scorer only api

This commit is contained in:
Xi Yan 2024-10-14 17:46:29 -07:00
parent a22c31b8a4
commit fcb8dea1ef
8 changed files with 184 additions and 27 deletions

View file

@ -13,6 +13,7 @@ from llama_stack.apis.datasets import * # noqa: F403
from .config import MetaReferenceEvalsImplConfig
from .tasks.run_eval_task import RunEvalTask
from .tasks.run_scoring_task import RunScoringTask
class MetaReferenceEvalsImpl(Evals):
@ -44,7 +45,7 @@ class MetaReferenceEvalsImpl(Evals):
# construct eval task config from inputs
eval_task_config = EvaluateTaskConfig(
dataset_config=EvaluateDatasetConfig(
dataset_name=dataset,
dataset_identifier=dataset,
row_limit=3,
),
processor_config=EvaluateProcessorConfig(
@ -76,8 +77,10 @@ class MetaReferenceEvalsImpl(Evals):
) -> EvaluateResponse:
cprint("run_scorer")
# main logic, we need to convert the datset into List[ScorerInputSample]
run_task = RunScoringTask()
eval_result = await run_task.run(dataset_config, eval_scoring_config)
return EvaluateResponse(
eval_result={},
eval_result=eval_result,
formatted_report=json.dumps(eval_result.json(), indent=4),
)

View file

@ -31,9 +31,14 @@ class AccuracyScorer(BaseScorer[ScorerInputSample]):
extracted_answer = scorer_input_sample.generated_answer
expected_answer = scorer_input_sample.expected_answer
accuracy = (
1.0 if extracted_answer and extracted_answer == expected_answer else 0.0
)
if isinstance(expected_answer, list):
accuracy = (
1.0 if extracted_answer and extracted_answer in expected_answer else 0.0
)
else:
accuracy = (
1.0 if extracted_answer and extracted_answer == expected_answer else 0.0
)
return SingleEvalResult(score_data={"accuracy": accuracy})

View file

@ -43,7 +43,9 @@ class RunEvalTask(BaseTask):
print(f"Running eval task w/ {eval_task_config}")
print(DatasetRegistry.names())
dataset = DatasetRegistry.get(eval_task_config.dataset_config.dataset_name)
dataset = DatasetRegistry.get(
eval_task_config.dataset_config.dataset_identifier
)
dataset.load(n_samples=eval_task_config.dataset_config.row_limit)
print(f"Running on {len(dataset)} samples")

View file

@ -0,0 +1,80 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.distribution.registry.datasets import DatasetRegistry
from llama_stack.distribution.registry.scorers import ScorerRegistry
from llama_stack.providers.impls.meta_reference.evals.scorer.aggregate_scorer import * # noqa: F403
from llama_stack.providers.impls.meta_reference.evals.scorer.basic_scorers import * # noqa: F403
from llama_stack.apis.evals import * # noqa: F403
from llama_stack.apis.inference import * # noqa: F403
from termcolor import cprint
class RunScoringTask(BaseTask):
"""
RunScoringTask - only run scoring (F3) based on dataset and scoring config
"""
def __init__(
self,
*args,
**kwargs,
) -> None:
super().__init__(*args, **kwargs)
def transform_score_input_sample(
self, dataset: BaseDataset
) -> List[ScorerInputSample]:
scorer_inputs = []
for x in dataset:
expected_answer = x.data["expected_answer"]
generated_answer = x.data["generated_answer"]
scorer_inputs.append(
ScorerInputSample(
expected_answer=expected_answer,
generated_answer=generated_answer,
)
)
return scorer_inputs
async def run(
self,
dataset_config: EvaluateDatasetConfig,
eval_scoring_config: EvaluateScoringConfig,
*args,
**kwargs,
) -> EvalResult:
print(
f"Running scoring task w/ dataset={dataset_config} scoring={eval_scoring_config}"
)
dataset = DatasetRegistry.get(dataset_config.dataset_identifier)
dataset.load(n_samples=dataset_config.row_limit)
print(f"Running on {len(dataset)} samples")
# transform dataset into
postprocessed = self.transform_score_input_sample(dataset)
cprint(postprocessed, "blue")
# F3 - scorer
scorer_config_list = eval_scoring_config.scorer_config_list
scorer_list = []
for s_conf in scorer_config_list:
scorer = ScorerRegistry.get(s_conf.scorer_name)
scorer_list.append(scorer())
scorer = AggregateScorer(
scorers=scorer_list,
)
scorer_results = scorer.score(postprocessed)
cprint(scorer_results, "magenta")
eval_result = scorer.aggregate_results(scorer_results)
return eval_result