scorer only api

This commit is contained in:
Xi Yan 2024-10-14 17:46:29 -07:00
parent a22c31b8a4
commit fcb8dea1ef
8 changed files with 184 additions and 27 deletions

View file

@ -51,34 +51,84 @@ class EvaluationClient(Evals):
response.raise_for_status()
return EvaluateResponse(**response.json())
async def run_scorer(
self,
dataset_config: EvaluateDatasetConfig,
eval_scoring_config: EvaluateScoringConfig,
) -> EvaluateResponse:
async with httpx.AsyncClient() as client:
response = await client.post(
f"{self.base_url}/evals/run_scorer",
json={
"dataset_config": json.loads(dataset_config.json()),
"eval_scoring_config": json.loads(eval_scoring_config.json()),
},
headers={"Content-Type": "application/json"},
timeout=3600,
)
response.raise_for_status()
return EvaluateResponse(**response.json())
async def run_main(host: str, port: int):
client = EvaluationClient(f"http://{host}:{port}")
dataset_client = DatasetsClient(f"http://{host}:{port}")
# Custom Eval Task
# Full Eval Task
# 1. register custom dataset
# # 1. register custom dataset
# response = await dataset_client.create_dataset(
# dataset_def=CustomDatasetDef(
# identifier="mmlu-simple-eval-en",
# url="https://openaipublic.blob.core.windows.net/simple-evals/mmlu.csv",
# ),
# )
# cprint(f"datasets/create: {response}", "cyan")
# # 2. run evals on the registered dataset
# response = await client.run_evals(
# model="Llama3.1-8B-Instruct",
# dataset="mmlu-simple-eval-en",
# task="mmlu",
# )
# if response.formatted_report:
# cprint(response.formatted_report, "green")
# else:
# cprint(f"Response: {response}", "green")
# Scoring Task
# 1. register huggingface dataset
response = await dataset_client.create_dataset(
dataset_def=CustomDatasetDef(
identifier="mmlu-simple-eval-en",
url="https://openaipublic.blob.core.windows.net/simple-evals/mmlu.csv",
),
dataset_def=HuggingfaceDatasetDef(
identifier="Llama-3.1-8B-Instruct-evals__mmlu_pro__details",
dataset_path="meta-llama/Llama-3.1-8B-Instruct-evals",
dataset_name="Llama-3.1-8B-Instruct-evals__mmlu_pro__details",
rename_columns_map={
"output_parsed_answer": "generated_answer",
"input_correct_responses": "expected_answer",
},
kwargs={"split": "latest"},
)
)
cprint(f"datasets/create: {response}", "cyan")
cprint(response, "cyan")
# 2. run evals on the registered dataset
response = await client.run_evals(
model="Llama3.1-8B-Instruct",
dataset="mmlu-simple-eval-en",
task="mmlu",
response = await client.run_scorer(
dataset_config=EvaluateDatasetConfig(
dataset_identifier="Llama-3.1-8B-Instruct-evals__mmlu_pro__details",
row_limit=10,
),
eval_scoring_config=EvaluateScoringConfig(
scorer_config_list=[
EvaluateSingleScorerConfig(scorer_name="accuracy"),
]
),
)
if response.formatted_report:
cprint(response.formatted_report, "green")
else:
cprint(f"Response: {response}", "green")
cprint(response, "green")
# Eleuther Eval Task
# response = await client.run_evals(