mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-28 15:02:37 +00:00
llm judge llamastack scorer
This commit is contained in:
parent
0c4ed66ecc
commit
fa68809a2e
10 changed files with 199 additions and 7 deletions
|
@ -93,7 +93,7 @@ async def run_main(host: str, port: int, eval_dataset_path: str = ""):
|
|||
)
|
||||
cprint(f"datasets/create: {response}", "cyan")
|
||||
|
||||
# # 2. run evals on the registered dataset
|
||||
# 2. run evals on the registered dataset
|
||||
eval_task_config = EvaluateTaskConfig(
|
||||
dataset_config=EvaluateDatasetConfig(
|
||||
dataset_identifier="mmlu-simple-eval-en",
|
||||
|
@ -151,9 +151,21 @@ async def run_main(host: str, port: int, eval_dataset_path: str = ""):
|
|||
),
|
||||
eval_scoring_config=EvaluateScoringConfig(
|
||||
scorer_config_list=[
|
||||
EvaluateSingleScorerConfig(scorer_name="accuracy"),
|
||||
# EvaluateSingleScorerConfig(scorer_name="accuracy"),
|
||||
# EvaluateSingleScorerConfig(
|
||||
# scorer_name="braintrust::answer-correctness"
|
||||
# ),
|
||||
EvaluateSingleScorerConfig(
|
||||
scorer_name="braintrust::answer-correctness"
|
||||
scorer_name="llamastack-llm-judge",
|
||||
llm_judge_config=LLMJudgeConfig(
|
||||
judge_processor_config=EvaluateProcessorConfig(
|
||||
processor_identifier="judge",
|
||||
),
|
||||
judge_model_generation_config=EvaluateModelGenerationConfig(
|
||||
model="Llama3.1-8B-Instruct",
|
||||
),
|
||||
judge_scoring_config=EvaluateJudgeScoringConfig(),
|
||||
),
|
||||
),
|
||||
]
|
||||
),
|
||||
|
|
|
@ -13,6 +13,7 @@ GeneratorProcessorRegistry = Registry[BaseGeneratorProcessor]()
|
|||
|
||||
PROCESSOR_REGISTRY = {
|
||||
"mmlu": MMLUProcessor,
|
||||
"judge": JudgeProcessor,
|
||||
}
|
||||
|
||||
for k, v in PROCESSOR_REGISTRY.items():
|
||||
|
|
|
@ -7,6 +7,7 @@
|
|||
from llama_stack.apis.evals import * # noqa: F403
|
||||
from llama_stack.providers.impls.meta_reference.evals.scorer.basic_scorers import * # noqa: F403
|
||||
from llama_stack.providers.impls.meta_reference.evals.scorer.braintrust_scorer import * # noqa: F403
|
||||
from llama_stack.providers.impls.meta_reference.evals.scorer.llm_judge_scorer import * # noqa: F403
|
||||
|
||||
from ..registry import Registry
|
||||
|
||||
|
@ -16,6 +17,7 @@ ScorerRegistry = Registry[BaseScorer]()
|
|||
SCORER_REGISTRY = {
|
||||
"accuracy": AccuracyScorer,
|
||||
"random": RandomScorer,
|
||||
"llamastack-llm-judge": LlamaStackLLMJudgeScorer,
|
||||
"braintrust::factuality": BraintrustFactualityScorer,
|
||||
"braintrust::answer-correctness": BraintrustAnswerCorrectnessScorer,
|
||||
}
|
||||
|
|
|
@ -48,7 +48,9 @@ class MetaReferenceEvalsImpl(Evals):
|
|||
cprint(f"run_scorer: on {dataset_config} with {eval_scoring_config}", "green")
|
||||
|
||||
run_task = RunScoringTask()
|
||||
eval_result = await run_task.run(dataset_config, eval_scoring_config)
|
||||
eval_result = await run_task.run(
|
||||
dataset_config, eval_scoring_config, self.inference_api
|
||||
)
|
||||
|
||||
return EvaluateResponse(
|
||||
eval_result=eval_result,
|
||||
|
|
|
@ -30,7 +30,6 @@ class InferenceGenerator(BaseGenerator[PreprocessedSample, GenerationResponseSam
|
|||
) -> List[GenerationResponseSample]:
|
||||
generation_outputs = []
|
||||
for sample in preprocessed_dataset:
|
||||
print("generation: ", sample)
|
||||
response = await self.inference_api.chat_completion(
|
||||
model=self.model,
|
||||
messages=sample.generation_input.messages,
|
||||
|
|
|
@ -3,4 +3,5 @@
|
|||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from .judge_processor import JudgeProcessor # noqa: F401
|
||||
from .mmlu_processor import MMLUProcessor # noqa: F401
|
||||
|
|
|
@ -0,0 +1,75 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
import re
|
||||
|
||||
from llama_stack.apis.evals import * # noqa: F403
|
||||
|
||||
JUDGE_PROMPT = """
|
||||
You will be given a question, a expected_answer, and a system_answer.
|
||||
Your task is to provide a 'total rating' scoring how well the system_answer answers compared with ground truth in expected_answer in terms of factual correctness to the question.
|
||||
Give your answer as a integer on a scale of 0 to 5, where 0 means that the system_answer is not correct at all compared with expected_answer, and 5 means that the answer completely and correctly answers the question.
|
||||
|
||||
Provide your feedback as follows:
|
||||
|
||||
Feedback:::
|
||||
Total rating: (your rating, as a int between 0 and 5)
|
||||
|
||||
Now here are the question, expected_answer, system_answer.
|
||||
|
||||
Question: {question}
|
||||
Expected Answer: {expected_answer}
|
||||
System Answer: {answer}
|
||||
|
||||
Feedback:::
|
||||
Total rating:
|
||||
"""
|
||||
|
||||
|
||||
class JudgeProcessor(
|
||||
BaseGeneratorProcessor[
|
||||
DictSample, PreprocessedSample, GenerationResponseSample, ScorerInputSample
|
||||
]
|
||||
):
|
||||
"""
|
||||
Generator processor for LLM Judge
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def preprocess_sample(self, sample: DictSample) -> PreprocessedSample:
|
||||
content = JUDGE_PROMPT.format(
|
||||
question=sample.data["input_query"],
|
||||
expected_answer=sample.data["expected_answer"],
|
||||
answer=sample.data["generated_answer"],
|
||||
)
|
||||
preprocessed_msgs = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": content,
|
||||
}
|
||||
]
|
||||
processed_sample = PreprocessedSample(
|
||||
generation_input=GenerationInput(
|
||||
messages=preprocessed_msgs,
|
||||
)
|
||||
)
|
||||
return processed_sample
|
||||
|
||||
def postprocess_sample(
|
||||
self, generation_sample: GenerationResponseSample, dataset_sample: DictSample
|
||||
) -> ScorerInputSample:
|
||||
response_text = generation_sample.generation_output.completion_message
|
||||
match = re.search(r"Total rating: (\d+)", response_text)
|
||||
judge_rating = int(match.group(1))
|
||||
|
||||
return ScorerInputSample(
|
||||
generated_answer=str(judge_rating),
|
||||
expected_answer=dataset_sample.data["expected_answer"],
|
||||
generation_output=PostprocessedGeneration(
|
||||
completion_message=response_text,
|
||||
),
|
||||
)
|
|
@ -0,0 +1,83 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
import asyncio
|
||||
import threading
|
||||
|
||||
import numpy as np
|
||||
|
||||
from llama_stack.distribution.registry.generator_processors import (
|
||||
GeneratorProcessorRegistry,
|
||||
)
|
||||
from llama_stack.providers.impls.meta_reference.evals.generator.inference_generator import (
|
||||
InferenceGenerator,
|
||||
)
|
||||
|
||||
from llama_stack.apis.evals.evals import * # noqa: F401 F403
|
||||
from llama_stack.apis.datasets.datasets import * # noqa: F401 F403
|
||||
from llama_stack.apis.inference import * # noqa: F403
|
||||
|
||||
|
||||
class LlamaStackLLMJudgeScorer(BaseScorer[ScorerInputSample]):
|
||||
def __init__(self, llm_judge_config: LLMJudgeConfig, inference_api: Inference):
|
||||
self.llm_judge_config = llm_judge_config
|
||||
self.inference_api = inference_api
|
||||
# https://stackoverflow.com/questions/74703727/how-to-call-async-function-from-sync-funcion-and-get-result-while-a-loop-is-alr
|
||||
# We will use another thread wih its own event loop to run the async api within sync function
|
||||
self._loop = asyncio.new_event_loop()
|
||||
self._thr = threading.Thread(
|
||||
target=self._loop.run_forever, name="Async Runner", daemon=True
|
||||
)
|
||||
if not self._thr.is_alive():
|
||||
self._thr.start()
|
||||
|
||||
def score_sample(self, scorer_input_sample: ScorerInputSample) -> SingleEvalResult:
|
||||
input_query = scorer_input_sample.input_query
|
||||
generated_answer = scorer_input_sample.generated_answer
|
||||
expected_answer = scorer_input_sample.expected_answer
|
||||
|
||||
# Judge F1
|
||||
processor = GeneratorProcessorRegistry.get(
|
||||
self.llm_judge_config.judge_processor_config.processor_identifier
|
||||
)()
|
||||
data_sample = DictSample(
|
||||
data={
|
||||
"input_query": input_query,
|
||||
"generated_answer": generated_answer,
|
||||
"expected_answer": expected_answer,
|
||||
}
|
||||
)
|
||||
preprocessed_sample = processor.preprocess_sample(data_sample)
|
||||
|
||||
# Judge Generation
|
||||
generator = InferenceGenerator(
|
||||
model=self.llm_judge_config.judge_model_generation_config.model,
|
||||
inference_api=self.inference_api,
|
||||
)
|
||||
|
||||
future = asyncio.run_coroutine_threadsafe(
|
||||
generator.generate([preprocessed_sample]), self._loop
|
||||
)
|
||||
generation_outputs = future.result()
|
||||
# Judge F2
|
||||
postprocessed_sample = processor.postprocess_sample(
|
||||
generation_outputs[0], data_sample
|
||||
)
|
||||
|
||||
# Judge F3
|
||||
score = float(postprocessed_sample.generated_answer)
|
||||
|
||||
return SingleEvalResult(score_data={"judge_score": score})
|
||||
|
||||
def aggregate_results(self, eval_results: List[SingleEvalResult]) -> EvalResult:
|
||||
avg_score = np.average(
|
||||
[result.score_data["judge_score"] for result in eval_results]
|
||||
)
|
||||
|
||||
return EvalResult(
|
||||
metrics={
|
||||
"avg_judge_score": avg_score,
|
||||
}
|
||||
)
|
|
@ -72,7 +72,15 @@ class RunEvalTask(BaseTask):
|
|||
scorer_list = []
|
||||
for s_conf in scorer_config_list:
|
||||
scorer = ScorerRegistry.get(s_conf.scorer_name)
|
||||
scorer_list.append(scorer())
|
||||
if s_conf.llm_judge_config:
|
||||
scorer_list.append(
|
||||
scorer(
|
||||
llm_judge_config=s_conf.llm_judge_config,
|
||||
inference_api=inference_api,
|
||||
)
|
||||
)
|
||||
else:
|
||||
scorer_list.append(scorer())
|
||||
|
||||
scorer = AggregateScorer(
|
||||
scorers=scorer_list,
|
||||
|
|
|
@ -50,6 +50,7 @@ class RunScoringTask(BaseTask):
|
|||
self,
|
||||
dataset_config: EvaluateDatasetConfig,
|
||||
eval_scoring_config: EvaluateScoringConfig,
|
||||
inference_api: Inference,
|
||||
*args,
|
||||
**kwargs,
|
||||
) -> EvalResult:
|
||||
|
@ -69,7 +70,15 @@ class RunScoringTask(BaseTask):
|
|||
scorer_list = []
|
||||
for s_conf in scorer_config_list:
|
||||
scorer = ScorerRegistry.get(s_conf.scorer_name)
|
||||
scorer_list.append(scorer())
|
||||
if s_conf.llm_judge_config:
|
||||
scorer_list.append(
|
||||
scorer(
|
||||
llm_judge_config=s_conf.llm_judge_config,
|
||||
inference_api=inference_api,
|
||||
)
|
||||
)
|
||||
else:
|
||||
scorer_list.append(scorer())
|
||||
|
||||
scorer = AggregateScorer(
|
||||
scorers=scorer_list,
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue