_response.chunks:
|
for c in keyword_response.chunks:
|
||||||
chunk_id = extract_or_generate_chunk_id(c)
|
chunk_id = c.chunk_id
|
||||||
chunk_map[chunk_id] = c
|
chunk_map[chunk_id] = c
|
||||||
|
|
||||||
# Use the map to look up chunks by their IDs
|
# Use the map to look up chunks by their IDs
|
||||||
|
|
|
@ -151,9 +151,6 @@ def make_overlapped_chunks(
|
||||||
document_id: str, text: str, window_len: int, overlap_len: int, metadata: dict[str, Any]
|
document_id: str, text: str, window_len: int, overlap_len: int, metadata: dict[str, Any]
|
||||||
) -> list[Chunk]:
|
) -> list[Chunk]:
|
||||||
default_tokenizer = "DEFAULT_TIKTOKEN_TOKENIZER"
|
default_tokenizer = "DEFAULT_TIKTOKEN_TOKENIZER"
|
||||||
default_embedding_model = (
|
|
||||||
"DEFAULT_EMBEDDING_MODEL" # This will be correctly updated in `VectorDBWithIndex.insert_chunks`
|
|
||||||
)
|
|
||||||
tokenizer = Tokenizer.get_instance()
|
tokenizer = Tokenizer.get_instance()
|
||||||
tokens = tokenizer.encode(text, bos=False, eos=False)
|
tokens = tokenizer.encode(text, bos=False, eos=False)
|
||||||
try:
|
try:
|
||||||
|
@ -167,20 +164,22 @@ def make_overlapped_chunks(
|
||||||
for i in range(0, len(tokens), window_len - overlap_len):
|
for i in range(0, len(tokens), window_len - overlap_len):
|
||||||
toks = tokens[i : i + window_len]
|
toks = tokens[i : i + window_len]
|
||||||
chunk = tokenizer.decode(toks)
|
chunk = tokenizer.decode(toks)
|
||||||
|
chunk_id = generate_chunk_id(chunk, text)
|
||||||
chunk_metadata = metadata.copy()
|
chunk_metadata = metadata.copy()
|
||||||
|
chunk_metadata["chunk_id"] = chunk_id
|
||||||
chunk_metadata["document_id"] = document_id
|
chunk_metadata["document_id"] = document_id
|
||||||
chunk_metadata["token_count"] = len(toks)
|
chunk_metadata["token_count"] = len(toks)
|
||||||
chunk_metadata["metadata_token_count"] = len(metadata_tokens)
|
chunk_metadata["metadata_token_count"] = len(metadata_tokens)
|
||||||
|
|
||||||
backend_chunk_metadata = ChunkMetadata(
|
backend_chunk_metadata = ChunkMetadata(
|
||||||
|
chunk_id=chunk_id,
|
||||||
document_id=document_id,
|
document_id=document_id,
|
||||||
chunk_id=generate_chunk_id(chunk, text),
|
|
||||||
source=metadata.get("source", None),
|
source=metadata.get("source", None),
|
||||||
created_timestamp=metadata.get("created_timestamp", int(time.time())),
|
created_timestamp=metadata.get("created_timestamp", int(time.time())),
|
||||||
updated_timestamp=int(time.time()),
|
updated_timestamp=int(time.time()),
|
||||||
chunk_window=f"{i}-{i + len(toks)}",
|
chunk_window=f"{i}-{i + len(toks)}",
|
||||||
chunk_tokenizer=default_tokenizer,
|
chunk_tokenizer=default_tokenizer,
|
||||||
chunk_embedding_model=default_embedding_model,
|
chunk_embedding_model=None, # This will be set in `VectorDBWithIndex.insert_chunks`
|
||||||
content_token_count=len(toks),
|
content_token_count=len(toks),
|
||||||
metadata_token_count=len(metadata_tokens),
|
metadata_token_count=len(metadata_tokens),
|
||||||
)
|
)
|
||||||
|
@ -255,13 +254,12 @@ class VectorDBWithIndex:
|
||||||
) -> None:
|
) -> None:
|
||||||
chunks_to_embed = []
|
chunks_to_embed = []
|
||||||
for i, c in enumerate(chunks):
|
for i, c in enumerate(chunks):
|
||||||
# this should be done in `make_overlapped_chunks` but we do it here for convenience
|
|
||||||
if c.embedding is None:
|
if c.embedding is None:
|
||||||
chunks_to_embed.append(c)
|
chunks_to_embed.append(c)
|
||||||
else:
|
|
||||||
if c.chunk_metadata:
|
if c.chunk_metadata:
|
||||||
c.chunk_metadata.chunk_embedding_model = self.vector_db.embedding_model
|
c.chunk_metadata.chunk_embedding_model = self.vector_db.embedding_model
|
||||||
c.chunk_metadata.chunk_embedding_dimension = self.vector_db.embedding_dimension
|
c.chunk_metadata.chunk_embedding_dimension = self.vector_db.embedding_dimension
|
||||||
|
else:
|
||||||
_validate_embedding(c.embedding, i, self.vector_db.embedding_dimension)
|
_validate_embedding(c.embedding, i, self.vector_db.embedding_dimension)
|
||||||
|
|
||||||
if chunks_to_embed:
|
if chunks_to_embed:
|
||||||
|
|
|
@ -5,38 +5,10 @@
|
||||||
# the root directory of this source tree.
|
# the root directory of this source tree.
|
||||||
|
|
||||||
import hashlib
|
import hashlib
|
||||||
import logging
|
|
||||||
import uuid
|
import uuid
|
||||||
|
|
||||||
from llama_stack.apis.vector_io import Chunk
|
|
||||||
|
|
||||||
|
|
||||||
def generate_chunk_id(document_id: str, chunk_text: str) -> str:
|
def generate_chunk_id(document_id: str, chunk_text: str) -> str:
|
||||||
"""Generate a unique chunk ID using a hash of document ID and chunk text."""
|
"""Generate a unique chunk ID using a hash of document ID and chunk text."""
|
||||||
hash_input = f"{document_id}:{chunk_text}".encode()
|
hash_input = f"{document_id}:{chunk_text}".encode()
|
||||||
return str(uuid.UUID(hashlib.md5(hash_input).hexdigest()))
|
return str(uuid.UUID(hashlib.md5(hash_input).hexdigest()))
|
||||||
|
|
||||||
|
|
||||||
def extract_chunk_id_from_metadata(chunk: Chunk) -> str | None:
|
|
||||||
"""Extract existing chunk ID from metadata. This is for compatibility with older Chunks
|
|
||||||
that stored the document_id in the metadata and not in the ChunkMetadata."""
|
|
||||||
if chunk.chunk_metadata is not None and hasattr(chunk.chunk_metadata, "chunk_id"):
|
|
||||||
return chunk.chunk_metadata.chunk_id
|
|
||||||
|
|
||||||
if "chunk_id" in chunk.metadata:
|
|
||||||
return str(chunk.metadata["chunk_id"])
|
|
||||||
|
|
||||||
return None
|
|
||||||
|
|
||||||
|
|
||||||
def extract_or_generate_chunk_id(chunk: Chunk) -> str:
|
|
||||||
"""Extract existing chunk ID or generate a new one if not present. This is for compatibility with older Chunks
|
|
||||||
that stored the document_id in the metadata."""
|
|
||||||
stored_chunk_id = extract_chunk_id_from_metadata(chunk)
|
|
||||||
if stored_chunk_id:
|
|
||||||
return stored_chunk_id
|
|
||||||
elif "document_id" in chunk.metadata:
|
|
||||||
return generate_chunk_id(chunk.metadata["document_id"], str(chunk.content))
|
|
||||||
else:
|
|
||||||
logging.warning("Chunk has no ID or document_id in metadata. Generating random ID.")
|
|
||||||
return str(uuid.uuid4())
|
|
||||||
|
|
|
@ -5,7 +5,7 @@
|
||||||
# the root directory of this source tree.
|
# the root directory of this source tree.
|
||||||
|
|
||||||
from llama_stack.apis.vector_io import Chunk, ChunkMetadata
|
from llama_stack.apis.vector_io import Chunk, ChunkMetadata
|
||||||
from llama_stack.providers.utils.vector_io.chunk_utils import extract_or_generate_chunk_id, generate_chunk_id
|
from llama_stack.providers.utils.vector_io.chunk_utils import generate_chunk_id
|
||||||
|
|
||||||
# This test is a unit test for the chunk_utils.py helpers. This should only contain
|
# This test is a unit test for the chunk_utils.py helpers. This should only contain
|
||||||
# tests which are specific to this file. More general (API-level) tests should be placed in
|
# tests which are specific to this file. More general (API-level) tests should be placed in
|
||||||
|
@ -24,7 +24,7 @@ def test_generate_chunk_id():
|
||||||
Chunk(content="test 3", metadata={"document_id": "doc-1"}),
|
Chunk(content="test 3", metadata={"document_id": "doc-1"}),
|
||||||
]
|
]
|
||||||
|
|
||||||
chunk_ids = sorted([generate_chunk_id(chunk.metadata["document_id"], chunk.content) for chunk in chunks])
|
chunk_ids = sorted([chunk.chunk_id for chunk in chunks])
|
||||||
assert chunk_ids == [
|
assert chunk_ids == [
|
||||||
"177a1368-f6a8-0c50-6e92-18677f2c3de3",
|
"177a1368-f6a8-0c50-6e92-18677f2c3de3",
|
||||||
"bc744db3-1b25-0a9c-cdff-b6ba3df73c36",
|
"bc744db3-1b25-0a9c-cdff-b6ba3df73c36",
|
||||||
|
@ -32,22 +32,35 @@ def test_generate_chunk_id():
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
def test_extract_or_generate_chunk_id():
|
def test_chunk_id():
|
||||||
# Test with existing chunk ID
|
# Test with existing chunk ID
|
||||||
chunk_with_id = Chunk(content="test", metadata={"document_id": "existing-id"})
|
chunk_with_id = Chunk(content="test", metadata={"document_id": "existing-id"})
|
||||||
assert extract_or_generate_chunk_id(chunk_with_id) == "84ededcc-b80b-a83e-1a20-ca6515a11350"
|
assert chunk_with_id.chunk_id == "84ededcc-b80b-a83e-1a20-ca6515a11350"
|
||||||
|
|
||||||
# Test with document ID in metadata
|
# Test with document ID in metadata
|
||||||
chunk_with_doc_id = Chunk(content="test", metadata={"document_id": "doc-1"})
|
chunk_with_doc_id = Chunk(content="test", metadata={"document_id": "doc-1"})
|
||||||
assert extract_or_generate_chunk_id(chunk_with_doc_id) == generate_chunk_id("doc-1", "test")
|
assert chunk_with_doc_id.chunk_id == generate_chunk_id("doc-1", "test")
|
||||||
|
|
||||||
# Test chunks with ChunkMetadata
|
# Test chunks with ChunkMetadata
|
||||||
chunk_with_metadata = Chunk(
|
chunk_with_metadata = Chunk(
|
||||||
content="test", metadata={"document_id": "existing-id"}, chunk_metadata=ChunkMetadata(chunk_id="chunk-id-1")
|
content="test",
|
||||||
|
metadata={"document_id": "existing-id", "chunk_id": "chunk-id-1"},
|
||||||
|
chunk_metadata=ChunkMetadata(document_id="document_1"),
|
||||||
)
|
)
|
||||||
assert extract_or_generate_chunk_id(chunk_with_metadata) == "chunk-id-1"
|
assert chunk_with_metadata.chunk_id == "chunk-id-1"
|
||||||
|
|
||||||
# Test with no ID or document ID
|
# Test with no ID or document ID
|
||||||
chunk_without_id = Chunk(content="test")
|
chunk_without_id = Chunk(content="test")
|
||||||
generated_id = extract_or_generate_chunk_id(chunk_without_id)
|
generated_id = chunk_without_id.chunk_id
|
||||||
assert isinstance(generated_id, str) and len(generated_id) == 36 # Should be a valid UUID
|
assert isinstance(generated_id, str) and len(generated_id) == 36 # Should be a valid UUID
|
||||||
|
|
||||||
|
|
||||||
|
def test_stored_chunk_id_alias():
|
||||||
|
# Test with existing chunk ID alias
|
||||||
|
chunk_with_alias = Chunk(content="test", metadata={"document_id": "existing-id", "chunk_id": "chunk-id-1"})
|
||||||
|
assert chunk_with_alias.chunk_id == "chunk-id-1"
|
||||||
|
serialized_chunk = chunk_with_alias.model_dump()
|
||||||
|
assert serialized_chunk["stored_chunk_id"] == "chunk-id-1"
|
||||||
|
# showing chunk_id is not serialized (i.e., a computed field)
|
||||||
|
assert "chunk_id" not in serialized_chunk
|
||||||
|
assert chunk_with_alias.stored_chunk_id == "chunk-id-1"
|
||||||
|
|
|
@ -64,6 +64,14 @@ async def test_query_chunks_vector(sqlite_vec_index, sample_chunks, sample_embed
|
||||||
assert len(response.chunks) == 2
|
assert len(response.chunks) == 2
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.xfail(reason="Chunk Metadata not yet supported for SQLite-vec", strict=True)
|
||||||
|
async def test_query_chunk_metadata(sqlite_vec_index, sample_chunks, sample_embeddings):
|
||||||
|
await sqlite_vec_index.add_chunks(sample_chunks, sample_embeddings)
|
||||||
|
query_embedding = sample_embeddings[0]
|
||||||
|
response = await sqlite_vec_index.query_vector(query_embedding, k=2, score_threshold=0.0)
|
||||||
|
assert response.chunks[-1].chunk_metadata == sample_chunks[-1].chunk_metadata
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.asyncio
|
@pytest.mark.asyncio
|
||||||
async def test_query_chunks_full_text_search(sqlite_vec_index, sample_chunks, sample_embeddings):
|
async def test_query_chunks_full_text_search(sqlite_vec_index, sample_chunks, sample_embeddings):
|
||||||
await sqlite_vec_index.add_chunks(sample_chunks, sample_embeddings)
|
await sqlite_vec_index.add_chunks(sample_chunks, sample_embeddings)
|
||||||
|
|
|
@ -4,10 +4,15 @@
|
||||||
# This source code is licensed under the terms described in the LICENSE file in
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
# the root directory of this source tree.
|
# the root directory of this source tree.
|
||||||
|
|
||||||
from unittest.mock import MagicMock
|
from unittest.mock import AsyncMock, MagicMock
|
||||||
|
|
||||||
import pytest
|
import pytest
|
||||||
|
|
||||||
|
from llama_stack.apis.vector_io import (
|
||||||
|
Chunk,
|
||||||
|
ChunkMetadata,
|
||||||
|
QueryChunksResponse,
|
||||||
|
)
|
||||||
from llama_stack.providers.inline.tool_runtime.rag.memory import MemoryToolRuntimeImpl
|
from llama_stack.providers.inline.tool_runtime.rag.memory import MemoryToolRuntimeImpl
|
||||||
|
|
||||||
|
|
||||||
|
@ -17,3 +22,41 @@ class TestRagQuery:
|
||||||
rag_tool = MemoryToolRuntimeImpl(config=MagicMock(), vector_io_api=MagicMock(), inference_api=MagicMock())
|
rag_tool = MemoryToolRuntimeImpl(config=MagicMock(), vector_io_api=MagicMock(), inference_api=MagicMock())
|
||||||
with pytest.raises(ValueError):
|
with pytest.raises(ValueError):
|
||||||
await rag_tool.query(content=MagicMock(), vector_db_ids=[])
|
await rag_tool.query(content=MagicMock(), vector_db_ids=[])
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_query_chunk_metadata_handling(self):
|
||||||
|
rag_tool = MemoryToolRuntimeImpl(config=MagicMock(), vector_io_api=MagicMock(), inference_api=MagicMock())
|
||||||
|
content = "test query content"
|
||||||
|
vector_db_ids = ["db1"]
|
||||||
|
|
||||||
|
chunk_metadata = ChunkMetadata(
|
||||||
|
document_id="doc1",
|
||||||
|
chunk_id="chunk1",
|
||||||
|
source="test_source",
|
||||||
|
metadata_token_count=5,
|
||||||
|
)
|
||||||
|
interleaved_content = MagicMock()
|
||||||
|
chunk = Chunk(
|
||||||
|
content=interleaved_content,
|
||||||
|
metadata={
|
||||||
|
"key1": "value1",
|
||||||
|
"token_count": 10,
|
||||||
|
"metadata_token_count": 5,
|
||||||
|
# Note this is inserted into `metadata` during MemoryToolRuntimeImpl().insert()
|
||||||
|
"document_id": "doc1",
|
||||||
|
},
|
||||||
|
stored_chunk_id="chunk1",
|
||||||
|
chunk_metadata=chunk_metadata,
|
||||||
|
)
|
||||||
|
|
||||||
|
query_response = QueryChunksResponse(chunks=[chunk], scores=[1.0])
|
||||||
|
|
||||||
|
rag_tool.vector_io_api.query_chunks = AsyncMock(return_value=query_response)
|
||||||
|
result = await rag_tool.query(content=content, vector_db_ids=vector_db_ids)
|
||||||
|
|
||||||
|
assert result is not None
|
||||||
|
expected_metadata_string = (
|
||||||
|
"Metadata: {'key1': 'value1', 'document_id': 'doc1', 'chunk_id': 'chunk1', 'source': 'test_source'}"
|
||||||
|
)
|
||||||
|
assert expected_metadata_string in result.content[1].text
|
||||||
|
assert result.content is not None
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue