mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-29 07:14:20 +00:00
scorer only api
This commit is contained in:
parent
a22c31b8a4
commit
fcb8dea1ef
8 changed files with 184 additions and 27 deletions
|
@ -92,8 +92,14 @@ class HuggingfaceDatasetDef(BaseModel):
|
|||
identifier: str = Field(
|
||||
description="A unique name for the dataset",
|
||||
)
|
||||
dataset_name: str = Field(
|
||||
description="The name of the dataset into HF (e.g. hellawag)",
|
||||
dataset_path: str = Field(
|
||||
description="The name of the dataset into HF (e.g. meta-llama/Llama-3.1-8B-Instruct-evals)",
|
||||
)
|
||||
dataset_name: Optional[str] = Field(
|
||||
description="The name of the dataset into HF (e.g. Llama-3.1-8B-Instruct-evals__ifeval__strict__details)",
|
||||
)
|
||||
rename_columns_map: Optional[Dict[str, str]] = Field(
|
||||
description="A map of column names to rename to fit the schema of eval dataset for scoring",
|
||||
)
|
||||
kwargs: Dict[str, Any] = Field(
|
||||
description="Any additional arguments to get Huggingface (e.g. split, trust_remote_code)",
|
||||
|
|
|
@ -51,34 +51,84 @@ class EvaluationClient(Evals):
|
|||
response.raise_for_status()
|
||||
return EvaluateResponse(**response.json())
|
||||
|
||||
async def run_scorer(
|
||||
self,
|
||||
dataset_config: EvaluateDatasetConfig,
|
||||
eval_scoring_config: EvaluateScoringConfig,
|
||||
) -> EvaluateResponse:
|
||||
async with httpx.AsyncClient() as client:
|
||||
response = await client.post(
|
||||
f"{self.base_url}/evals/run_scorer",
|
||||
json={
|
||||
"dataset_config": json.loads(dataset_config.json()),
|
||||
"eval_scoring_config": json.loads(eval_scoring_config.json()),
|
||||
},
|
||||
headers={"Content-Type": "application/json"},
|
||||
timeout=3600,
|
||||
)
|
||||
response.raise_for_status()
|
||||
return EvaluateResponse(**response.json())
|
||||
|
||||
|
||||
async def run_main(host: str, port: int):
|
||||
client = EvaluationClient(f"http://{host}:{port}")
|
||||
|
||||
dataset_client = DatasetsClient(f"http://{host}:{port}")
|
||||
|
||||
# Custom Eval Task
|
||||
# Full Eval Task
|
||||
|
||||
# 1. register custom dataset
|
||||
# # 1. register custom dataset
|
||||
# response = await dataset_client.create_dataset(
|
||||
# dataset_def=CustomDatasetDef(
|
||||
# identifier="mmlu-simple-eval-en",
|
||||
# url="https://openaipublic.blob.core.windows.net/simple-evals/mmlu.csv",
|
||||
# ),
|
||||
# )
|
||||
# cprint(f"datasets/create: {response}", "cyan")
|
||||
|
||||
# # 2. run evals on the registered dataset
|
||||
# response = await client.run_evals(
|
||||
# model="Llama3.1-8B-Instruct",
|
||||
# dataset="mmlu-simple-eval-en",
|
||||
# task="mmlu",
|
||||
# )
|
||||
|
||||
# if response.formatted_report:
|
||||
# cprint(response.formatted_report, "green")
|
||||
# else:
|
||||
# cprint(f"Response: {response}", "green")
|
||||
|
||||
# Scoring Task
|
||||
|
||||
# 1. register huggingface dataset
|
||||
response = await dataset_client.create_dataset(
|
||||
dataset_def=CustomDatasetDef(
|
||||
identifier="mmlu-simple-eval-en",
|
||||
url="https://openaipublic.blob.core.windows.net/simple-evals/mmlu.csv",
|
||||
),
|
||||
dataset_def=HuggingfaceDatasetDef(
|
||||
identifier="Llama-3.1-8B-Instruct-evals__mmlu_pro__details",
|
||||
dataset_path="meta-llama/Llama-3.1-8B-Instruct-evals",
|
||||
dataset_name="Llama-3.1-8B-Instruct-evals__mmlu_pro__details",
|
||||
rename_columns_map={
|
||||
"output_parsed_answer": "generated_answer",
|
||||
"input_correct_responses": "expected_answer",
|
||||
},
|
||||
kwargs={"split": "latest"},
|
||||
)
|
||||
)
|
||||
cprint(f"datasets/create: {response}", "cyan")
|
||||
cprint(response, "cyan")
|
||||
|
||||
# 2. run evals on the registered dataset
|
||||
response = await client.run_evals(
|
||||
model="Llama3.1-8B-Instruct",
|
||||
dataset="mmlu-simple-eval-en",
|
||||
task="mmlu",
|
||||
response = await client.run_scorer(
|
||||
dataset_config=EvaluateDatasetConfig(
|
||||
dataset_identifier="Llama-3.1-8B-Instruct-evals__mmlu_pro__details",
|
||||
row_limit=10,
|
||||
),
|
||||
eval_scoring_config=EvaluateScoringConfig(
|
||||
scorer_config_list=[
|
||||
EvaluateSingleScorerConfig(scorer_name="accuracy"),
|
||||
]
|
||||
),
|
||||
)
|
||||
|
||||
if response.formatted_report:
|
||||
cprint(response.formatted_report, "green")
|
||||
else:
|
||||
cprint(f"Response: {response}", "green")
|
||||
cprint(response, "green")
|
||||
|
||||
# Eleuther Eval Task
|
||||
# response = await client.run_evals(
|
||||
|
|
|
@ -66,7 +66,7 @@ class EvaluationJobCreateResponse(BaseModel):
|
|||
@json_schema_type
|
||||
class EvaluateDatasetConfig(BaseModel):
|
||||
# identifier to previously registered dataset via DatasetDef
|
||||
dataset_name: str
|
||||
dataset_identifier: str
|
||||
# limit number of rows to evaluate
|
||||
row_limit: Optional[int] = None
|
||||
kwargs: Optional[Dict[str, Any]] = None
|
||||
|
|
|
@ -72,7 +72,18 @@ class HuggingfaceDataset(BaseDataset[DictSample]):
|
|||
self.load()
|
||||
return len(self.dataset)
|
||||
|
||||
def load(self):
|
||||
def load(self, n_samples: Optional[int] = None):
|
||||
if self.dataset:
|
||||
return
|
||||
self.dataset = load_dataset(self.config.dataset_name, **self.config.kwargs)
|
||||
|
||||
if self.config.dataset_name:
|
||||
self.config.kwargs["name"] = self.config.dataset_name
|
||||
|
||||
self.dataset = load_dataset(self.config.dataset_path, **self.config.kwargs)
|
||||
|
||||
if n_samples:
|
||||
self.dataset = self.dataset.select(range(n_samples))
|
||||
|
||||
if self.config.rename_columns_map:
|
||||
for k, v in self.config.rename_columns_map.items():
|
||||
self.dataset = self.dataset.rename_column(k, v)
|
||||
|
|
|
@ -13,6 +13,7 @@ from llama_stack.apis.datasets import * # noqa: F403
|
|||
|
||||
from .config import MetaReferenceEvalsImplConfig
|
||||
from .tasks.run_eval_task import RunEvalTask
|
||||
from .tasks.run_scoring_task import RunScoringTask
|
||||
|
||||
|
||||
class MetaReferenceEvalsImpl(Evals):
|
||||
|
@ -44,7 +45,7 @@ class MetaReferenceEvalsImpl(Evals):
|
|||
# construct eval task config from inputs
|
||||
eval_task_config = EvaluateTaskConfig(
|
||||
dataset_config=EvaluateDatasetConfig(
|
||||
dataset_name=dataset,
|
||||
dataset_identifier=dataset,
|
||||
row_limit=3,
|
||||
),
|
||||
processor_config=EvaluateProcessorConfig(
|
||||
|
@ -76,8 +77,10 @@ class MetaReferenceEvalsImpl(Evals):
|
|||
) -> EvaluateResponse:
|
||||
cprint("run_scorer")
|
||||
|
||||
# main logic, we need to convert the datset into List[ScorerInputSample]
|
||||
run_task = RunScoringTask()
|
||||
eval_result = await run_task.run(dataset_config, eval_scoring_config)
|
||||
|
||||
return EvaluateResponse(
|
||||
eval_result={},
|
||||
eval_result=eval_result,
|
||||
formatted_report=json.dumps(eval_result.json(), indent=4),
|
||||
)
|
||||
|
|
|
@ -31,9 +31,14 @@ class AccuracyScorer(BaseScorer[ScorerInputSample]):
|
|||
extracted_answer = scorer_input_sample.generated_answer
|
||||
expected_answer = scorer_input_sample.expected_answer
|
||||
|
||||
accuracy = (
|
||||
1.0 if extracted_answer and extracted_answer == expected_answer else 0.0
|
||||
)
|
||||
if isinstance(expected_answer, list):
|
||||
accuracy = (
|
||||
1.0 if extracted_answer and extracted_answer in expected_answer else 0.0
|
||||
)
|
||||
else:
|
||||
accuracy = (
|
||||
1.0 if extracted_answer and extracted_answer == expected_answer else 0.0
|
||||
)
|
||||
|
||||
return SingleEvalResult(score_data={"accuracy": accuracy})
|
||||
|
||||
|
|
|
@ -43,7 +43,9 @@ class RunEvalTask(BaseTask):
|
|||
print(f"Running eval task w/ {eval_task_config}")
|
||||
|
||||
print(DatasetRegistry.names())
|
||||
dataset = DatasetRegistry.get(eval_task_config.dataset_config.dataset_name)
|
||||
dataset = DatasetRegistry.get(
|
||||
eval_task_config.dataset_config.dataset_identifier
|
||||
)
|
||||
dataset.load(n_samples=eval_task_config.dataset_config.row_limit)
|
||||
print(f"Running on {len(dataset)} samples")
|
||||
|
||||
|
|
|
@ -0,0 +1,80 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from llama_stack.distribution.registry.datasets import DatasetRegistry
|
||||
from llama_stack.distribution.registry.scorers import ScorerRegistry
|
||||
|
||||
from llama_stack.providers.impls.meta_reference.evals.scorer.aggregate_scorer import * # noqa: F403
|
||||
from llama_stack.providers.impls.meta_reference.evals.scorer.basic_scorers import * # noqa: F403
|
||||
|
||||
from llama_stack.apis.evals import * # noqa: F403
|
||||
from llama_stack.apis.inference import * # noqa: F403
|
||||
from termcolor import cprint
|
||||
|
||||
|
||||
class RunScoringTask(BaseTask):
|
||||
"""
|
||||
RunScoringTask - only run scoring (F3) based on dataset and scoring config
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*args,
|
||||
**kwargs,
|
||||
) -> None:
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def transform_score_input_sample(
|
||||
self, dataset: BaseDataset
|
||||
) -> List[ScorerInputSample]:
|
||||
scorer_inputs = []
|
||||
for x in dataset:
|
||||
expected_answer = x.data["expected_answer"]
|
||||
generated_answer = x.data["generated_answer"]
|
||||
|
||||
scorer_inputs.append(
|
||||
ScorerInputSample(
|
||||
expected_answer=expected_answer,
|
||||
generated_answer=generated_answer,
|
||||
)
|
||||
)
|
||||
|
||||
return scorer_inputs
|
||||
|
||||
async def run(
|
||||
self,
|
||||
dataset_config: EvaluateDatasetConfig,
|
||||
eval_scoring_config: EvaluateScoringConfig,
|
||||
*args,
|
||||
**kwargs,
|
||||
) -> EvalResult:
|
||||
print(
|
||||
f"Running scoring task w/ dataset={dataset_config} scoring={eval_scoring_config}"
|
||||
)
|
||||
|
||||
dataset = DatasetRegistry.get(dataset_config.dataset_identifier)
|
||||
dataset.load(n_samples=dataset_config.row_limit)
|
||||
print(f"Running on {len(dataset)} samples")
|
||||
|
||||
# transform dataset into
|
||||
postprocessed = self.transform_score_input_sample(dataset)
|
||||
cprint(postprocessed, "blue")
|
||||
|
||||
# F3 - scorer
|
||||
scorer_config_list = eval_scoring_config.scorer_config_list
|
||||
scorer_list = []
|
||||
for s_conf in scorer_config_list:
|
||||
scorer = ScorerRegistry.get(s_conf.scorer_name)
|
||||
scorer_list.append(scorer())
|
||||
|
||||
scorer = AggregateScorer(
|
||||
scorers=scorer_list,
|
||||
)
|
||||
|
||||
scorer_results = scorer.score(postprocessed)
|
||||
cprint(scorer_results, "magenta")
|
||||
eval_result = scorer.aggregate_results(scorer_results)
|
||||
|
||||
return eval_result
|
Loading…
Add table
Add a link
Reference in a new issue