mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-08-02 00:34:44 +00:00
aggregation function config
This commit is contained in:
parent
e2054d53e4
commit
fbc3888fd7
10 changed files with 189 additions and 26 deletions
|
@ -31,6 +31,15 @@ from llama_stack.apis.resource import Resource, ResourceType
|
|||
class ScoringFnParamsType(Enum):
|
||||
llm_as_judge = "llm_as_judge"
|
||||
regex_parser = "regex_parser"
|
||||
basic = "basic"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class AggregationFunctionType(Enum):
|
||||
average = "average"
|
||||
median = "median"
|
||||
categorical_count = "categorical_count"
|
||||
accuracy = "accuracy"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
|
@ -44,6 +53,10 @@ class LLMAsJudgeScoringFnParams(BaseModel):
|
|||
description="Regexes to extract the answer from generated response",
|
||||
default_factory=list,
|
||||
)
|
||||
aggregation_functions: Optional[List[AggregationFunctionType]] = Field(
|
||||
description="Aggregation functions to apply to the scores of each row",
|
||||
default_factory=list,
|
||||
)
|
||||
|
||||
|
||||
@json_schema_type
|
||||
|
@ -55,12 +68,26 @@ class RegexParserScoringFnParams(BaseModel):
|
|||
description="Regex to extract the answer from generated response",
|
||||
default_factory=list,
|
||||
)
|
||||
aggregation_functions: Optional[List[AggregationFunctionType]] = Field(
|
||||
description="Aggregation functions to apply to the scores of each row",
|
||||
default_factory=list,
|
||||
)
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class BasicScoringFnParams(BaseModel):
|
||||
type: Literal[ScoringFnParamsType.basic.value] = ScoringFnParamsType.basic.value
|
||||
aggregation_functions: Optional[List[AggregationFunctionType]] = Field(
|
||||
description="Aggregation functions to apply to the scores of each row",
|
||||
default_factory=list,
|
||||
)
|
||||
|
||||
|
||||
ScoringFnParams = Annotated[
|
||||
Union[
|
||||
LLMAsJudgeScoringFnParams,
|
||||
RegexParserScoringFnParams,
|
||||
BasicScoringFnParams,
|
||||
],
|
||||
Field(discriminator="type"),
|
||||
]
|
||||
|
|
|
@ -113,7 +113,7 @@ class BasicScoringImpl(Scoring, ScoringFunctionsProtocolPrivate):
|
|||
score_results = await scoring_fn.score(
|
||||
input_rows, scoring_fn_id, scoring_fn_params
|
||||
)
|
||||
agg_results = await scoring_fn.aggregate(score_results)
|
||||
agg_results = await scoring_fn.aggregate(score_results, scoring_fn_params)
|
||||
res[scoring_fn_id] = ScoringResult(
|
||||
score_rows=score_results,
|
||||
aggregated_results=agg_results,
|
||||
|
|
|
@ -4,12 +4,13 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.providers.utils.scoring.base_scoring_fn import BaseScoringFn
|
||||
from llama_stack.apis.scoring_functions import * # noqa: F401, F403
|
||||
from llama_stack.apis.scoring import * # noqa: F401, F403
|
||||
from llama_stack.apis.common.type_system import * # noqa: F403
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from llama_stack.providers.utils.scoring.aggregation_utils import aggregate_accuracy
|
||||
from llama_stack.apis.scoring import ScoringResultRow
|
||||
|
||||
from llama_stack.apis.scoring_functions import AggregationFunctionType, ScoringFnParams
|
||||
from llama_stack.providers.utils.scoring.aggregation_utils import aggregate_metrics
|
||||
from llama_stack.providers.utils.scoring.base_scoring_fn import BaseScoringFn
|
||||
|
||||
from .fn_defs.equality import equality
|
||||
|
||||
|
@ -44,6 +45,15 @@ class EqualityScoringFn(BaseScoringFn):
|
|||
}
|
||||
|
||||
async def aggregate(
|
||||
self, scoring_results: List[ScoringResultRow]
|
||||
self,
|
||||
scoring_results: List[ScoringResultRow],
|
||||
scoring_params: Optional[ScoringFnParams] = None,
|
||||
) -> Dict[str, Any]:
|
||||
return aggregate_accuracy(scoring_results)
|
||||
aggregation_functions = [AggregationFunctionType.accuracy]
|
||||
if (
|
||||
scoring_params
|
||||
and hasattr(scoring_params, "aggregation_functions")
|
||||
and scoring_params.aggregation_functions
|
||||
):
|
||||
aggregation_functions.extend(scoring_params.aggregation_functions)
|
||||
return aggregate_metrics(scoring_results, aggregation_functions)
|
||||
|
|
|
@ -5,11 +5,16 @@
|
|||
# the root directory of this source tree.
|
||||
import re
|
||||
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from llama_stack.apis.scoring import ScoringResultRow
|
||||
from llama_stack.apis.scoring_functions import (
|
||||
AggregationFunctionType,
|
||||
ScoringFnParams,
|
||||
ScoringFnParamsType,
|
||||
)
|
||||
from llama_stack.providers.utils.scoring.aggregation_utils import aggregate_metrics
|
||||
from llama_stack.providers.utils.scoring.base_scoring_fn import BaseScoringFn
|
||||
from llama_stack.apis.scoring_functions import * # noqa: F401, F403
|
||||
from llama_stack.apis.scoring import * # noqa: F401, F403
|
||||
from llama_stack.apis.common.type_system import * # noqa: F403
|
||||
from llama_stack.providers.utils.scoring.aggregation_utils import aggregate_accuracy
|
||||
|
||||
from .fn_defs.regex_parser_multiple_choice_answer import (
|
||||
regex_parser_multiple_choice_answer,
|
||||
|
@ -62,6 +67,15 @@ class RegexParserScoringFn(BaseScoringFn):
|
|||
}
|
||||
|
||||
async def aggregate(
|
||||
self, scoring_results: List[ScoringResultRow]
|
||||
self,
|
||||
scoring_results: List[ScoringResultRow],
|
||||
scoring_params: Optional[ScoringFnParams] = None,
|
||||
) -> Dict[str, Any]:
|
||||
return aggregate_accuracy(scoring_results)
|
||||
aggregation_functions = [AggregationFunctionType.accuracy]
|
||||
if (
|
||||
scoring_params
|
||||
and hasattr(scoring_params, "aggregation_functions")
|
||||
and scoring_params.aggregation_functions
|
||||
):
|
||||
aggregation_functions.extend(scoring_params.aggregation_functions)
|
||||
return aggregate_metrics(scoring_results, aggregation_functions)
|
||||
|
|
|
@ -4,11 +4,12 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from llama_stack.apis.scoring import ScoringResultRow
|
||||
from llama_stack.apis.scoring_functions import AggregationFunctionType, ScoringFnParams
|
||||
from llama_stack.providers.utils.scoring.aggregation_utils import aggregate_metrics
|
||||
from llama_stack.providers.utils.scoring.base_scoring_fn import BaseScoringFn
|
||||
from llama_stack.apis.scoring_functions import * # noqa: F401, F403
|
||||
from llama_stack.apis.scoring import * # noqa: F401, F403
|
||||
from llama_stack.apis.common.type_system import * # noqa: F403
|
||||
from llama_stack.providers.utils.scoring.aggregation_utils import aggregate_accuracy
|
||||
|
||||
from .fn_defs.subset_of import subset_of
|
||||
|
||||
|
@ -38,6 +39,15 @@ class SubsetOfScoringFn(BaseScoringFn):
|
|||
}
|
||||
|
||||
async def aggregate(
|
||||
self, scoring_results: List[ScoringResultRow]
|
||||
self,
|
||||
scoring_results: List[ScoringResultRow],
|
||||
scoring_params: Optional[ScoringFnParams] = None,
|
||||
) -> Dict[str, Any]:
|
||||
return aggregate_accuracy(scoring_results)
|
||||
aggregation_functions = [AggregationFunctionType.accuracy]
|
||||
if (
|
||||
scoring_params
|
||||
and hasattr(scoring_params, "aggregation_functions")
|
||||
and scoring_params.aggregation_functions
|
||||
):
|
||||
aggregation_functions.extend(scoring_params.aggregation_functions)
|
||||
return aggregate_metrics(scoring_results, aggregation_functions)
|
||||
|
|
|
@ -120,7 +120,7 @@ class LlmAsJudgeScoringImpl(Scoring, ScoringFunctionsProtocolPrivate):
|
|||
score_results = await scoring_fn.score(
|
||||
input_rows, scoring_fn_id, scoring_fn_params
|
||||
)
|
||||
agg_results = await scoring_fn.aggregate(score_results)
|
||||
agg_results = await scoring_fn.aggregate(score_results, scoring_fn_params)
|
||||
res[scoring_fn_id] = ScoringResult(
|
||||
score_rows=score_results,
|
||||
aggregated_results=agg_results,
|
||||
|
|
|
@ -87,7 +87,10 @@ class LlmAsJudgeScoringFn(BaseScoringFn):
|
|||
}
|
||||
|
||||
async def aggregate(
|
||||
self, scoring_results: List[ScoringResultRow]
|
||||
self,
|
||||
scoring_results: List[ScoringResultRow],
|
||||
scoring_params: Optional[ScoringFnParams] = None,
|
||||
) -> Dict[str, Any]:
|
||||
print(f"scoring_params: {scoring_params}")
|
||||
# TODO: this needs to be config based aggregation, and only useful w/ Jobs API
|
||||
return {}
|
||||
|
|
|
@ -7,7 +7,12 @@
|
|||
|
||||
import pytest
|
||||
|
||||
from llama_stack.apis.scoring_functions import * # noqa: F403
|
||||
from llama_stack.apis.scoring_functions import (
|
||||
AggregationFunctionType,
|
||||
BasicScoringFnParams,
|
||||
LLMAsJudgeScoringFnParams,
|
||||
RegexParserScoringFnParams,
|
||||
)
|
||||
from llama_stack.distribution.datatypes import Api
|
||||
from llama_stack.providers.tests.datasetio.test_datasetio import register_dataset
|
||||
|
||||
|
@ -129,7 +134,7 @@ class TestScoring:
|
|||
assert len(rows.rows) == 3
|
||||
|
||||
scoring_functions = {
|
||||
"llm-as-judge::llm_as_judge_base": LLMAsJudgeScoringFnParams(
|
||||
"llm-as-judge::base": LLMAsJudgeScoringFnParams(
|
||||
judge_model="Llama3.1-405B-Instruct",
|
||||
prompt_template="Output a number response in the following format: Score: <number>, where <number> is the number between 0 and 9.",
|
||||
judge_score_regexes=[r"Score: (\d+)"],
|
||||
|
@ -154,3 +159,59 @@ class TestScoring:
|
|||
for x in scoring_functions:
|
||||
assert x in response.results
|
||||
assert len(response.results[x].score_rows) == 5
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_scoring_score_with_aggregation_functions(self, scoring_stack):
|
||||
(
|
||||
scoring_impl,
|
||||
scoring_functions_impl,
|
||||
datasetio_impl,
|
||||
datasets_impl,
|
||||
models_impl,
|
||||
) = (
|
||||
scoring_stack[Api.scoring],
|
||||
scoring_stack[Api.scoring_functions],
|
||||
scoring_stack[Api.datasetio],
|
||||
scoring_stack[Api.datasets],
|
||||
scoring_stack[Api.models],
|
||||
)
|
||||
await register_dataset(datasets_impl)
|
||||
rows = await datasetio_impl.get_rows_paginated(
|
||||
dataset_id="test_dataset",
|
||||
rows_in_page=3,
|
||||
)
|
||||
assert len(rows.rows) == 3
|
||||
|
||||
scoring_fns_list = await scoring_functions_impl.list_scoring_functions()
|
||||
provider_id = scoring_fns_list[0].provider_id
|
||||
scoring_functions = {}
|
||||
aggr_fns = [
|
||||
AggregationFunctionType.accuracy,
|
||||
AggregationFunctionType.median,
|
||||
AggregationFunctionType.categorical_count,
|
||||
AggregationFunctionType.average,
|
||||
]
|
||||
for x in scoring_fns_list:
|
||||
if x.provider_id == "llm-as-judge":
|
||||
scoring_functions[x.identifier] = LLMAsJudgeScoringFnParams(
|
||||
aggregation_functions=[AggregationFunctionType.categorical_count],
|
||||
)
|
||||
elif x.provider_id == "basic":
|
||||
if "regex_parser" in x.identifier:
|
||||
scoring_functions[x.identifier] = RegexParserScoringFnParams(
|
||||
aggregation_functions=aggr_fns,
|
||||
)
|
||||
else:
|
||||
scoring_functions[x.identifier] = BasicScoringFnParams(
|
||||
aggregation_functions=aggr_fns,
|
||||
)
|
||||
else:
|
||||
scoring_functions[x.identifier] = None
|
||||
|
||||
response = await scoring_impl.score(
|
||||
input_rows=rows.rows,
|
||||
scoring_functions=scoring_functions,
|
||||
)
|
||||
from rich.pretty import pprint
|
||||
|
||||
pprint(response)
|
||||
|
|
|
@ -3,9 +3,10 @@
|
|||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
import statistics
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from llama_stack.apis.scoring import ScoringResultRow
|
||||
from llama_stack.apis.scoring import AggregationFunctionType, ScoringResultRow
|
||||
|
||||
|
||||
def aggregate_accuracy(scoring_results: List[ScoringResultRow]) -> Dict[str, Any]:
|
||||
|
@ -26,3 +27,38 @@ def aggregate_average(scoring_results: List[ScoringResultRow]) -> Dict[str, Any]
|
|||
)
|
||||
/ len([_ for _ in scoring_results if _["score"] is not None]),
|
||||
}
|
||||
|
||||
|
||||
def aggregate_categorical_count(
|
||||
scoring_results: List[ScoringResultRow],
|
||||
) -> Dict[str, Any]:
|
||||
scores = [str(r["score"]) for r in scoring_results]
|
||||
unique_scores = sorted(list(set(scores)))
|
||||
return {"categorical_count": {s: scores.count(s) for s in unique_scores}}
|
||||
|
||||
|
||||
def aggregate_median(scoring_results: List[ScoringResultRow]) -> Dict[str, Any]:
|
||||
scores = [r["score"] for r in scoring_results if r["score"] is not None]
|
||||
median = statistics.median(scores) if scores else None
|
||||
return {"median": median}
|
||||
|
||||
|
||||
# TODO: decide whether we want to make aggregation functions as a registerable resource
|
||||
AGGREGATION_FUNCTIONS = {
|
||||
AggregationFunctionType.accuracy: aggregate_accuracy,
|
||||
AggregationFunctionType.average: aggregate_average,
|
||||
AggregationFunctionType.categorical_count: aggregate_categorical_count,
|
||||
AggregationFunctionType.median: aggregate_median,
|
||||
}
|
||||
|
||||
|
||||
def aggregate_metrics(
|
||||
scoring_results: List[ScoringResultRow], metrics: List[AggregationFunctionType]
|
||||
) -> Dict[str, Any]:
|
||||
agg_results = {}
|
||||
for metric in metrics:
|
||||
if metric not in AGGREGATION_FUNCTIONS:
|
||||
raise ValueError(f"Aggregation function {metric} not found")
|
||||
agg_fn = AGGREGATION_FUNCTIONS[metric]
|
||||
agg_results[metric] = agg_fn(scoring_results)
|
||||
return agg_results
|
||||
|
|
|
@ -46,7 +46,9 @@ class BaseScoringFn(ABC):
|
|||
|
||||
@abstractmethod
|
||||
async def aggregate(
|
||||
self, scoring_results: List[ScoringResultRow]
|
||||
self,
|
||||
scoring_results: List[ScoringResultRow],
|
||||
scoring_params: Optional[ScoringFnParams] = None,
|
||||
) -> Dict[str, Any]:
|
||||
raise NotImplementedError()
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue