docs: update agent_execution_loop example code

Signed-off-by: reidliu <reid201711@gmail.com>
This commit is contained in:
reidliu 2025-03-02 22:41:19 +08:00
parent e84f1a5549
commit fcd34c9226

View file

@ -67,10 +67,17 @@ sequenceDiagram
Each step in this process can be monitored and controlled through configurations. Here's an example that demonstrates monitoring the agent's execution:
```python
from llama_stack_client import LlamaStackClient
from llama_stack_client.lib.agents.agent import Agent
from llama_stack_client.lib.agents.event_logger import EventLogger
from llama_stack_client.types.agent_create_params import AgentConfig
from rich.pretty import pprint
# Replace host and port
client = LlamaStackClient(base_url=f"http://{HOST}:{PORT}")
agent_config = AgentConfig(
# Check with `llama-stack-client models list`
model="Llama3.2-3B-Instruct",
instructions="You are a helpful assistant",
# Enable both RAG and tool usage
@ -81,7 +88,7 @@ agent_config = AgentConfig(
},
"builtin::code_interpreter",
],
# Configure safety
# Configure safety (optional)
input_shields=["llama_guard"],
output_shields=["llama_guard"],
# Control the inference loop
@ -98,7 +105,7 @@ session_id = agent.create_session("monitored_session")
# Stream the agent's execution steps
response = agent.create_turn(
messages=[{"role": "user", "content": "Analyze this code and run it"}],
attachments=[
documents=[
{
"content": "https://raw.githubusercontent.com/example/code.py",
"mime_type": "text/plain",
@ -114,7 +121,7 @@ for log in EventLogger().log(response):
# Using non-streaming API, the response contains input, steps, and output.
response = agent.create_turn(
messages=[{"role": "user", "content": "Analyze this code and run it"}],
attachments=[
documents=[
{
"content": "https://raw.githubusercontent.com/example/code.py",
"mime_type": "text/plain",