mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-11 11:50:41 +00:00
scorer only api
This commit is contained in:
parent
a22c31b8a4
commit
fcb8dea1ef
8 changed files with 184 additions and 27 deletions
|
|
@ -13,6 +13,7 @@ from llama_stack.apis.datasets import * # noqa: F403
|
|||
|
||||
from .config import MetaReferenceEvalsImplConfig
|
||||
from .tasks.run_eval_task import RunEvalTask
|
||||
from .tasks.run_scoring_task import RunScoringTask
|
||||
|
||||
|
||||
class MetaReferenceEvalsImpl(Evals):
|
||||
|
|
@ -44,7 +45,7 @@ class MetaReferenceEvalsImpl(Evals):
|
|||
# construct eval task config from inputs
|
||||
eval_task_config = EvaluateTaskConfig(
|
||||
dataset_config=EvaluateDatasetConfig(
|
||||
dataset_name=dataset,
|
||||
dataset_identifier=dataset,
|
||||
row_limit=3,
|
||||
),
|
||||
processor_config=EvaluateProcessorConfig(
|
||||
|
|
@ -76,8 +77,10 @@ class MetaReferenceEvalsImpl(Evals):
|
|||
) -> EvaluateResponse:
|
||||
cprint("run_scorer")
|
||||
|
||||
# main logic, we need to convert the datset into List[ScorerInputSample]
|
||||
run_task = RunScoringTask()
|
||||
eval_result = await run_task.run(dataset_config, eval_scoring_config)
|
||||
|
||||
return EvaluateResponse(
|
||||
eval_result={},
|
||||
eval_result=eval_result,
|
||||
formatted_report=json.dumps(eval_result.json(), indent=4),
|
||||
)
|
||||
|
|
|
|||
|
|
@ -31,9 +31,14 @@ class AccuracyScorer(BaseScorer[ScorerInputSample]):
|
|||
extracted_answer = scorer_input_sample.generated_answer
|
||||
expected_answer = scorer_input_sample.expected_answer
|
||||
|
||||
accuracy = (
|
||||
1.0 if extracted_answer and extracted_answer == expected_answer else 0.0
|
||||
)
|
||||
if isinstance(expected_answer, list):
|
||||
accuracy = (
|
||||
1.0 if extracted_answer and extracted_answer in expected_answer else 0.0
|
||||
)
|
||||
else:
|
||||
accuracy = (
|
||||
1.0 if extracted_answer and extracted_answer == expected_answer else 0.0
|
||||
)
|
||||
|
||||
return SingleEvalResult(score_data={"accuracy": accuracy})
|
||||
|
||||
|
|
|
|||
|
|
@ -43,7 +43,9 @@ class RunEvalTask(BaseTask):
|
|||
print(f"Running eval task w/ {eval_task_config}")
|
||||
|
||||
print(DatasetRegistry.names())
|
||||
dataset = DatasetRegistry.get(eval_task_config.dataset_config.dataset_name)
|
||||
dataset = DatasetRegistry.get(
|
||||
eval_task_config.dataset_config.dataset_identifier
|
||||
)
|
||||
dataset.load(n_samples=eval_task_config.dataset_config.row_limit)
|
||||
print(f"Running on {len(dataset)} samples")
|
||||
|
||||
|
|
|
|||
|
|
@ -0,0 +1,80 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from llama_stack.distribution.registry.datasets import DatasetRegistry
|
||||
from llama_stack.distribution.registry.scorers import ScorerRegistry
|
||||
|
||||
from llama_stack.providers.impls.meta_reference.evals.scorer.aggregate_scorer import * # noqa: F403
|
||||
from llama_stack.providers.impls.meta_reference.evals.scorer.basic_scorers import * # noqa: F403
|
||||
|
||||
from llama_stack.apis.evals import * # noqa: F403
|
||||
from llama_stack.apis.inference import * # noqa: F403
|
||||
from termcolor import cprint
|
||||
|
||||
|
||||
class RunScoringTask(BaseTask):
|
||||
"""
|
||||
RunScoringTask - only run scoring (F3) based on dataset and scoring config
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*args,
|
||||
**kwargs,
|
||||
) -> None:
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def transform_score_input_sample(
|
||||
self, dataset: BaseDataset
|
||||
) -> List[ScorerInputSample]:
|
||||
scorer_inputs = []
|
||||
for x in dataset:
|
||||
expected_answer = x.data["expected_answer"]
|
||||
generated_answer = x.data["generated_answer"]
|
||||
|
||||
scorer_inputs.append(
|
||||
ScorerInputSample(
|
||||
expected_answer=expected_answer,
|
||||
generated_answer=generated_answer,
|
||||
)
|
||||
)
|
||||
|
||||
return scorer_inputs
|
||||
|
||||
async def run(
|
||||
self,
|
||||
dataset_config: EvaluateDatasetConfig,
|
||||
eval_scoring_config: EvaluateScoringConfig,
|
||||
*args,
|
||||
**kwargs,
|
||||
) -> EvalResult:
|
||||
print(
|
||||
f"Running scoring task w/ dataset={dataset_config} scoring={eval_scoring_config}"
|
||||
)
|
||||
|
||||
dataset = DatasetRegistry.get(dataset_config.dataset_identifier)
|
||||
dataset.load(n_samples=dataset_config.row_limit)
|
||||
print(f"Running on {len(dataset)} samples")
|
||||
|
||||
# transform dataset into
|
||||
postprocessed = self.transform_score_input_sample(dataset)
|
||||
cprint(postprocessed, "blue")
|
||||
|
||||
# F3 - scorer
|
||||
scorer_config_list = eval_scoring_config.scorer_config_list
|
||||
scorer_list = []
|
||||
for s_conf in scorer_config_list:
|
||||
scorer = ScorerRegistry.get(s_conf.scorer_name)
|
||||
scorer_list.append(scorer())
|
||||
|
||||
scorer = AggregateScorer(
|
||||
scorers=scorer_list,
|
||||
)
|
||||
|
||||
scorer_results = scorer.score(postprocessed)
|
||||
cprint(scorer_results, "magenta")
|
||||
eval_result = scorer.aggregate_results(scorer_results)
|
||||
|
||||
return eval_result
|
||||
Loading…
Add table
Add a link
Reference in a new issue