Merge branch 'meta-llama:main' into main

This commit is contained in:
Shrinit Goyal 2024-12-12 12:42:45 +05:30 committed by GitHub
commit fced5ec6dd
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
208 changed files with 7952 additions and 1104 deletions

View file

@ -3,3 +3,5 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
#
# from .distribution.library_client import LlamaStackAsLibraryClient, AsyncLlamaStackAsLibraryClient

View file

@ -23,6 +23,7 @@ from llama_models.schema_utils import json_schema_type, webmethod
from pydantic import BaseModel, ConfigDict, Field
from typing_extensions import Annotated
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
from llama_models.llama3.api.datatypes import * # noqa: F403
from llama_stack.apis.common.deployment_types import * # noqa: F403
from llama_stack.apis.inference import * # noqa: F403
@ -339,9 +340,8 @@ class AgentTurnResponseStepProgressPayload(BaseModel):
step_type: StepType
step_id: str
model_response_text_delta: Optional[str] = None
text_delta: Optional[str] = None
tool_call_delta: Optional[ToolCallDelta] = None
tool_response_text_delta: Optional[str] = None
@json_schema_type
@ -418,6 +418,7 @@ class AgentStepResponse(BaseModel):
@runtime_checkable
@trace_protocol
class Agents(Protocol):
@webmethod(route="/agents/create")
async def create_agent(

View file

@ -121,7 +121,7 @@ class EventLogger:
else:
yield event, LogEvent(
role=None,
content=event.payload.model_response_text_delta,
content=event.payload.text_delta,
end="",
color="yellow",
)
@ -171,12 +171,14 @@ class EventLogger:
and event_type == EventType.step_complete.value
):
details = event.payload.step_details
content = interleaved_text_media_as_str(details.inserted_context)
content = content[:200] + "..." if len(content) > 200 else content
inserted_context = interleaved_text_media_as_str(
details.inserted_context
)
content = f"fetched {len(inserted_context)} bytes from {details.memory_bank_ids}"
yield event, LogEvent(
role=step_type,
content=f"Retrieved context from banks: {details.memory_bank_ids}.\n====\n{content}\n>",
content=content,
color="cyan",
)

View file

@ -37,3 +37,8 @@ class DatasetIO(Protocol):
page_token: Optional[str] = None,
filter_condition: Optional[str] = None,
) -> PaginatedRowsResult: ...
@webmethod(route="/datasetio/append-rows", method="POST")
async def append_rows(
self, dataset_id: str, rows: List[Dict[str, Any]]
) -> None: ...

View file

@ -78,6 +78,21 @@ class DatasetsClient(Datasets):
return [DatasetDefWithProvider(**x) for x in response.json()]
async def unregister_dataset(
self,
dataset_id: str,
) -> None:
async with httpx.AsyncClient() as client:
response = await client.delete(
f"{self.base_url}/datasets/unregister",
params={
"dataset_id": dataset_id,
},
headers={"Content-Type": "application/json"},
timeout=60,
)
response.raise_for_status()
async def run_main(host: str, port: int):
client = DatasetsClient(f"http://{host}:{port}")

View file

@ -64,3 +64,9 @@ class Datasets(Protocol):
@webmethod(route="/datasets/list", method="GET")
async def list_datasets(self) -> List[Dataset]: ...
@webmethod(route="/datasets/unregister", method="POST")
async def unregister_dataset(
self,
dataset_id: str,
) -> None: ...

View file

@ -21,6 +21,8 @@ from llama_models.schema_utils import json_schema_type, webmethod
from pydantic import BaseModel, Field
from typing_extensions import Annotated
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
from llama_models.llama3.api.datatypes import * # noqa: F403
from llama_stack.apis.models import * # noqa: F403
@ -220,6 +222,7 @@ class ModelStore(Protocol):
@runtime_checkable
@trace_protocol
class Inference(Protocol):
model_store: ModelStore

View file

@ -16,6 +16,7 @@ from pydantic import BaseModel, Field
from llama_models.llama3.api.datatypes import * # noqa: F403
from llama_stack.apis.memory_banks import * # noqa: F403
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
@json_schema_type
@ -43,6 +44,7 @@ class MemoryBankStore(Protocol):
@runtime_checkable
@trace_protocol
class Memory(Protocol):
memory_bank_store: MemoryBankStore

View file

@ -20,6 +20,7 @@ from llama_models.schema_utils import json_schema_type, webmethod
from pydantic import BaseModel, Field
from llama_stack.apis.resource import Resource, ResourceType
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
@json_schema_type
@ -129,6 +130,7 @@ class MemoryBankInput(BaseModel):
@runtime_checkable
@trace_protocol
class MemoryBanks(Protocol):
@webmethod(route="/memory-banks/list", method="GET")
async def list_memory_banks(self) -> List[MemoryBank]: ...

View file

@ -10,6 +10,7 @@ from llama_models.schema_utils import json_schema_type, webmethod
from pydantic import BaseModel, ConfigDict, Field
from llama_stack.apis.resource import Resource, ResourceType
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
class CommonModelFields(BaseModel):
@ -43,6 +44,7 @@ class ModelInput(CommonModelFields):
@runtime_checkable
@trace_protocol
class Models(Protocol):
@webmethod(route="/models/list", method="GET")
async def list_models(self) -> List[Model]: ...

View file

@ -17,6 +17,8 @@ from llama_models.llama3.api.datatypes import * # noqa: F403
from pydantic import BaseModel
from termcolor import cprint
from llama_stack.apis.version import LLAMA_STACK_API_VERSION
from llama_stack.distribution.datatypes import RemoteProviderConfig
from llama_stack.apis.safety import * # noqa: F403
@ -45,7 +47,7 @@ class SafetyClient(Safety):
) -> RunShieldResponse:
async with httpx.AsyncClient() as client:
response = await client.post(
f"{self.base_url}/safety/run_shield",
f"{self.base_url}/{LLAMA_STACK_API_VERSION}/safety/run-shield",
json=dict(
shield_id=shield_id,
messages=[encodable_dict(m) for m in messages],
@ -91,7 +93,7 @@ async def run_main(host: str, port: int, image_path: str = None):
]:
cprint(f"User>{message.content}", "green")
response = await client.run_shield(
shield_id="llama_guard",
shield_id="meta-llama/Llama-Guard-3-1B",
messages=[message],
)
print(response)

View file

@ -10,6 +10,8 @@ from typing import Any, Dict, List, Protocol, runtime_checkable
from llama_models.schema_utils import json_schema_type, webmethod
from pydantic import BaseModel
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
from llama_models.llama3.api.datatypes import * # noqa: F403
from llama_stack.apis.shields import * # noqa: F403
@ -43,6 +45,7 @@ class ShieldStore(Protocol):
@runtime_checkable
@trace_protocol
class Safety(Protocol):
shield_store: ShieldStore

View file

@ -31,6 +31,15 @@ from llama_stack.apis.resource import Resource, ResourceType
class ScoringFnParamsType(Enum):
llm_as_judge = "llm_as_judge"
regex_parser = "regex_parser"
basic = "basic"
@json_schema_type
class AggregationFunctionType(Enum):
average = "average"
median = "median"
categorical_count = "categorical_count"
accuracy = "accuracy"
@json_schema_type
@ -44,6 +53,10 @@ class LLMAsJudgeScoringFnParams(BaseModel):
description="Regexes to extract the answer from generated response",
default_factory=list,
)
aggregation_functions: Optional[List[AggregationFunctionType]] = Field(
description="Aggregation functions to apply to the scores of each row",
default_factory=list,
)
@json_schema_type
@ -55,12 +68,26 @@ class RegexParserScoringFnParams(BaseModel):
description="Regex to extract the answer from generated response",
default_factory=list,
)
aggregation_functions: Optional[List[AggregationFunctionType]] = Field(
description="Aggregation functions to apply to the scores of each row",
default_factory=list,
)
@json_schema_type
class BasicScoringFnParams(BaseModel):
type: Literal[ScoringFnParamsType.basic.value] = ScoringFnParamsType.basic.value
aggregation_functions: Optional[List[AggregationFunctionType]] = Field(
description="Aggregation functions to apply to the scores of each row",
default_factory=list,
)
ScoringFnParams = Annotated[
Union[
LLMAsJudgeScoringFnParams,
RegexParserScoringFnParams,
BasicScoringFnParams,
],
Field(discriminator="type"),
]

View file

@ -10,6 +10,7 @@ from llama_models.schema_utils import json_schema_type, webmethod
from pydantic import BaseModel
from llama_stack.apis.resource import Resource, ResourceType
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
class CommonShieldFields(BaseModel):
@ -38,6 +39,7 @@ class ShieldInput(CommonShieldFields):
@runtime_checkable
@trace_protocol
class Shields(Protocol):
@webmethod(route="/shields/list", method="GET")
async def list_shields(self) -> List[Shield]: ...

View file

@ -6,12 +6,24 @@
from datetime import datetime
from enum import Enum
from typing import Any, Dict, Literal, Optional, Protocol, runtime_checkable, Union
from typing import (
Any,
Dict,
List,
Literal,
Optional,
Protocol,
runtime_checkable,
Union,
)
from llama_models.schema_utils import json_schema_type, webmethod
from pydantic import BaseModel, Field
from typing_extensions import Annotated
# Add this constant near the top of the file, after the imports
DEFAULT_TTL_DAYS = 7
@json_schema_type
class SpanStatus(Enum):
@ -29,6 +41,11 @@ class Span(BaseModel):
end_time: Optional[datetime] = None
attributes: Optional[Dict[str, Any]] = Field(default_factory=dict)
def set_attribute(self, key: str, value: Any):
if self.attributes is None:
self.attributes = {}
self.attributes[key] = value
@json_schema_type
class Trace(BaseModel):
@ -123,10 +140,73 @@ Event = Annotated[
]
@json_schema_type
class EvalTrace(BaseModel):
session_id: str
step: str
input: str
output: str
expected_output: str
@json_schema_type
class SpanWithChildren(Span):
children: List["SpanWithChildren"] = Field(default_factory=list)
status: Optional[SpanStatus] = None
@json_schema_type
class QueryConditionOp(Enum):
EQ = "eq"
NE = "ne"
GT = "gt"
LT = "lt"
@json_schema_type
class QueryCondition(BaseModel):
key: str
op: QueryConditionOp
value: Any
@runtime_checkable
class Telemetry(Protocol):
@webmethod(route="/telemetry/log-event")
async def log_event(self, event: Event) -> None: ...
async def log_event(
self, event: Event, ttl_seconds: int = DEFAULT_TTL_DAYS * 86400
) -> None: ...
@webmethod(route="/telemetry/get-trace", method="GET")
async def get_trace(self, trace_id: str) -> Trace: ...
@webmethod(route="/telemetry/query-traces", method="POST")
async def query_traces(
self,
attribute_filters: Optional[List[QueryCondition]] = None,
limit: Optional[int] = 100,
offset: Optional[int] = 0,
order_by: Optional[List[str]] = None,
) -> List[Trace]: ...
@webmethod(route="/telemetry/get-span-tree", method="POST")
async def get_span_tree(
self,
span_id: str,
attributes_to_return: Optional[List[str]] = None,
max_depth: Optional[int] = None,
) -> SpanWithChildren: ...
@webmethod(route="/telemetry/query-spans", method="POST")
async def query_spans(
self,
attribute_filters: List[QueryCondition],
attributes_to_return: List[str],
max_depth: Optional[int] = None,
) -> List[Span]: ...
@webmethod(route="/telemetry/save-spans-to-dataset", method="POST")
async def save_spans_to_dataset(
self,
attribute_filters: List[QueryCondition],
attributes_to_save: List[str],
dataset_id: str,
max_depth: Optional[int] = None,
) -> None: ...

View file

@ -51,7 +51,7 @@ class StackBuild(Subcommand):
"--config",
type=str,
default=None,
help="Path to a config file to use for the build. You can find example configs in llama_stack/distribution/example_configs. If this argument is not provided, you will be prompted to enter information interactively",
help="Path to a config file to use for the build. You can find example configs in llama_stack/distribution/**/build.yaml. If this argument is not provided, you will be prompted to enter information interactively",
)
self.parser.add_argument(
@ -73,7 +73,7 @@ class StackBuild(Subcommand):
"--image-type",
type=str,
help="Image Type to use for the build. This can be either conda or docker. If not specified, will use the image type from the template config.",
choices=["conda", "docker"],
choices=["conda", "docker", "venv"],
default="conda",
)
@ -124,8 +124,8 @@ class StackBuild(Subcommand):
image_type = prompt(
"> Enter the image type you want your Llama Stack to be built as (docker or conda): ",
validator=Validator.from_callable(
lambda x: x in ["docker", "conda"],
error_message="Invalid image type, please enter conda or docker",
lambda x: x in ["docker", "conda", "venv"],
error_message="Invalid image type, please enter conda or docker or venv",
),
default="conda",
)
@ -261,7 +261,6 @@ class StackBuild(Subcommand):
) -> None:
import json
import os
import re
import yaml
from termcolor import cprint
@ -291,20 +290,8 @@ class StackBuild(Subcommand):
run_config_file = build_dir / f"{build_config.name}-run.yaml"
shutil.copy(template_path, run_config_file)
with open(template_path, "r") as f:
yaml_content = f.read()
# Find all ${env.VARIABLE} patterns
env_vars = set(re.findall(r"\${env\.([A-Za-z0-9_]+)}", yaml_content))
cprint("Build Successful! Next steps: ", color="green")
cprint(
f" 1. Set the environment variables: {list(env_vars)}",
color="green",
)
cprint(
f" 2. Run: `llama stack run {template_name}`",
color="green",
)
cprint("Build Successful!", color="green")
else:
self._generate_run_config(build_config, build_dir)

View file

@ -10,6 +10,7 @@ from typing import List
import pkg_resources
from pydantic import BaseModel
from termcolor import cprint
from llama_stack.distribution.utils.exec import run_with_pty
@ -37,6 +38,7 @@ SERVER_DEPENDENCIES = [
class ImageType(Enum):
docker = "docker"
conda = "conda"
venv = "venv"
class ApiInput(BaseModel):
@ -45,7 +47,7 @@ class ApiInput(BaseModel):
def get_provider_dependencies(
config_providers: Dict[str, List[Provider]]
config_providers: Dict[str, List[Provider]],
) -> tuple[list[str], list[str]]:
"""Get normal and special dependencies from provider configuration."""
all_providers = get_provider_registry()
@ -90,11 +92,12 @@ def get_provider_dependencies(
def print_pip_install_help(providers: Dict[str, List[Provider]]):
normal_deps, special_deps = get_provider_dependencies(providers)
print(
f"Please install needed dependencies using the following commands:\n\n\tpip install {' '.join(normal_deps)}"
cprint(
f"Please install needed dependencies using the following commands:\n\npip install {' '.join(normal_deps)}",
"yellow",
)
for special_dep in special_deps:
log.info(f"\tpip install {special_dep}")
cprint(f"pip install {special_dep}", "yellow")
print()
@ -118,7 +121,7 @@ def build_image(build_config: BuildConfig, build_file_path: Path):
str(BUILDS_BASE_DIR / ImageType.docker.value),
" ".join(normal_deps),
]
else:
elif build_config.image_type == ImageType.conda.value:
script = pkg_resources.resource_filename(
"llama_stack", "distribution/build_conda_env.sh"
)
@ -128,6 +131,16 @@ def build_image(build_config: BuildConfig, build_file_path: Path):
str(build_file_path),
" ".join(normal_deps),
]
elif build_config.image_type == ImageType.venv.value:
script = pkg_resources.resource_filename(
"llama_stack", "distribution/build_venv.sh"
)
args = [
script,
build_config.name,
str(build_file_path),
" ".join(normal_deps),
]
if special_deps:
args.append("#".join(special_deps))

View file

@ -0,0 +1,105 @@
#!/bin/bash
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
# TODO: combine this with build_conda_env.sh since it is almost identical
# the only difference is that we don't do any conda-specific setup
LLAMA_MODELS_DIR=${LLAMA_MODELS_DIR:-}
LLAMA_STACK_DIR=${LLAMA_STACK_DIR:-}
TEST_PYPI_VERSION=${TEST_PYPI_VERSION:-}
if [ -n "$LLAMA_STACK_DIR" ]; then
echo "Using llama-stack-dir=$LLAMA_STACK_DIR"
fi
if [ -n "$LLAMA_MODELS_DIR" ]; then
echo "Using llama-models-dir=$LLAMA_MODELS_DIR"
fi
if [ "$#" -lt 3 ]; then
echo "Usage: $0 <distribution_type> <build_name> <build_file_path> <pip_dependencies> [<special_pip_deps>]" >&2
echo "Example: $0 <distribution_type> mybuild ./my-stack-build.yaml 'numpy pandas scipy'" >&2
exit 1
fi
special_pip_deps="$4"
set -euo pipefail
build_name="$1"
env_name="llamastack-$build_name"
build_file_path="$2"
pip_dependencies="$3"
# Define color codes
RED='\033[0;31m'
GREEN='\033[0;32m'
NC='\033[0m' # No Color
# this is set if we actually create a new conda in which case we need to clean up
ENVNAME=""
SCRIPT_DIR=$(dirname "$(readlink -f "$0")")
source "$SCRIPT_DIR/common.sh"
run() {
local env_name="$1"
local pip_dependencies="$2"
local special_pip_deps="$3"
if [ -n "$TEST_PYPI_VERSION" ]; then
# these packages are damaged in test-pypi, so install them first
pip install fastapi libcst
pip install --extra-index-url https://test.pypi.org/simple/ \
llama-models==$TEST_PYPI_VERSION llama-stack==$TEST_PYPI_VERSION \
$pip_dependencies
if [ -n "$special_pip_deps" ]; then
IFS='#' read -ra parts <<<"$special_pip_deps"
for part in "${parts[@]}"; do
echo "$part"
pip install $part
done
fi
else
# Re-installing llama-stack in the new conda environment
if [ -n "$LLAMA_STACK_DIR" ]; then
if [ ! -d "$LLAMA_STACK_DIR" ]; then
printf "${RED}Warning: LLAMA_STACK_DIR is set but directory does not exist: $LLAMA_STACK_DIR${NC}\n" >&2
exit 1
fi
printf "Installing from LLAMA_STACK_DIR: $LLAMA_STACK_DIR\n"
pip install --no-cache-dir -e "$LLAMA_STACK_DIR"
else
pip install --no-cache-dir llama-stack
fi
if [ -n "$LLAMA_MODELS_DIR" ]; then
if [ ! -d "$LLAMA_MODELS_DIR" ]; then
printf "${RED}Warning: LLAMA_MODELS_DIR is set but directory does not exist: $LLAMA_MODELS_DIR${NC}\n" >&2
exit 1
fi
printf "Installing from LLAMA_MODELS_DIR: $LLAMA_MODELS_DIR\n"
pip uninstall -y llama-models
pip install --no-cache-dir -e "$LLAMA_MODELS_DIR"
fi
# Install pip dependencies
printf "Installing pip dependencies\n"
pip install $pip_dependencies
if [ -n "$special_pip_deps" ]; then
IFS='#' read -ra parts <<<"$special_pip_deps"
for part in "${parts[@]}"; do
echo "$part"
pip install $part
done
fi
fi
}
run "$env_name" "$pip_dependencies" "$special_pip_deps"

View file

@ -165,5 +165,5 @@ class BuildConfig(BaseModel):
)
image_type: str = Field(
default="conda",
description="Type of package to build (conda | container)",
description="Type of package to build (conda | docker | venv)",
)

View file

@ -0,0 +1,331 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import asyncio
import inspect
import json
import os
import queue
import threading
from concurrent.futures import ThreadPoolExecutor
from enum import Enum
from pathlib import Path
from typing import Any, Generator, get_args, get_origin, Optional, Type, TypeVar, Union
import yaml
from llama_stack_client import AsyncLlamaStackClient, LlamaStackClient, NOT_GIVEN
from pydantic import BaseModel, TypeAdapter
from rich.console import Console
from termcolor import cprint
from llama_stack.distribution.build import print_pip_install_help
from llama_stack.distribution.configure import parse_and_maybe_upgrade_config
from llama_stack.distribution.datatypes import Api
from llama_stack.distribution.resolver import ProviderRegistry
from llama_stack.distribution.server.endpoints import get_all_api_endpoints
from llama_stack.distribution.stack import (
construct_stack,
get_stack_run_config_from_template,
replace_env_vars,
)
from llama_stack.providers.utils.telemetry.tracing import (
end_trace,
setup_logger,
start_trace,
)
T = TypeVar("T")
def in_notebook():
try:
from IPython import get_ipython
if "IPKernelApp" not in get_ipython().config: # pragma: no cover
return False
except ImportError:
return False
except AttributeError:
return False
return True
def stream_across_asyncio_run_boundary(
async_gen_maker,
pool_executor: ThreadPoolExecutor,
) -> Generator[T, None, None]:
result_queue = queue.Queue()
stop_event = threading.Event()
async def consumer():
# make sure we make the generator in the event loop context
gen = await async_gen_maker()
try:
async for item in gen:
result_queue.put(item)
except Exception as e:
print(f"Error in generator {e}")
result_queue.put(e)
except asyncio.CancelledError:
return
finally:
result_queue.put(StopIteration)
stop_event.set()
def run_async():
# Run our own loop to avoid double async generator cleanup which is done
# by asyncio.run()
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
task = loop.create_task(consumer())
loop.run_until_complete(task)
finally:
# Handle pending tasks like a generator's athrow()
pending = asyncio.all_tasks(loop)
if pending:
loop.run_until_complete(
asyncio.gather(*pending, return_exceptions=True)
)
loop.close()
future = pool_executor.submit(run_async)
try:
# yield results as they come in
while not stop_event.is_set() or not result_queue.empty():
try:
item = result_queue.get(timeout=0.1)
if item is StopIteration:
break
if isinstance(item, Exception):
raise item
yield item
except queue.Empty:
continue
finally:
future.result()
def convert_pydantic_to_json_value(value: Any, cast_to: Type) -> dict:
if isinstance(value, Enum):
return value.value
elif isinstance(value, list):
return [convert_pydantic_to_json_value(item, cast_to) for item in value]
elif isinstance(value, dict):
return {k: convert_pydantic_to_json_value(v, cast_to) for k, v in value.items()}
elif isinstance(value, BaseModel):
# This is quite hacky and we should figure out how to use stuff from
# generated client-sdk code (using ApiResponse.parse() essentially)
value_dict = json.loads(value.model_dump_json())
origin = get_origin(cast_to)
if origin is Union:
args = get_args(cast_to)
for arg in args:
arg_name = arg.__name__.split(".")[-1]
value_name = value.__class__.__name__.split(".")[-1]
if arg_name == value_name:
return arg(**value_dict)
# assume we have the correct association between the server-side type and the client-side type
return cast_to(**value_dict)
return value
def convert_to_pydantic(annotation: Any, value: Any) -> Any:
if isinstance(annotation, type) and annotation in {str, int, float, bool}:
return value
origin = get_origin(annotation)
if origin is list:
item_type = get_args(annotation)[0]
try:
return [convert_to_pydantic(item_type, item) for item in value]
except Exception:
print(f"Error converting list {value}")
return value
elif origin is dict:
key_type, val_type = get_args(annotation)
try:
return {k: convert_to_pydantic(val_type, v) for k, v in value.items()}
except Exception:
print(f"Error converting dict {value}")
return value
try:
# Handle Pydantic models and discriminated unions
return TypeAdapter(annotation).validate_python(value)
except Exception as e:
cprint(
f"Warning: direct client failed to convert parameter {value} into {annotation}: {e}",
"yellow",
)
return value
class LlamaStackAsLibraryClient(LlamaStackClient):
def __init__(
self,
config_path_or_template_name: str,
custom_provider_registry: Optional[ProviderRegistry] = None,
):
super().__init__()
self.async_client = AsyncLlamaStackAsLibraryClient(
config_path_or_template_name, custom_provider_registry
)
self.pool_executor = ThreadPoolExecutor(max_workers=4)
def initialize(self):
if in_notebook():
import nest_asyncio
nest_asyncio.apply()
return asyncio.run(self.async_client.initialize())
def request(self, *args, **kwargs):
if kwargs.get("stream"):
return stream_across_asyncio_run_boundary(
lambda: self.async_client.request(*args, **kwargs),
self.pool_executor,
)
else:
return asyncio.run(self.async_client.request(*args, **kwargs))
class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
def __init__(
self,
config_path_or_template_name: str,
custom_provider_registry: Optional[ProviderRegistry] = None,
):
super().__init__()
# when using the library client, we should not log to console since many
# of our logs are intended for server-side usage
os.environ["TELEMETRY_SINKS"] = "sqlite"
if config_path_or_template_name.endswith(".yaml"):
config_path = Path(config_path_or_template_name)
if not config_path.exists():
raise ValueError(f"Config file {config_path} does not exist")
config_dict = replace_env_vars(yaml.safe_load(config_path.read_text()))
config = parse_and_maybe_upgrade_config(config_dict)
else:
# template
config = get_stack_run_config_from_template(config_path_or_template_name)
self.config_path_or_template_name = config_path_or_template_name
self.config = config
self.custom_provider_registry = custom_provider_registry
async def initialize(self):
try:
self.impls = await construct_stack(
self.config, self.custom_provider_registry
)
except ModuleNotFoundError as _e:
cprint(
"Using llama-stack as a library requires installing dependencies depending on the template (providers) you choose.\n",
"yellow",
)
if self.config_path_or_template_name.endswith(".yaml"):
print_pip_install_help(self.config.providers)
else:
prefix = "!" if in_notebook() else ""
cprint(
f"Please run:\n\n{prefix}llama stack build --template {self.config_path_or_template_name} --image-type venv\n\n",
"yellow",
)
return False
if Api.telemetry in self.impls:
setup_logger(self.impls[Api.telemetry])
console = Console()
console.print(f"Using config [blue]{self.config_path_or_template_name}[/blue]:")
console.print(yaml.dump(self.config.model_dump(), indent=2))
endpoints = get_all_api_endpoints()
endpoint_impls = {}
for api, api_endpoints in endpoints.items():
for endpoint in api_endpoints:
impl = self.impls[api]
func = getattr(impl, endpoint.name)
endpoint_impls[endpoint.route] = func
self.endpoint_impls = endpoint_impls
return True
async def request(
self,
cast_to: Any,
options: Any,
*,
stream=False,
stream_cls=None,
):
if not self.endpoint_impls:
raise ValueError("Client not initialized")
params = options.params or {}
params |= options.json_data or {}
if stream:
return self._call_streaming(options.url, params, cast_to)
else:
return await self._call_non_streaming(options.url, params, cast_to)
async def _call_non_streaming(
self, path: str, body: dict = None, cast_to: Any = None
):
await start_trace(path, {"__location__": "library_client"})
try:
func = self.endpoint_impls.get(path)
if not func:
raise ValueError(f"No endpoint found for {path}")
body = self._convert_body(path, body)
return convert_pydantic_to_json_value(await func(**body), cast_to)
finally:
await end_trace()
async def _call_streaming(self, path: str, body: dict = None, cast_to: Any = None):
await start_trace(path, {"__location__": "library_client"})
try:
func = self.endpoint_impls.get(path)
if not func:
raise ValueError(f"No endpoint found for {path}")
body = self._convert_body(path, body)
async for chunk in await func(**body):
yield convert_pydantic_to_json_value(chunk, cast_to)
finally:
await end_trace()
def _convert_body(self, path: str, body: Optional[dict] = None) -> dict:
if not body:
return {}
func = self.endpoint_impls[path]
sig = inspect.signature(func)
# Strip NOT_GIVENs to use the defaults in signature
body = {k: v for k, v in body.items() if v is not NOT_GIVEN}
# Convert parameters to Pydantic models where needed
converted_body = {}
for param_name, param in sig.parameters.items():
if param_name in body:
value = body.get(param_name)
converted_body[param_name] = convert_to_pydantic(
param.annotation, value
)
return converted_body

View file

@ -222,6 +222,12 @@ class DatasetIORouter(DatasetIO):
filter_condition=filter_condition,
)
async def append_rows(self, dataset_id: str, rows: List[Dict[str, Any]]) -> None:
return await self.routing_table.get_provider_impl(dataset_id).append_rows(
dataset_id=dataset_id,
rows=rows,
)
class ScoringRouter(Scoring):
def __init__(

View file

@ -57,6 +57,8 @@ async def unregister_object_from_provider(obj: RoutableObject, p: Any) -> None:
return await p.unregister_memory_bank(obj.identifier)
elif api == Api.inference:
return await p.unregister_model(obj.identifier)
elif api == Api.datasetio:
return await p.unregister_dataset(obj.identifier)
else:
raise ValueError(f"Unregister not supported for {api}")
@ -354,6 +356,12 @@ class DatasetsRoutingTable(CommonRoutingTableImpl, Datasets):
)
await self.register_object(dataset)
async def unregister_dataset(self, dataset_id: str) -> None:
dataset = await self.get_dataset(dataset_id)
if dataset is None:
raise ValueError(f"Dataset {dataset_id} not found")
await self.unregister_object(dataset)
class ScoringFunctionsRoutingTable(CommonRoutingTableImpl, ScoringFunctions):
async def list_scoring_functions(self) -> List[ScoringFn]:

View file

@ -43,9 +43,9 @@ from llama_stack.distribution.stack import (
replace_env_vars,
validate_env_pair,
)
from llama_stack.providers.inline.meta_reference.telemetry.console import (
ConsoleConfig,
ConsoleTelemetryImpl,
from llama_stack.providers.inline.telemetry.meta_reference.config import TelemetryConfig
from llama_stack.providers.inline.telemetry.meta_reference.telemetry import (
TelemetryAdapter,
)
from .endpoints import get_all_api_endpoints
@ -217,7 +217,7 @@ class TracingMiddleware:
async def __call__(self, scope, receive, send):
path = scope["path"]
await start_trace(path, {"location": "server"})
await start_trace(path, {"__location__": "server"})
try:
return await self.app(scope, receive, send)
finally:
@ -290,7 +290,7 @@ def main():
if Api.telemetry in impls:
setup_logger(impls[Api.telemetry])
else:
setup_logger(ConsoleTelemetryImpl(ConsoleConfig()))
setup_logger(TelemetryAdapter(TelemetryConfig()))
all_endpoints = get_all_api_endpoints()

View file

@ -0,0 +1,128 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import argparse
import os
from llama_stack.distribution.library_client import LlamaStackAsLibraryClient
from llama_stack_client.lib.agents.agent import Agent
from llama_stack_client.lib.agents.event_logger import EventLogger as AgentEventLogger
from llama_stack_client.lib.inference.event_logger import EventLogger
from llama_stack_client.types import Attachment, UserMessage
from llama_stack_client.types.agent_create_params import AgentConfig
def main(config_path: str):
client = LlamaStackAsLibraryClient(config_path)
if not client.initialize():
return
models = client.models.list()
print("\nModels:")
for model in models:
print(model)
if not models:
print("No models found, skipping chat completion test")
return
model_id = models[0].identifier
response = client.inference.chat_completion(
messages=[UserMessage(content="What is the capital of France?", role="user")],
model_id=model_id,
stream=False,
)
print("\nChat completion response (non-stream):")
print(response)
response = client.inference.chat_completion(
messages=[UserMessage(content="What is the capital of France?", role="user")],
model_id=model_id,
stream=True,
)
print("\nChat completion response (stream):")
for log in EventLogger().log(response):
log.print()
print("\nAgent test:")
agent_config = AgentConfig(
model=model_id,
instructions="You are a helpful assistant",
sampling_params={
"strategy": "greedy",
"temperature": 1.0,
"top_p": 0.9,
},
tools=(
[
{
"type": "brave_search",
"engine": "brave",
"api_key": os.getenv("BRAVE_SEARCH_API_KEY"),
}
]
if os.getenv("BRAVE_SEARCH_API_KEY")
else []
)
+ (
[
{
"type": "code_interpreter",
}
]
),
tool_choice="required",
input_shields=[],
output_shields=[],
enable_session_persistence=False,
)
agent = Agent(client, agent_config)
user_prompts = [
"Hello",
"Which players played in the winning team of the NBA western conference semifinals of 2024, please use tools",
]
user_prompts = [
(
"Here is a csv, can you describe it ?",
[
Attachment(
content="https://raw.githubusercontent.com/meta-llama/llama-stack-apps/main/examples/resources/inflation.csv",
mime_type="test/csv",
)
],
),
("Which year ended with the highest inflation ?", None),
(
"What macro economic situations that led to such high inflation in that period?",
None,
),
("Plot average yearly inflation as a time series", None),
]
session_id = agent.create_session("test-session")
for prompt, attachments in user_prompts:
response = agent.create_turn(
messages=[
{
"role": "user",
"content": prompt,
}
],
attachments=attachments,
session_id=session_id,
)
for log in AgentEventLogger().log(response):
log.print()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("config_path", help="Path to the config YAML file")
args = parser.parse_args()
main(args.config_path)

View file

@ -1,10 +1,41 @@
# LLama Stack UI
# (Experimental) LLama Stack UI
[!NOTE] This is a work in progress.
## Docker Setup
## Running Streamlit App
:warning: This is a work in progress.
## Developer Setup
1. Start up Llama Stack API server. More details [here](https://llama-stack.readthedocs.io/en/latest/getting_started/index.html).
```
llama stack build --template together --image-type conda
llama stack run together
```
2. (Optional) Register datasets and eval tasks as resources. If you want to run pre-configured evaluation flows (e.g. Evaluations (Generation + Scoring) Page).
```bash
$ llama-stack-client datasets register \
--dataset-id "mmlu" \
--provider-id "huggingface" \
--url "https://huggingface.co/datasets/llamastack/evals" \
--metadata '{"path": "llamastack/evals", "name": "evals__mmlu__details", "split": "train"}' \
--schema '{"input_query": {"type": "string"}, "expected_answer": {"type": "string", "chat_completion_input": {"type": "string"}}}'
```
```bash
$ llama-stack-client eval_tasks register \
--eval-task-id meta-reference-mmlu \
--provider-id meta-reference \
--dataset-id mmlu \
--scoring-functions basic::regex_parser_multiple_choice_answer
```
3. Start Streamlit UI
```bash
cd llama_stack/distribution/ui
pip install -r requirements.txt
streamlit run app.py

View file

@ -3,170 +3,54 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import json
import pandas as pd
import streamlit as st
from modules.api import LlamaStackEvaluation
from modules.utils import process_dataset
EVALUATION_API = LlamaStackEvaluation()
def main():
# Add collapsible sidebar
with st.sidebar:
# Add collapse button
if "sidebar_state" not in st.session_state:
st.session_state.sidebar_state = True
if st.session_state.sidebar_state:
st.title("Navigation")
page = st.radio(
"Select a Page",
["Application Evaluation"],
index=0,
)
else:
page = "Application Evaluation" # Default page when sidebar is collapsed
# Main content area
st.title("🦙 Llama Stack Evaluations")
if page == "Application Evaluation":
application_evaluation_page()
def application_evaluation_page():
# File uploader
uploaded_file = st.file_uploader("Upload Dataset", type=["csv", "xlsx", "xls"])
if uploaded_file is None:
st.error("No file uploaded")
return
# Process uploaded file
df = process_dataset(uploaded_file)
if df is None:
st.error("Error processing file")
return
# Display dataset information
st.success("Dataset loaded successfully!")
# Display dataframe preview
st.subheader("Dataset Preview")
st.dataframe(df)
# Select Scoring Functions to Run Evaluation On
st.subheader("Select Scoring Functions")
scoring_functions = EVALUATION_API.list_scoring_functions()
scoring_functions = {sf.identifier: sf for sf in scoring_functions}
scoring_functions_names = list(scoring_functions.keys())
selected_scoring_functions = st.multiselect(
"Choose one or more scoring functions",
options=scoring_functions_names,
help="Choose one or more scoring functions.",
# Evaluation pages
application_evaluation_page = st.Page(
"page/evaluations/app_eval.py",
title="Evaluations (Scoring)",
icon="📊",
default=False,
)
native_evaluation_page = st.Page(
"page/evaluations/native_eval.py",
title="Evaluations (Generation + Scoring)",
icon="📊",
default=False,
)
available_models = EVALUATION_API.list_models()
available_models = [m.identifier for m in available_models]
# Playground pages
chat_page = st.Page(
"page/playground/chat.py", title="Chat", icon="💬", default=True
)
rag_page = st.Page("page/playground/rag.py", title="RAG", icon="💬", default=False)
scoring_params = {}
if selected_scoring_functions:
st.write("Selected:")
for scoring_fn_id in selected_scoring_functions:
scoring_fn = scoring_functions[scoring_fn_id]
st.write(f"- **{scoring_fn_id}**: {scoring_fn.description}")
new_params = None
if scoring_fn.params:
new_params = {}
for param_name, param_value in scoring_fn.params.to_dict().items():
if param_name == "type":
new_params[param_name] = param_value
continue
# Distribution pages
resources_page = st.Page(
"page/distribution/resources.py", title="Resources", icon="🔍", default=False
)
provider_page = st.Page(
"page/distribution/providers.py",
title="API Providers",
icon="🔍",
default=False,
)
if param_name == "judge_model":
value = st.selectbox(
f"Select **{param_name}** for {scoring_fn_id}",
options=available_models,
index=0,
key=f"{scoring_fn_id}_{param_name}",
)
new_params[param_name] = value
else:
value = st.text_area(
f"Enter value for **{param_name}** in {scoring_fn_id} in valid JSON format",
value=json.dumps(param_value, indent=2),
height=80,
)
try:
new_params[param_name] = json.loads(value)
except json.JSONDecodeError:
st.error(
f"Invalid JSON for **{param_name}** in {scoring_fn_id}"
)
st.json(new_params)
scoring_params[scoring_fn_id] = new_params
# Add run evaluation button & slider
total_rows = len(df)
num_rows = st.slider("Number of rows to evaluate", 1, total_rows, total_rows)
if st.button("Run Evaluation"):
progress_text = "Running evaluation..."
progress_bar = st.progress(0, text=progress_text)
rows = df.to_dict(orient="records")
if num_rows < total_rows:
rows = rows[:num_rows]
# Create separate containers for progress text and results
progress_text_container = st.empty()
results_container = st.empty()
output_res = {}
for i, r in enumerate(rows):
# Update progress
progress = i / len(rows)
progress_bar.progress(progress, text=progress_text)
# Run evaluation for current row
score_res = EVALUATION_API.run_scoring(
r,
scoring_function_ids=selected_scoring_functions,
scoring_params=scoring_params,
)
for k in r.keys():
if k not in output_res:
output_res[k] = []
output_res[k].append(r[k])
for fn_id in selected_scoring_functions:
if fn_id not in output_res:
output_res[fn_id] = []
output_res[fn_id].append(score_res.results[fn_id].score_rows[0])
# Display current row results using separate containers
progress_text_container.write(
f"Expand to see current processed result ({i+1}/{len(rows)})"
)
results_container.json(
score_res.to_json(),
expanded=2,
)
progress_bar.progress(1.0, text="Evaluation complete!")
# Display results in dataframe
if output_res:
output_df = pd.DataFrame(output_res)
st.subheader("Evaluation Results")
st.dataframe(output_df)
pg = st.navigation(
{
"Playground": [
chat_page,
rag_page,
application_evaluation_page,
native_evaluation_page,
],
"Inspect": [provider_page, resources_page],
},
expanded=False,
)
pg.run()
if __name__ == "__main__":

View file

@ -11,7 +11,7 @@ from typing import Optional
from llama_stack_client import LlamaStackClient
class LlamaStackEvaluation:
class LlamaStackApi:
def __init__(self):
self.client = LlamaStackClient(
base_url=os.environ.get("LLAMA_STACK_ENDPOINT", "http://localhost:5000"),
@ -22,14 +22,6 @@ class LlamaStackEvaluation:
},
)
def list_scoring_functions(self):
"""List all available scoring functions"""
return self.client.scoring_functions.list()
def list_models(self):
"""List all available judge models"""
return self.client.models.list()
def run_scoring(
self, row, scoring_function_ids: list[str], scoring_params: Optional[dict]
):
@ -39,3 +31,6 @@ class LlamaStackEvaluation:
return self.client.scoring.score(
input_rows=[row], scoring_functions=scoring_params
)
llama_stack_api = LlamaStackApi()

View file

@ -4,6 +4,7 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import base64
import os
import pandas as pd
@ -29,3 +30,13 @@ def process_dataset(file):
except Exception as e:
st.error(f"Error processing file: {str(e)}")
return None
def data_url_from_file(file) -> str:
file_content = file.getvalue()
base64_content = base64.b64encode(file_content).decode("utf-8")
mime_type = file.type
data_url = f"data:{mime_type};base64,{base64_content}"
return data_url

View file

@ -0,0 +1,5 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

View file

@ -0,0 +1,19 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import streamlit as st
from modules.api import llama_stack_api
def datasets():
st.header("Datasets")
datasets_info = {
d.identifier: d.to_dict() for d in llama_stack_api.client.datasets.list()
}
selected_dataset = st.selectbox("Select a dataset", list(datasets_info.keys()))
st.json(datasets_info[selected_dataset], expanded=True)

View file

@ -0,0 +1,22 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import streamlit as st
from modules.api import llama_stack_api
def eval_tasks():
# Eval Tasks Section
st.header("Eval Tasks")
eval_tasks_info = {
d.identifier: d.to_dict() for d in llama_stack_api.client.eval_tasks.list()
}
selected_eval_task = st.selectbox(
"Select an eval task", list(eval_tasks_info.keys()), key="eval_task_inspect"
)
st.json(eval_tasks_info[selected_eval_task], expanded=True)

View file

@ -0,0 +1,23 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import streamlit as st
from modules.api import llama_stack_api
def memory_banks():
st.header("Memory Banks")
memory_banks_info = {
m.identifier: m.to_dict() for m in llama_stack_api.client.memory_banks.list()
}
if len(memory_banks_info) > 0:
selected_memory_bank = st.selectbox(
"Select a memory bank", list(memory_banks_info.keys())
)
st.json(memory_banks_info[selected_memory_bank])
else:
st.info("No memory banks found")

View file

@ -0,0 +1,19 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import streamlit as st
from modules.api import llama_stack_api
def models():
# Models Section
st.header("Models")
models_info = {
m.identifier: m.to_dict() for m in llama_stack_api.client.models.list()
}
selected_model = st.selectbox("Select a model", list(models_info.keys()))
st.json(models_info[selected_model])

View file

@ -0,0 +1,20 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import streamlit as st
from modules.api import llama_stack_api
def providers():
st.header("🔍 API Providers")
apis_providers_info = llama_stack_api.client.providers.list()
# selected_api = st.selectbox("Select an API", list(apis_providers_info.keys()))
for api in apis_providers_info.keys():
st.markdown(f"###### {api}")
st.dataframe([p.to_dict() for p in apis_providers_info[api]], width=500)
providers()

View file

@ -0,0 +1,52 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from page.distribution.datasets import datasets
from page.distribution.eval_tasks import eval_tasks
from page.distribution.memory_banks import memory_banks
from page.distribution.models import models
from page.distribution.scoring_functions import scoring_functions
from page.distribution.shields import shields
from streamlit_option_menu import option_menu
def resources_page():
options = [
"Models",
"Memory Banks",
"Shields",
"Scoring Functions",
"Datasets",
"Eval Tasks",
]
icons = ["magic", "memory", "shield", "file-bar-graph", "database", "list-task"]
selected_resource = option_menu(
None,
options,
icons=icons,
orientation="horizontal",
styles={
"nav-link": {
"font-size": "12px",
},
},
)
if selected_resource == "Eval Tasks":
eval_tasks()
elif selected_resource == "Memory Banks":
memory_banks()
elif selected_resource == "Datasets":
datasets()
elif selected_resource == "Models":
models()
elif selected_resource == "Scoring Functions":
scoring_functions()
elif selected_resource == "Shields":
shields()
resources_page()

View file

@ -0,0 +1,22 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import streamlit as st
from modules.api import llama_stack_api
def scoring_functions():
st.header("Scoring Functions")
scoring_functions_info = {
s.identifier: s.to_dict()
for s in llama_stack_api.client.scoring_functions.list()
}
selected_scoring_function = st.selectbox(
"Select a scoring function", list(scoring_functions_info.keys())
)
st.json(scoring_functions_info[selected_scoring_function], expanded=True)

View file

@ -0,0 +1,20 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import streamlit as st
from modules.api import llama_stack_api
def shields():
# Shields Section
st.header("Shields")
shields_info = {
s.identifier: s.to_dict() for s in llama_stack_api.client.shields.list()
}
selected_shield = st.selectbox("Select a shield", list(shields_info.keys()))
st.json(shields_info[selected_shield])

View file

@ -0,0 +1,5 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

View file

@ -0,0 +1,148 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import json
import pandas as pd
import streamlit as st
from modules.api import llama_stack_api
from modules.utils import process_dataset
def application_evaluation_page():
st.set_page_config(page_title="Evaluations (Scoring)", page_icon="🦙")
st.title("📊 Evaluations (Scoring)")
# File uploader
uploaded_file = st.file_uploader("Upload Dataset", type=["csv", "xlsx", "xls"])
if uploaded_file is None:
st.error("No file uploaded")
return
# Process uploaded file
df = process_dataset(uploaded_file)
if df is None:
st.error("Error processing file")
return
# Display dataset information
st.success("Dataset loaded successfully!")
# Display dataframe preview
st.subheader("Dataset Preview")
st.dataframe(df)
# Select Scoring Functions to Run Evaluation On
st.subheader("Select Scoring Functions")
scoring_functions = llama_stack_api.client.scoring_functions.list()
scoring_functions = {sf.identifier: sf for sf in scoring_functions}
scoring_functions_names = list(scoring_functions.keys())
selected_scoring_functions = st.multiselect(
"Choose one or more scoring functions",
options=scoring_functions_names,
help="Choose one or more scoring functions.",
)
available_models = llama_stack_api.client.models.list()
available_models = [m.identifier for m in available_models]
scoring_params = {}
if selected_scoring_functions:
st.write("Selected:")
for scoring_fn_id in selected_scoring_functions:
scoring_fn = scoring_functions[scoring_fn_id]
st.write(f"- **{scoring_fn_id}**: {scoring_fn.description}")
new_params = None
if scoring_fn.params:
new_params = {}
for param_name, param_value in scoring_fn.params.to_dict().items():
if param_name == "type":
new_params[param_name] = param_value
continue
if param_name == "judge_model":
value = st.selectbox(
f"Select **{param_name}** for {scoring_fn_id}",
options=available_models,
index=0,
key=f"{scoring_fn_id}_{param_name}",
)
new_params[param_name] = value
else:
value = st.text_area(
f"Enter value for **{param_name}** in {scoring_fn_id} in valid JSON format",
value=json.dumps(param_value, indent=2),
height=80,
)
try:
new_params[param_name] = json.loads(value)
except json.JSONDecodeError:
st.error(
f"Invalid JSON for **{param_name}** in {scoring_fn_id}"
)
st.json(new_params)
scoring_params[scoring_fn_id] = new_params
# Add run evaluation button & slider
total_rows = len(df)
num_rows = st.slider("Number of rows to evaluate", 1, total_rows, total_rows)
if st.button("Run Evaluation"):
progress_text = "Running evaluation..."
progress_bar = st.progress(0, text=progress_text)
rows = df.to_dict(orient="records")
if num_rows < total_rows:
rows = rows[:num_rows]
# Create separate containers for progress text and results
progress_text_container = st.empty()
results_container = st.empty()
output_res = {}
for i, r in enumerate(rows):
# Update progress
progress = i / len(rows)
progress_bar.progress(progress, text=progress_text)
# Run evaluation for current row
score_res = llama_stack_api.run_scoring(
r,
scoring_function_ids=selected_scoring_functions,
scoring_params=scoring_params,
)
for k in r.keys():
if k not in output_res:
output_res[k] = []
output_res[k].append(r[k])
for fn_id in selected_scoring_functions:
if fn_id not in output_res:
output_res[fn_id] = []
output_res[fn_id].append(score_res.results[fn_id].score_rows[0])
# Display current row results using separate containers
progress_text_container.write(
f"Expand to see current processed result ({i+1}/{len(rows)})"
)
results_container.json(
score_res.to_json(),
expanded=2,
)
progress_bar.progress(1.0, text="Evaluation complete!")
# Display results in dataframe
if output_res:
output_df = pd.DataFrame(output_res)
st.subheader("Evaluation Results")
st.dataframe(output_df)
application_evaluation_page()

View file

@ -0,0 +1,257 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import json
import pandas as pd
import streamlit as st
from modules.api import llama_stack_api
def select_eval_task_1():
# Select Eval Tasks
st.subheader("1. Choose An Eval Task")
eval_tasks = llama_stack_api.client.eval_tasks.list()
eval_tasks = {et.identifier: et for et in eval_tasks}
eval_tasks_names = list(eval_tasks.keys())
selected_eval_task = st.selectbox(
"Choose an eval task.",
options=eval_tasks_names,
help="Choose an eval task. Each eval task is parameterized by a dataset, and list of scoring functions.",
)
with st.expander("View Eval Task"):
st.json(eval_tasks[selected_eval_task], expanded=True)
st.session_state["selected_eval_task"] = selected_eval_task
st.session_state["eval_tasks"] = eval_tasks
if st.button("Confirm", key="confirm_1"):
st.session_state["selected_eval_task_1_next"] = True
def define_eval_candidate_2():
if not st.session_state.get("selected_eval_task_1_next", None):
return
st.subheader("2. Define Eval Candidate")
st.info(
"""
Define the configurations for the evaluation candidate model or agent used for generation.
Select "model" if you want to run generation with inference API, or "agent" if you want to run generation with agent API through specifying AgentConfig.
"""
)
with st.expander("Define Eval Candidate", expanded=True):
# Define Eval Candidate
candidate_type = st.radio("Candidate Type", ["model", "agent"])
available_models = llama_stack_api.client.models.list()
available_models = [model.identifier for model in available_models]
selected_model = st.selectbox(
"Choose a model",
available_models,
index=0,
)
# Sampling Parameters
st.markdown("##### Sampling Parameters")
strategy = st.selectbox(
"Strategy",
["greedy", "top_p", "top_k"],
index=0,
)
temperature = st.slider(
"Temperature",
min_value=0.0,
max_value=1.0,
value=0.0,
step=0.1,
help="Controls the randomness of the response. Higher values make the output more creative and unexpected, lower values make it more conservative and predictable",
)
top_p = st.slider(
"Top P",
min_value=0.0,
max_value=1.0,
value=0.95,
step=0.1,
)
max_tokens = st.slider(
"Max Tokens",
min_value=0,
max_value=4096,
value=512,
step=1,
help="The maximum number of tokens to generate",
)
repetition_penalty = st.slider(
"Repetition Penalty",
min_value=1.0,
max_value=2.0,
value=1.0,
step=0.1,
help="Controls the likelihood for generating the same word or phrase multiple times in the same sentence or paragraph. 1 implies no penalty, 2 will strongly discourage model to repeat words or phrases.",
)
if candidate_type == "model":
eval_candidate = {
"type": "model",
"model": selected_model,
"sampling_params": {
"strategy": strategy,
"temperature": temperature,
"top_p": top_p,
"max_tokens": max_tokens,
"repetition_penalty": repetition_penalty,
},
}
elif candidate_type == "agent":
system_prompt = st.text_area(
"System Prompt",
value="You are a helpful AI assistant.",
help="Initial instructions given to the AI to set its behavior and context",
)
tools_json = st.text_area(
"Tools Configuration (JSON)",
value=json.dumps(
[
{
"type": "brave_search",
"engine": "brave",
"api_key": "ENTER_BRAVE_API_KEY_HERE",
}
]
),
help="Enter tool configurations in JSON format. Each tool should have a name, description, and parameters.",
height=200,
)
try:
tools = json.loads(tools_json)
except json.JSONDecodeError:
st.error("Invalid JSON format for tools configuration")
tools = []
eval_candidate = {
"type": "agent",
"config": {
"model": selected_model,
"instructions": system_prompt,
"tools": tools,
"tool_choice": "auto",
"tool_prompt_format": "json",
"input_shields": [],
"output_shields": [],
"enable_session_persistence": False,
},
}
st.session_state["eval_candidate"] = eval_candidate
if st.button("Confirm", key="confirm_2"):
st.session_state["selected_eval_candidate_2_next"] = True
def run_evaluation_3():
if not st.session_state.get("selected_eval_candidate_2_next", None):
return
st.subheader("3. Run Evaluation")
# Add info box to explain configurations being used
st.info(
"""
Review the configurations that will be used for this evaluation run, make any necessary changes, and then click the "Run Evaluation" button.
"""
)
selected_eval_task = st.session_state["selected_eval_task"]
eval_tasks = st.session_state["eval_tasks"]
eval_candidate = st.session_state["eval_candidate"]
dataset_id = eval_tasks[selected_eval_task].dataset_id
rows = llama_stack_api.client.datasetio.get_rows_paginated(
dataset_id=dataset_id,
rows_in_page=-1,
)
total_rows = len(rows.rows)
# Add number of examples control
num_rows = st.number_input(
"Number of Examples to Evaluate",
min_value=1,
max_value=total_rows,
value=5,
help="Number of examples from the dataset to evaluate. ",
)
eval_task_config = {
"type": "benchmark",
"eval_candidate": eval_candidate,
"scoring_params": {},
}
with st.expander("View Evaluation Task", expanded=True):
st.json(eval_tasks[selected_eval_task], expanded=True)
with st.expander("View Evaluation Task Configuration", expanded=True):
st.json(eval_task_config, expanded=True)
# Add run button and handle evaluation
if st.button("Run Evaluation"):
progress_text = "Running evaluation..."
progress_bar = st.progress(0, text=progress_text)
rows = rows.rows
if num_rows < total_rows:
rows = rows[:num_rows]
# Create separate containers for progress text and results
progress_text_container = st.empty()
results_container = st.empty()
output_res = {}
for i, r in enumerate(rows):
# Update progress
progress = i / len(rows)
progress_bar.progress(progress, text=progress_text)
# Run evaluation for current row
eval_res = llama_stack_api.client.eval.evaluate_rows(
task_id=selected_eval_task,
input_rows=[r],
scoring_functions=eval_tasks[selected_eval_task].scoring_functions,
task_config=eval_task_config,
)
for k in r.keys():
if k not in output_res:
output_res[k] = []
output_res[k].append(r[k])
for k in eval_res.generations[0].keys():
if k not in output_res:
output_res[k] = []
output_res[k].append(eval_res.generations[0][k])
for scoring_fn in eval_tasks[selected_eval_task].scoring_functions:
if scoring_fn not in output_res:
output_res[scoring_fn] = []
output_res[scoring_fn].append(eval_res.scores[scoring_fn].score_rows[0])
progress_text_container.write(
f"Expand to see current processed result ({i+1}/{len(rows)})"
)
results_container.json(eval_res, expanded=2)
progress_bar.progress(1.0, text="Evaluation complete!")
# Display results in dataframe
if output_res:
output_df = pd.DataFrame(output_res)
st.subheader("Evaluation Results")
st.dataframe(output_df)
def native_evaluation_page():
st.set_page_config(page_title="Evaluations (Generation + Scoring)", page_icon="🦙")
st.title("📊 Evaluations (Generation + Scoring)")
select_eval_task_1()
define_eval_candidate_2()
run_evaluation_3()
native_evaluation_page()

View file

@ -0,0 +1,5 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

View file

@ -0,0 +1,123 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import streamlit as st
from modules.api import llama_stack_api
# Sidebar configurations
with st.sidebar:
st.header("Configuration")
available_models = llama_stack_api.client.models.list()
available_models = [model.identifier for model in available_models]
selected_model = st.selectbox(
"Choose a model",
available_models,
index=0,
)
temperature = st.slider(
"Temperature",
min_value=0.0,
max_value=1.0,
value=0.0,
step=0.1,
help="Controls the randomness of the response. Higher values make the output more creative and unexpected, lower values make it more conservative and predictable",
)
top_p = st.slider(
"Top P",
min_value=0.0,
max_value=1.0,
value=0.95,
step=0.1,
)
max_tokens = st.slider(
"Max Tokens",
min_value=0,
max_value=4096,
value=512,
step=1,
help="The maximum number of tokens to generate",
)
repetition_penalty = st.slider(
"Repetition Penalty",
min_value=1.0,
max_value=2.0,
value=1.0,
step=0.1,
help="Controls the likelihood for generating the same word or phrase multiple times in the same sentence or paragraph. 1 implies no penalty, 2 will strongly discourage model to repeat words or phrases.",
)
stream = st.checkbox("Stream", value=True)
system_prompt = st.text_area(
"System Prompt",
value="You are a helpful AI assistant.",
help="Initial instructions given to the AI to set its behavior and context",
)
# Add clear chat button to sidebar
if st.button("Clear Chat", use_container_width=True):
st.session_state.messages = []
st.rerun()
# Main chat interface
st.title("🦙 Chat")
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Chat input
if prompt := st.chat_input("Example: What is Llama Stack?"):
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
# Display user message
with st.chat_message("user"):
st.markdown(prompt)
# Display assistant response
with st.chat_message("assistant"):
message_placeholder = st.empty()
full_response = ""
response = llama_stack_api.client.inference.chat_completion(
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": prompt},
],
model_id=selected_model,
stream=stream,
sampling_params={
"temperature": temperature,
"top_p": top_p,
"max_tokens": max_tokens,
"repetition_penalty": repetition_penalty,
},
)
if stream:
for chunk in response:
if chunk.event.event_type == "progress":
full_response += chunk.event.delta
message_placeholder.markdown(full_response + "")
message_placeholder.markdown(full_response)
else:
full_response = response
message_placeholder.markdown(full_response.completion_message.content)
st.session_state.messages.append(
{"role": "assistant", "content": full_response}
)

View file

@ -0,0 +1,188 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import streamlit as st
from llama_stack_client.lib.agents.agent import Agent
from llama_stack_client.lib.agents.event_logger import EventLogger
from llama_stack_client.types.agent_create_params import AgentConfig
from llama_stack_client.types.memory_insert_params import Document
from modules.api import llama_stack_api
from modules.utils import data_url_from_file
def rag_chat_page():
st.title("🦙 RAG")
with st.sidebar:
# File/Directory Upload Section
st.subheader("Upload Documents")
uploaded_files = st.file_uploader(
"Upload file(s) or directory",
accept_multiple_files=True,
type=["txt", "pdf", "doc", "docx"], # Add more file types as needed
)
# Process uploaded files
if uploaded_files:
st.success(f"Successfully uploaded {len(uploaded_files)} files")
# Add memory bank name input field
memory_bank_name = st.text_input(
"Memory Bank Name",
value="rag_bank",
help="Enter a unique identifier for this memory bank",
)
if st.button("Create Memory Bank"):
documents = [
Document(
document_id=uploaded_file.name,
content=data_url_from_file(uploaded_file),
)
for i, uploaded_file in enumerate(uploaded_files)
]
providers = llama_stack_api.client.providers.list()
llama_stack_api.client.memory_banks.register(
memory_bank_id=memory_bank_name, # Use the user-provided name
params={
"embedding_model": "all-MiniLM-L6-v2",
"chunk_size_in_tokens": 512,
"overlap_size_in_tokens": 64,
},
provider_id=providers["memory"][0].provider_id,
)
# insert documents using the custom bank name
llama_stack_api.client.memory.insert(
bank_id=memory_bank_name, # Use the user-provided name
documents=documents,
)
st.success("Memory bank created successfully!")
st.subheader("Configure Agent")
# select memory banks
memory_banks = llama_stack_api.client.memory_banks.list()
memory_banks = [bank.identifier for bank in memory_banks]
selected_memory_banks = st.multiselect(
"Select Memory Banks",
memory_banks,
)
memory_bank_configs = [
{"bank_id": bank_id, "type": "vector"} for bank_id in selected_memory_banks
]
available_models = llama_stack_api.client.models.list()
available_models = [model.identifier for model in available_models]
selected_model = st.selectbox(
"Choose a model",
available_models,
index=0,
)
system_prompt = st.text_area(
"System Prompt",
value="You are a helpful assistant. ",
help="Initial instructions given to the AI to set its behavior and context",
)
temperature = st.slider(
"Temperature",
min_value=0.0,
max_value=1.0,
value=0.0,
step=0.1,
help="Controls the randomness of the response. Higher values make the output more creative and unexpected, lower values make it more conservative and predictable",
)
top_p = st.slider(
"Top P",
min_value=0.0,
max_value=1.0,
value=0.95,
step=0.1,
)
# Add clear chat button to sidebar
if st.button("Clear Chat", use_container_width=True):
st.session_state.messages = []
st.rerun()
# Chat Interface
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat history
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
selected_model = llama_stack_api.client.models.list()[0].identifier
agent_config = AgentConfig(
model=selected_model,
instructions=system_prompt,
sampling_params={
"strategy": "greedy",
"temperature": temperature,
"top_p": top_p,
},
tools=[
{
"type": "memory",
"memory_bank_configs": memory_bank_configs,
"query_generator_config": {"type": "default", "sep": " "},
"max_tokens_in_context": 4096,
"max_chunks": 10,
}
],
tool_choice="auto",
tool_prompt_format="json",
input_shields=[],
output_shields=[],
enable_session_persistence=False,
)
agent = Agent(llama_stack_api.client, agent_config)
session_id = agent.create_session("rag-session")
# Chat input
if prompt := st.chat_input("Ask a question about your documents"):
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
# Display user message
with st.chat_message("user"):
st.markdown(prompt)
response = agent.create_turn(
messages=[
{
"role": "user",
"content": prompt,
}
],
session_id=session_id,
)
# Display assistant response
with st.chat_message("assistant"):
retrieval_message_placeholder = st.empty()
message_placeholder = st.empty()
full_response = ""
retrieval_response = ""
for log in EventLogger().log(response):
log.print()
if log.role == "memory_retrieval":
retrieval_response += log.content.replace("====", "").strip()
retrieval_message_placeholder.info(retrieval_response)
else:
full_response += log.content
message_placeholder.markdown(full_response + "")
message_placeholder.markdown(full_response)
st.session_state.messages.append(
{"role": "assistant", "content": full_response}
)
rag_chat_page()

View file

@ -1,3 +1,4 @@
streamlit
pandas
llama-stack-client>=0.0.55
streamlit-option-menu

View file

@ -53,8 +53,6 @@ class ShieldsProtocolPrivate(Protocol):
class MemoryBanksProtocolPrivate(Protocol):
async def list_memory_banks(self) -> List[MemoryBank]: ...
async def register_memory_bank(self, memory_bank: MemoryBank) -> None: ...
async def unregister_memory_bank(self, memory_bank_id: str) -> None: ...
@ -63,6 +61,8 @@ class MemoryBanksProtocolPrivate(Protocol):
class DatasetsProtocolPrivate(Protocol):
async def register_dataset(self, dataset: Dataset) -> None: ...
async def unregister_dataset(self, dataset_id: str) -> None: ...
class ScoringFunctionsProtocolPrivate(Protocol):
async def list_scoring_functions(self) -> List[ScoringFn]: ...

View file

@ -10,9 +10,7 @@ import logging
import os
import re
import secrets
import shutil
import string
import tempfile
import uuid
from datetime import datetime
from typing import AsyncGenerator, List, Tuple
@ -57,6 +55,7 @@ class ChatAgent(ShieldRunnerMixin):
self,
agent_id: str,
agent_config: AgentConfig,
tempdir: str,
inference_api: Inference,
memory_api: Memory,
memory_banks_api: MemoryBanks,
@ -65,14 +64,13 @@ class ChatAgent(ShieldRunnerMixin):
):
self.agent_id = agent_id
self.agent_config = agent_config
self.tempdir = tempdir
self.inference_api = inference_api
self.memory_api = memory_api
self.memory_banks_api = memory_banks_api
self.safety_api = safety_api
self.storage = AgentPersistence(agent_id, persistence_store)
self.tempdir = tempfile.mkdtemp()
builtin_tools = []
for tool_defn in agent_config.tools:
if isinstance(tool_defn, WolframAlphaToolDefinition):
@ -103,9 +101,6 @@ class ChatAgent(ShieldRunnerMixin):
output_shields=agent_config.output_shields,
)
def __del__(self):
shutil.rmtree(self.tempdir)
def turn_to_messages(self, turn: Turn) -> List[Message]:
messages = []
@ -144,87 +139,91 @@ class ChatAgent(ShieldRunnerMixin):
async def create_session(self, name: str) -> str:
return await self.storage.create_session(name)
@tracing.span("create_and_execute_turn")
async def create_and_execute_turn(
self, request: AgentTurnCreateRequest
) -> AsyncGenerator:
assert request.stream is True, "Non-streaming not supported"
with tracing.span("create_and_execute_turn") as span:
span.set_attribute("session_id", request.session_id)
span.set_attribute("agent_id", self.agent_id)
span.set_attribute("request", request.model_dump_json())
assert request.stream is True, "Non-streaming not supported"
session_info = await self.storage.get_session_info(request.session_id)
if session_info is None:
raise ValueError(f"Session {request.session_id} not found")
session_info = await self.storage.get_session_info(request.session_id)
if session_info is None:
raise ValueError(f"Session {request.session_id} not found")
turns = await self.storage.get_session_turns(request.session_id)
turns = await self.storage.get_session_turns(request.session_id)
messages = []
if self.agent_config.instructions != "":
messages.append(SystemMessage(content=self.agent_config.instructions))
messages = []
if self.agent_config.instructions != "":
messages.append(SystemMessage(content=self.agent_config.instructions))
for i, turn in enumerate(turns):
messages.extend(self.turn_to_messages(turn))
for i, turn in enumerate(turns):
messages.extend(self.turn_to_messages(turn))
messages.extend(request.messages)
messages.extend(request.messages)
turn_id = str(uuid.uuid4())
start_time = datetime.now()
yield AgentTurnResponseStreamChunk(
event=AgentTurnResponseEvent(
payload=AgentTurnResponseTurnStartPayload(
turn_id=turn_id,
turn_id = str(uuid.uuid4())
span.set_attribute("turn_id", turn_id)
start_time = datetime.now()
yield AgentTurnResponseStreamChunk(
event=AgentTurnResponseEvent(
payload=AgentTurnResponseTurnStartPayload(
turn_id=turn_id,
)
)
)
)
steps = []
output_message = None
async for chunk in self.run(
session_id=request.session_id,
turn_id=turn_id,
input_messages=messages,
attachments=request.attachments or [],
sampling_params=self.agent_config.sampling_params,
stream=request.stream,
):
if isinstance(chunk, CompletionMessage):
log.info(
f"{chunk.role.capitalize()}: {chunk.content}",
)
output_message = chunk
continue
assert isinstance(
chunk, AgentTurnResponseStreamChunk
), f"Unexpected type {type(chunk)}"
event = chunk.event
if (
event.payload.event_type
== AgentTurnResponseEventType.step_complete.value
steps = []
output_message = None
async for chunk in self.run(
session_id=request.session_id,
turn_id=turn_id,
input_messages=messages,
attachments=request.attachments or [],
sampling_params=self.agent_config.sampling_params,
stream=request.stream,
):
steps.append(event.payload.step_details)
if isinstance(chunk, CompletionMessage):
log.info(
f"{chunk.role.capitalize()}: {chunk.content}",
)
output_message = chunk
continue
yield chunk
assert isinstance(
chunk, AgentTurnResponseStreamChunk
), f"Unexpected type {type(chunk)}"
event = chunk.event
if (
event.payload.event_type
== AgentTurnResponseEventType.step_complete.value
):
steps.append(event.payload.step_details)
assert output_message is not None
yield chunk
turn = Turn(
turn_id=turn_id,
session_id=request.session_id,
input_messages=request.messages,
output_message=output_message,
started_at=start_time,
completed_at=datetime.now(),
steps=steps,
)
await self.storage.add_turn_to_session(request.session_id, turn)
assert output_message is not None
chunk = AgentTurnResponseStreamChunk(
event=AgentTurnResponseEvent(
payload=AgentTurnResponseTurnCompletePayload(
turn=turn,
turn = Turn(
turn_id=turn_id,
session_id=request.session_id,
input_messages=request.messages,
output_message=output_message,
started_at=start_time,
completed_at=datetime.now(),
steps=steps,
)
await self.storage.add_turn_to_session(request.session_id, turn)
chunk = AgentTurnResponseStreamChunk(
event=AgentTurnResponseEvent(
payload=AgentTurnResponseTurnCompletePayload(
turn=turn,
)
)
)
)
yield chunk
yield chunk
async def run(
self,
@ -273,7 +272,6 @@ class ChatAgent(ShieldRunnerMixin):
yield final_response
@tracing.span("run_shields")
async def run_multiple_shields_wrapper(
self,
turn_id: str,
@ -281,23 +279,46 @@ class ChatAgent(ShieldRunnerMixin):
shields: List[str],
touchpoint: str,
) -> AsyncGenerator:
if len(shields) == 0:
return
with tracing.span("run_shields") as span:
span.set_attribute("input", [m.model_dump_json() for m in messages])
if len(shields) == 0:
span.set_attribute("output", "no shields")
return
step_id = str(uuid.uuid4())
try:
yield AgentTurnResponseStreamChunk(
event=AgentTurnResponseEvent(
payload=AgentTurnResponseStepStartPayload(
step_type=StepType.shield_call.value,
step_id=step_id,
metadata=dict(touchpoint=touchpoint),
step_id = str(uuid.uuid4())
try:
yield AgentTurnResponseStreamChunk(
event=AgentTurnResponseEvent(
payload=AgentTurnResponseStepStartPayload(
step_type=StepType.shield_call.value,
step_id=step_id,
metadata=dict(touchpoint=touchpoint),
)
)
)
)
await self.run_multiple_shields(messages, shields)
await self.run_multiple_shields(messages, shields)
except SafetyException as e:
yield AgentTurnResponseStreamChunk(
event=AgentTurnResponseEvent(
payload=AgentTurnResponseStepCompletePayload(
step_type=StepType.shield_call.value,
step_details=ShieldCallStep(
step_id=step_id,
turn_id=turn_id,
violation=e.violation,
),
)
)
)
span.set_attribute("output", e.violation.model_dump_json())
yield CompletionMessage(
content=str(e),
stop_reason=StopReason.end_of_turn,
)
yield False
except SafetyException as e:
yield AgentTurnResponseStreamChunk(
event=AgentTurnResponseEvent(
payload=AgentTurnResponseStepCompletePayload(
@ -305,30 +326,12 @@ class ChatAgent(ShieldRunnerMixin):
step_details=ShieldCallStep(
step_id=step_id,
turn_id=turn_id,
violation=e.violation,
violation=None,
),
)
)
)
yield CompletionMessage(
content=str(e),
stop_reason=StopReason.end_of_turn,
)
yield False
yield AgentTurnResponseStreamChunk(
event=AgentTurnResponseEvent(
payload=AgentTurnResponseStepCompletePayload(
step_type=StepType.shield_call.value,
step_details=ShieldCallStep(
step_id=step_id,
turn_id=turn_id,
violation=None,
),
)
)
)
span.set_attribute("output", "no violations")
async def _run(
self,
@ -356,10 +359,15 @@ class ChatAgent(ShieldRunnerMixin):
# TODO: find older context from the session and either replace it
# or append with a sliding window. this is really a very simplistic implementation
with tracing.span("retrieve_rag_context"):
with tracing.span("retrieve_rag_context") as span:
rag_context, bank_ids = await self._retrieve_context(
session_id, input_messages, attachments
)
span.set_attribute(
"input", [m.model_dump_json() for m in input_messages]
)
span.set_attribute("output", rag_context)
span.set_attribute("bank_ids", bank_ids)
step_id = str(uuid.uuid4())
yield AgentTurnResponseStreamChunk(
@ -396,11 +404,6 @@ class ChatAgent(ShieldRunnerMixin):
n_iter = 0
while True:
msg = input_messages[-1]
if len(str(msg)) > 1000:
msg_str = f"{str(msg)[:500]}...<more>...{str(msg)[-500:]}"
else:
msg_str = str(msg)
log.info(f"{msg_str}")
step_id = str(uuid.uuid4())
yield AgentTurnResponseStreamChunk(
@ -416,7 +419,7 @@ class ChatAgent(ShieldRunnerMixin):
content = ""
stop_reason = None
with tracing.span("inference"):
with tracing.span("inference") as span:
async for chunk in await self.inference_api.chat_completion(
self.agent_config.model,
input_messages,
@ -436,14 +439,13 @@ class ChatAgent(ShieldRunnerMixin):
if isinstance(delta, ToolCallDelta):
if delta.parse_status == ToolCallParseStatus.success:
tool_calls.append(delta.content)
if stream:
yield AgentTurnResponseStreamChunk(
event=AgentTurnResponseEvent(
payload=AgentTurnResponseStepProgressPayload(
step_type=StepType.inference.value,
step_id=step_id,
model_response_text_delta="",
text_delta="",
tool_call_delta=delta,
)
)
@ -457,7 +459,7 @@ class ChatAgent(ShieldRunnerMixin):
payload=AgentTurnResponseStepProgressPayload(
step_type=StepType.inference.value,
step_id=step_id,
model_response_text_delta=event.delta,
text_delta=event.delta,
)
)
)
@ -466,6 +468,13 @@ class ChatAgent(ShieldRunnerMixin):
if event.stop_reason is not None:
stop_reason = event.stop_reason
span.set_attribute("stop_reason", stop_reason)
span.set_attribute(
"input", [m.model_dump_json() for m in input_messages]
)
span.set_attribute(
"output", f"content: {content} tool_calls: {tool_calls}"
)
stop_reason = stop_reason or StopReason.out_of_tokens
@ -549,7 +558,13 @@ class ChatAgent(ShieldRunnerMixin):
)
)
with tracing.span("tool_execution"):
with tracing.span(
"tool_execution",
{
"tool_name": tool_call.tool_name,
"input": message.model_dump_json(),
},
) as span:
result_messages = await execute_tool_call_maybe(
self.tools_dict,
[message],
@ -558,6 +573,7 @@ class ChatAgent(ShieldRunnerMixin):
len(result_messages) == 1
), "Currently not supporting multiple messages"
result_message = result_messages[0]
span.set_attribute("output", result_message.model_dump_json())
yield AgentTurnResponseStreamChunk(
event=AgentTurnResponseEvent(

View file

@ -6,9 +6,13 @@
import json
import logging
import shutil
import tempfile
import uuid
from typing import AsyncGenerator
from termcolor import colored
from llama_stack.apis.inference import Inference
from llama_stack.apis.memory import Memory
from llama_stack.apis.memory_banks import MemoryBanks
@ -40,10 +44,20 @@ class MetaReferenceAgentsImpl(Agents):
self.memory_banks_api = memory_banks_api
self.in_memory_store = InmemoryKVStoreImpl()
self.tempdir = tempfile.mkdtemp()
async def initialize(self) -> None:
self.persistence_store = await kvstore_impl(self.config.persistence_store)
# check if "bwrap" is available
if not shutil.which("bwrap"):
print(
colored(
"Warning: `bwrap` is not available. Code interpreter tool will not work correctly.",
"yellow",
)
)
async def create_agent(
self,
agent_config: AgentConfig,
@ -82,6 +96,7 @@ class MetaReferenceAgentsImpl(Agents):
return ChatAgent(
agent_id=agent_id,
agent_config=agent_config,
tempdir=self.tempdir,
inference_api=self.inference_api,
safety_api=self.safety_api,
memory_api=self.memory_api,

View file

@ -3,14 +3,17 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Optional
from typing import Any, Dict, List, Optional
import pandas
from llama_models.llama3.api.datatypes import * # noqa: F403
from llama_stack.apis.datasetio import * # noqa: F403
import base64
import os
from abc import ABC, abstractmethod
from dataclasses import dataclass
from urllib.parse import urlparse
from llama_stack.providers.datatypes import DatasetsProtocolPrivate
from llama_stack.providers.utils.datasetio.url_utils import get_dataframe_from_url
@ -97,6 +100,9 @@ class LocalFSDatasetIOImpl(DatasetIO, DatasetsProtocolPrivate):
dataset_impl=dataset_impl,
)
async def unregister_dataset(self, dataset_id: str) -> None:
del self.dataset_infos[dataset_id]
async def get_rows_paginated(
self,
dataset_id: str,
@ -128,3 +134,41 @@ class LocalFSDatasetIOImpl(DatasetIO, DatasetsProtocolPrivate):
total_count=len(rows),
next_page_token=str(end),
)
async def append_rows(self, dataset_id: str, rows: List[Dict[str, Any]]) -> None:
dataset_info = self.dataset_infos.get(dataset_id)
if dataset_info is None:
raise ValueError(f"Dataset with id {dataset_id} not found")
dataset_impl = dataset_info.dataset_impl
dataset_impl.load()
new_rows_df = pandas.DataFrame(rows)
new_rows_df = dataset_impl._validate_dataset_schema(new_rows_df)
dataset_impl.df = pandas.concat(
[dataset_impl.df, new_rows_df], ignore_index=True
)
url = str(dataset_info.dataset_def.url)
parsed_url = urlparse(url)
if parsed_url.scheme == "file" or not parsed_url.scheme:
file_path = parsed_url.path
os.makedirs(os.path.dirname(file_path), exist_ok=True)
dataset_impl.df.to_csv(file_path, index=False)
elif parsed_url.scheme == "data":
# For data URLs, we need to update the base64-encoded content
if not parsed_url.path.startswith("text/csv;base64,"):
raise ValueError("Data URL must be a base64-encoded CSV")
csv_buffer = dataset_impl.df.to_csv(index=False)
base64_content = base64.b64encode(csv_buffer.encode("utf-8")).decode(
"utf-8"
)
dataset_info.dataset_def.url = URL(
uri=f"data:text/csv;base64,{base64_content}"
)
else:
raise ValueError(
f"Unsupported URL scheme: {parsed_url.scheme}. Only file:// and data: URLs are supported for writing."
)

View file

@ -0,0 +1,5 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

View file

@ -3,12 +3,13 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from pydantic import BaseModel
from llama_stack.distribution.utils.config_dirs import RUNTIME_BASE_DIR
from llama_stack.providers.utils.kvstore.config import (
KVStoreConfig,
SqliteKVStoreConfig,
)
from pydantic import BaseModel
class MetaReferenceEvalConfig(BaseModel):

View file

@ -4,7 +4,9 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from enum import Enum
from typing import Any, Dict, List, Optional
from llama_models.llama3.api.datatypes import * # noqa: F403
from tqdm import tqdm
from .....apis.common.job_types import Job
from .....apis.eval.eval import Eval, EvalTaskConfig, EvaluateResponse, JobStatus
@ -17,7 +19,6 @@ from llama_stack.apis.inference import Inference
from llama_stack.apis.scoring import Scoring
from llama_stack.providers.datatypes import EvalTasksProtocolPrivate
from llama_stack.providers.utils.kvstore import kvstore_impl
from tqdm import tqdm
from .config import MetaReferenceEvalConfig

View file

@ -4,12 +4,12 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .config import ConsoleConfig
from .config import ChromaInlineImplConfig
async def get_provider_impl(config: ConsoleConfig, _deps):
from .console import ConsoleTelemetryImpl
async def get_provider_impl(config: ChromaInlineImplConfig, _deps):
from llama_stack.providers.remote.memory.chroma.chroma import ChromaMemoryAdapter
impl = ConsoleTelemetryImpl(config)
impl = ChromaMemoryAdapter(config)
await impl.initialize()
return impl

View file

@ -4,18 +4,14 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from enum import Enum
from llama_models.schema_utils import json_schema_type
from typing import Any, Dict
from pydantic import BaseModel
class LogFormat(Enum):
TEXT = "text"
JSON = "json"
class ChromaInlineImplConfig(BaseModel):
db_path: str
@json_schema_type
class ConsoleConfig(BaseModel):
log_format: LogFormat = LogFormat.TEXT
@classmethod
def sample_config(cls) -> Dict[str, Any]:
return {"db_path": "{env.CHROMADB_PATH}"}

View file

@ -27,7 +27,6 @@ from llama_stack.providers.utils.memory.vector_store import (
BankWithIndex,
EmbeddingIndex,
)
from llama_stack.providers.utils.telemetry import tracing
from .config import FaissImplConfig
@ -95,7 +94,6 @@ class FaissIndex(EmbeddingIndex):
await self.kvstore.delete(f"faiss_index:v1::{self.bank_id}")
@tracing.span(name="add_chunks")
async def add_chunks(self, chunks: List[Chunk], embeddings: NDArray):
indexlen = len(self.id_by_index)
for i, chunk in enumerate(chunks):

View file

@ -5,7 +5,7 @@
# the root directory of this source tree.
import json
from typing import Optional
from typing import List, Optional
from .config import LogFormat
@ -49,8 +49,27 @@ class ConsoleTelemetryImpl(Telemetry):
if formatted:
print(formatted)
async def get_trace(self, trace_id: str) -> Trace:
raise NotImplementedError()
async def query_traces(
self,
attribute_conditions: Optional[List[QueryCondition]] = None,
attribute_keys_to_return: Optional[List[str]] = None,
limit: Optional[int] = 100,
offset: Optional[int] = 0,
order_by: Optional[List[str]] = None,
) -> List[Trace]:
raise NotImplementedError("Console telemetry does not support trace querying")
async def get_spans(
self,
span_id: str,
attribute_conditions: Optional[List[QueryCondition]] = None,
attribute_keys_to_return: Optional[List[str]] = None,
max_depth: Optional[int] = None,
limit: Optional[int] = 100,
offset: Optional[int] = 0,
order_by: Optional[List[str]] = None,
) -> SpanWithChildren:
raise NotImplementedError("Console telemetry does not support span querying")
COLORS = {

View file

@ -0,0 +1,5 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

View file

@ -113,7 +113,9 @@ class BasicScoringImpl(Scoring, ScoringFunctionsProtocolPrivate):
score_results = await scoring_fn.score(
input_rows, scoring_fn_id, scoring_fn_params
)
agg_results = await scoring_fn.aggregate(score_results)
agg_results = await scoring_fn.aggregate(
score_results, scoring_fn_id, scoring_fn_params
)
res[scoring_fn_id] = ScoringResult(
score_rows=score_results,
aggregated_results=agg_results,

View file

@ -4,12 +4,12 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.providers.utils.scoring.base_scoring_fn import BaseScoringFn
from llama_stack.apis.scoring_functions import * # noqa: F401, F403
from llama_stack.apis.scoring import * # noqa: F401, F403
from llama_stack.apis.common.type_system import * # noqa: F403
from typing import Any, Dict, Optional
from llama_stack.providers.utils.scoring.aggregation_utils import aggregate_accuracy
from llama_stack.apis.scoring import ScoringResultRow
from llama_stack.apis.scoring_functions import ScoringFnParams
from llama_stack.providers.utils.scoring.base_scoring_fn import BaseScoringFn
from .fn_defs.equality import equality
@ -42,8 +42,3 @@ class EqualityScoringFn(BaseScoringFn):
return {
"score": score,
}
async def aggregate(
self, scoring_results: List[ScoringResultRow]
) -> Dict[str, Any]:
return aggregate_accuracy(scoring_results)

View file

@ -5,14 +5,20 @@
# the root directory of this source tree.
from llama_stack.apis.common.type_system import NumberType
from llama_stack.apis.scoring_functions import ScoringFn
from llama_stack.apis.scoring_functions import (
AggregationFunctionType,
BasicScoringFnParams,
ScoringFn,
)
equality = ScoringFn(
identifier="basic::equality",
description="Returns 1.0 if the input is equal to the target, 0.0 otherwise.",
params=None,
provider_id="basic",
provider_resource_id="equality",
return_type=NumberType(),
params=BasicScoringFnParams(
aggregation_functions=[AggregationFunctionType.accuracy]
),
)

View file

@ -4,9 +4,12 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.apis.scoring_functions import * # noqa: F401, F403
from llama_stack.apis.scoring import * # noqa: F401, F403
from llama_stack.apis.common.type_system import NumberType
from llama_stack.apis.scoring_functions import (
AggregationFunctionType,
RegexParserScoringFnParams,
ScoringFn,
)
MULTILINGUAL_ANSWER_REGEXES = [
r"Answer\s*:",
@ -67,5 +70,6 @@ regex_parser_multiple_choice_answer = ScoringFn(
MULTILINGUAL_ANSWER_PATTERN_TEMPLATE.format(x)
for x in MULTILINGUAL_ANSWER_REGEXES
],
aggregation_functions=[AggregationFunctionType.accuracy],
),
)

View file

@ -5,7 +5,11 @@
# the root directory of this source tree.
from llama_stack.apis.common.type_system import NumberType
from llama_stack.apis.scoring_functions import ScoringFn
from llama_stack.apis.scoring_functions import (
AggregationFunctionType,
BasicScoringFnParams,
ScoringFn,
)
subset_of = ScoringFn(
@ -14,4 +18,7 @@ subset_of = ScoringFn(
return_type=NumberType(),
provider_id="basic",
provider_resource_id="subset-of",
params=BasicScoringFnParams(
aggregation_functions=[AggregationFunctionType.accuracy]
),
)

View file

@ -5,11 +5,11 @@
# the root directory of this source tree.
import re
from typing import Any, Dict, Optional
from llama_stack.apis.scoring import ScoringResultRow
from llama_stack.apis.scoring_functions import ScoringFnParams, ScoringFnParamsType
from llama_stack.providers.utils.scoring.base_scoring_fn import BaseScoringFn
from llama_stack.apis.scoring_functions import * # noqa: F401, F403
from llama_stack.apis.scoring import * # noqa: F401, F403
from llama_stack.apis.common.type_system import * # noqa: F403
from llama_stack.providers.utils.scoring.aggregation_utils import aggregate_accuracy
from .fn_defs.regex_parser_multiple_choice_answer import (
regex_parser_multiple_choice_answer,
@ -60,8 +60,3 @@ class RegexParserScoringFn(BaseScoringFn):
return {
"score": score,
}
async def aggregate(
self, scoring_results: List[ScoringResultRow]
) -> Dict[str, Any]:
return aggregate_accuracy(scoring_results)

View file

@ -4,11 +4,11 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict, Optional
from llama_stack.apis.scoring import ScoringResultRow
from llama_stack.apis.scoring_functions import ScoringFnParams
from llama_stack.providers.utils.scoring.base_scoring_fn import BaseScoringFn
from llama_stack.apis.scoring_functions import * # noqa: F401, F403
from llama_stack.apis.scoring import * # noqa: F401, F403
from llama_stack.apis.common.type_system import * # noqa: F403
from llama_stack.providers.utils.scoring.aggregation_utils import aggregate_accuracy
from .fn_defs.subset_of import subset_of
@ -36,8 +36,3 @@ class SubsetOfScoringFn(BaseScoringFn):
return {
"score": score,
}
async def aggregate(
self, scoring_results: List[ScoringResultRow]
) -> Dict[str, Any]:
return aggregate_accuracy(scoring_results)

View file

@ -5,9 +5,10 @@
# the root directory of this source tree.
from typing import Dict
from llama_stack.distribution.datatypes import Api, ProviderSpec
from pydantic import BaseModel
from llama_stack.distribution.datatypes import Api, ProviderSpec
from .config import BraintrustScoringConfig

View file

@ -16,6 +16,7 @@ import os
from autoevals.llm import Factuality
from autoevals.ragas import AnswerCorrectness
from llama_stack.distribution.request_headers import NeedsRequestProviderData
from llama_stack.providers.datatypes import ScoringFunctionsProtocolPrivate
@ -85,7 +86,7 @@ class BraintrustScoringImpl(
async def set_api_key(self) -> None:
# api key is in the request headers
if self.config.openai_api_key is None:
if not self.config.openai_api_key:
provider_data = self.get_request_provider_data()
if provider_data is None or not provider_data.openai_api_key:
raise ValueError(
@ -146,7 +147,7 @@ class BraintrustScoringImpl(
await self.score_row(input_row, scoring_fn_id)
for input_row in input_rows
]
aggregation_functions = [AggregationFunctionType.average]
agg_results = aggregate_average(score_results)
res[scoring_fn_id] = ScoringResult(
score_rows=score_results,

View file

@ -11,3 +11,9 @@ class BraintrustScoringConfig(BaseModel):
default=None,
description="The OpenAI API Key",
)
@classmethod
def sample_run_config(cls, **kwargs) -> Dict[str, Any]:
return {
"openai_api_key": "${env.OPENAI_API_KEY:}",
}

View file

@ -120,7 +120,9 @@ class LlmAsJudgeScoringImpl(Scoring, ScoringFunctionsProtocolPrivate):
score_results = await scoring_fn.score(
input_rows, scoring_fn_id, scoring_fn_params
)
agg_results = await scoring_fn.aggregate(score_results)
agg_results = await scoring_fn.aggregate(
score_results, scoring_fn_id, scoring_fn_params
)
res[scoring_fn_id] = ScoringResult(
score_rows=score_results,
aggregated_results=agg_results,

View file

@ -5,7 +5,7 @@
# the root directory of this source tree.
from llama_stack.apis.common.type_system import NumberType
from llama_stack.apis.scoring_functions import ScoringFn
from llama_stack.apis.scoring_functions import LLMAsJudgeScoringFnParams, ScoringFn
llm_as_judge_base = ScoringFn(
@ -14,4 +14,8 @@ llm_as_judge_base = ScoringFn(
return_type=NumberType(),
provider_id="llm-as-judge",
provider_resource_id="llm-as-judge-base",
params=LLMAsJudgeScoringFnParams(
judge_model="meta-llama/Llama-3.1-405B-Instruct",
prompt_template="Enter custom LLM as Judge Prompt Template",
),
)

View file

@ -3,13 +3,16 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import re
from typing import Any, Dict, Optional
from llama_stack.apis.inference.inference import Inference
from llama_stack.apis.scoring import ScoringResultRow
from llama_stack.apis.scoring_functions import ScoringFnParams
from llama_stack.providers.utils.scoring.base_scoring_fn import BaseScoringFn
from llama_stack.apis.scoring_functions import * # noqa: F401, F403
from llama_stack.apis.scoring import * # noqa: F401, F403
from llama_stack.apis.common.type_system import * # noqa: F403
import re
from .fn_defs.llm_as_judge_405b_simpleqa import llm_as_judge_405b_simpleqa
@ -85,9 +88,3 @@ class LlmAsJudgeScoringFn(BaseScoringFn):
"score": judge_rating,
"judge_feedback": content,
}
async def aggregate(
self, scoring_results: List[ScoringResultRow]
) -> Dict[str, Any]:
# TODO: this needs to be config based aggregation, and only useful w/ Jobs API
return {}

View file

@ -0,0 +1,5 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

View file

@ -0,0 +1,19 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict
from .config import TelemetryConfig, TelemetrySink
__all__ = ["TelemetryConfig", "TelemetrySink"]
async def get_provider_impl(config: TelemetryConfig, deps: Dict[str, Any]):
from .telemetry import TelemetryAdapter
impl = TelemetryAdapter(config, deps)
await impl.initialize()
return impl

View file

@ -0,0 +1,58 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from enum import Enum
from typing import Any, Dict, List
from pydantic import BaseModel, Field, field_validator
from llama_stack.distribution.utils.config_dirs import RUNTIME_BASE_DIR
class TelemetrySink(str, Enum):
OTEL = "otel"
SQLITE = "sqlite"
CONSOLE = "console"
class TelemetryConfig(BaseModel):
otel_endpoint: str = Field(
default="http://localhost:4318/v1/traces",
description="The OpenTelemetry collector endpoint URL",
)
service_name: str = Field(
default="llama-stack",
description="The service name to use for telemetry",
)
sinks: List[TelemetrySink] = Field(
default=[TelemetrySink.CONSOLE, TelemetrySink.SQLITE],
description="List of telemetry sinks to enable (possible values: otel, sqlite, console)",
)
sqlite_db_path: str = Field(
default=(RUNTIME_BASE_DIR / "trace_store.db").as_posix(),
description="The path to the SQLite database to use for storing traces",
)
@field_validator("sinks", mode="before")
@classmethod
def validate_sinks(cls, v):
if isinstance(v, str):
return [TelemetrySink(sink.strip()) for sink in v.split(",")]
return v
@classmethod
def sample_run_config(
cls, __distro_dir__: str = "runtime", db_name: str = "trace_store.db"
) -> Dict[str, Any]:
return {
"service_name": "${env.OTEL_SERVICE_NAME:llama-stack}",
"sinks": "${env.TELEMETRY_SINKS:console,sqlite}",
"sqlite_db_path": "${env.SQLITE_DB_PATH:~/.llama/"
+ __distro_dir__
+ "/"
+ db_name
+ "}",
}

View file

@ -0,0 +1,117 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import json
from datetime import datetime
from opentelemetry.sdk.trace import ReadableSpan
from opentelemetry.sdk.trace.export import SpanProcessor
from opentelemetry.trace.status import StatusCode
# Colors for console output
COLORS = {
"reset": "\033[0m",
"bold": "\033[1m",
"dim": "\033[2m",
"red": "\033[31m",
"green": "\033[32m",
"yellow": "\033[33m",
"blue": "\033[34m",
"magenta": "\033[35m",
"cyan": "\033[36m",
"white": "\033[37m",
}
class ConsoleSpanProcessor(SpanProcessor):
def __init__(self, print_attributes: bool = False):
self.print_attributes = print_attributes
def on_start(self, span: ReadableSpan, parent_context=None) -> None:
if span.attributes and span.attributes.get("__autotraced__"):
return
timestamp = datetime.utcfromtimestamp(span.start_time / 1e9).strftime(
"%H:%M:%S.%f"
)[:-3]
print(
f"{COLORS['dim']}{timestamp}{COLORS['reset']} "
f"{COLORS['magenta']}[START]{COLORS['reset']} "
f"{COLORS['dim']}{span.name}{COLORS['reset']}"
)
def on_end(self, span: ReadableSpan) -> None:
if span.attributes and span.attributes.get("__autotraced__"):
return
timestamp = datetime.utcfromtimestamp(span.end_time / 1e9).strftime(
"%H:%M:%S.%f"
)[:-3]
span_context = (
f"{COLORS['dim']}{timestamp}{COLORS['reset']} "
f"{COLORS['magenta']}[END]{COLORS['reset']} "
f"{COLORS['dim']}{span.name}{COLORS['reset']}"
)
if span.status.status_code == StatusCode.ERROR:
span_context += f"{COLORS['reset']} {COLORS['red']}[ERROR]{COLORS['reset']}"
elif span.status.status_code != StatusCode.UNSET:
span_context += f"{COLORS['reset']} [{span.status.status_code}]"
duration_ms = (span.end_time - span.start_time) / 1e6
span_context += f"{COLORS['reset']} ({duration_ms:.2f}ms)"
print(span_context)
if self.print_attributes and span.attributes:
for key, value in span.attributes.items():
if key.startswith("__"):
continue
str_value = str(value)
if len(str_value) > 1000:
str_value = str_value[:997] + "..."
print(f" {COLORS['dim']}{key}: {str_value}{COLORS['reset']}")
for event in span.events:
event_time = datetime.utcfromtimestamp(event.timestamp / 1e9).strftime(
"%H:%M:%S.%f"
)[:-3]
severity = event.attributes.get("severity", "info")
message = event.attributes.get("message", event.name)
if isinstance(message, (dict, list)):
message = json.dumps(message, indent=2)
severity_colors = {
"error": f"{COLORS['bold']}{COLORS['red']}",
"warn": f"{COLORS['bold']}{COLORS['yellow']}",
"info": COLORS["white"],
"debug": COLORS["dim"],
}
msg_color = severity_colors.get(severity, COLORS["white"])
print(
f" {event_time} "
f"{msg_color}[{severity.upper()}] "
f"{message}{COLORS['reset']}"
)
if event.attributes:
for key, value in event.attributes.items():
if key.startswith("__") or key in ["message", "severity"]:
continue
print(f" {COLORS['dim']}{key}: {value}{COLORS['reset']}")
def shutdown(self) -> None:
"""Shutdown the processor."""
pass
def force_flush(self, timeout_millis: float = None) -> bool:
"""Force flush any pending spans."""
return True

View file

@ -0,0 +1,177 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import json
import os
import sqlite3
from datetime import datetime
from opentelemetry.sdk.trace import SpanProcessor
from opentelemetry.trace import Span
class SQLiteSpanProcessor(SpanProcessor):
def __init__(self, conn_string):
"""Initialize the SQLite span processor with a connection string."""
self.conn_string = conn_string
self.conn = None
self.setup_database()
def _get_connection(self) -> sqlite3.Connection:
"""Get the database connection."""
if self.conn is None:
self.conn = sqlite3.connect(self.conn_string, check_same_thread=False)
return self.conn
def setup_database(self):
"""Create the necessary tables if they don't exist."""
# Create directory if it doesn't exist
os.makedirs(os.path.dirname(self.conn_string), exist_ok=True)
conn = self._get_connection()
cursor = conn.cursor()
cursor.execute(
"""
CREATE TABLE IF NOT EXISTS traces (
trace_id TEXT PRIMARY KEY,
service_name TEXT,
root_span_id TEXT,
start_time TIMESTAMP,
end_time TIMESTAMP,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
"""
)
cursor.execute(
"""
CREATE TABLE IF NOT EXISTS spans (
span_id TEXT PRIMARY KEY,
trace_id TEXT REFERENCES traces(trace_id),
parent_span_id TEXT,
name TEXT,
start_time TIMESTAMP,
end_time TIMESTAMP,
attributes TEXT,
status TEXT,
kind TEXT
)
"""
)
cursor.execute(
"""
CREATE TABLE IF NOT EXISTS span_events (
id INTEGER PRIMARY KEY AUTOINCREMENT,
span_id TEXT REFERENCES spans(span_id),
name TEXT,
timestamp TIMESTAMP,
attributes TEXT
)
"""
)
cursor.execute(
"""
CREATE INDEX IF NOT EXISTS idx_traces_created_at
ON traces(created_at)
"""
)
conn.commit()
cursor.close()
def on_start(self, span: Span, parent_context=None):
"""Called when a span starts."""
pass
def on_end(self, span: Span):
"""Called when a span ends. Export the span data to SQLite."""
try:
conn = self._get_connection()
cursor = conn.cursor()
trace_id = format(span.get_span_context().trace_id, "032x")
span_id = format(span.get_span_context().span_id, "016x")
service_name = span.resource.attributes.get("service.name", "unknown")
parent_span_id = None
parent_context = span.parent
if parent_context:
parent_span_id = format(parent_context.span_id, "016x")
# Insert into traces
cursor.execute(
"""
INSERT INTO traces (
trace_id, service_name, root_span_id, start_time, end_time
) VALUES (?, ?, ?, ?, ?)
ON CONFLICT(trace_id) DO UPDATE SET
root_span_id = COALESCE(root_span_id, excluded.root_span_id),
start_time = MIN(excluded.start_time, start_time),
end_time = MAX(excluded.end_time, end_time)
""",
(
trace_id,
service_name,
(span_id if not parent_span_id else None),
datetime.fromtimestamp(span.start_time / 1e9).isoformat(),
datetime.fromtimestamp(span.end_time / 1e9).isoformat(),
),
)
# Insert into spans
cursor.execute(
"""
INSERT INTO spans (
span_id, trace_id, parent_span_id, name,
start_time, end_time, attributes, status,
kind
) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?)
""",
(
span_id,
trace_id,
parent_span_id,
span.name,
datetime.fromtimestamp(span.start_time / 1e9).isoformat(),
datetime.fromtimestamp(span.end_time / 1e9).isoformat(),
json.dumps(dict(span.attributes)),
span.status.status_code.name,
span.kind.name,
),
)
for event in span.events:
cursor.execute(
"""
INSERT INTO span_events (
span_id, name, timestamp, attributes
) VALUES (?, ?, ?, ?)
""",
(
span_id,
event.name,
datetime.fromtimestamp(event.timestamp / 1e9).isoformat(),
json.dumps(dict(event.attributes)),
),
)
conn.commit()
cursor.close()
except Exception as e:
print(f"Error exporting span to SQLite: {e}")
def shutdown(self):
"""Cleanup any resources."""
if self.conn:
self.conn.close()
self.conn = None
def force_flush(self, timeout_millis=30000):
"""Force export of spans."""
pass

View file

@ -5,6 +5,7 @@
# the root directory of this source tree.
import threading
from typing import Any, Dict, List, Optional
from opentelemetry import metrics, trace
from opentelemetry.exporter.otlp.proto.http.metric_exporter import OTLPMetricExporter
@ -16,10 +17,21 @@ from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from opentelemetry.semconv.resource import ResourceAttributes
from llama_stack.providers.inline.telemetry.meta_reference.console_span_processor import (
ConsoleSpanProcessor,
)
from llama_stack.providers.inline.telemetry.meta_reference.sqlite_span_processor import (
SQLiteSpanProcessor,
)
from llama_stack.providers.utils.telemetry.dataset_mixin import TelemetryDatasetMixin
from llama_stack.providers.utils.telemetry.sqlite_trace_store import SQLiteTraceStore
from llama_stack.apis.telemetry import * # noqa: F403
from .config import OpenTelemetryConfig
from llama_stack.distribution.datatypes import Api
from .config import TelemetryConfig, TelemetrySink
_GLOBAL_STORAGE = {
"active_spans": {},
@ -45,9 +57,10 @@ def is_tracing_enabled(tracer):
return span.is_recording()
class OpenTelemetryAdapter(Telemetry):
def __init__(self, config: OpenTelemetryConfig):
class TelemetryAdapter(TelemetryDatasetMixin, Telemetry):
def __init__(self, config: TelemetryConfig, deps: Dict[str, Any]) -> None:
self.config = config
self.datasetio_api = deps[Api.datasetio]
resource = Resource.create(
{
@ -57,22 +70,29 @@ class OpenTelemetryAdapter(Telemetry):
provider = TracerProvider(resource=resource)
trace.set_tracer_provider(provider)
otlp_exporter = OTLPSpanExporter(
endpoint=self.config.otel_endpoint,
)
span_processor = BatchSpanProcessor(otlp_exporter)
trace.get_tracer_provider().add_span_processor(span_processor)
# Set up metrics
metric_reader = PeriodicExportingMetricReader(
OTLPMetricExporter(
if TelemetrySink.OTEL in self.config.sinks:
otlp_exporter = OTLPSpanExporter(
endpoint=self.config.otel_endpoint,
)
)
metric_provider = MeterProvider(
resource=resource, metric_readers=[metric_reader]
)
metrics.set_meter_provider(metric_provider)
self.meter = metrics.get_meter(__name__)
span_processor = BatchSpanProcessor(otlp_exporter)
trace.get_tracer_provider().add_span_processor(span_processor)
metric_reader = PeriodicExportingMetricReader(
OTLPMetricExporter(
endpoint=self.config.otel_endpoint,
)
)
metric_provider = MeterProvider(
resource=resource, metric_readers=[metric_reader]
)
metrics.set_meter_provider(metric_provider)
self.meter = metrics.get_meter(__name__)
if TelemetrySink.SQLITE in self.config.sinks:
trace.get_tracer_provider().add_span_processor(
SQLiteSpanProcessor(self.config.sqlite_db_path)
)
self.trace_store = SQLiteTraceStore(self.config.sqlite_db_path)
if TelemetrySink.CONSOLE in self.config.sinks:
trace.get_tracer_provider().add_span_processor(ConsoleSpanProcessor())
self._lock = _global_lock
async def initialize(self) -> None:
@ -83,15 +103,17 @@ class OpenTelemetryAdapter(Telemetry):
trace.get_tracer_provider().shutdown()
metrics.get_meter_provider().shutdown()
async def log_event(self, event: Event) -> None:
async def log_event(self, event: Event, ttl_seconds: int = 604800) -> None:
if isinstance(event, UnstructuredLogEvent):
self._log_unstructured(event)
self._log_unstructured(event, ttl_seconds)
elif isinstance(event, MetricEvent):
self._log_metric(event)
elif isinstance(event, StructuredLogEvent):
self._log_structured(event)
self._log_structured(event, ttl_seconds)
else:
raise ValueError(f"Unknown event type: {event}")
def _log_unstructured(self, event: UnstructuredLogEvent) -> None:
def _log_unstructured(self, event: UnstructuredLogEvent, ttl_seconds: int) -> None:
with self._lock:
# Use global storage instead of instance storage
span_id = string_to_span_id(event.span_id)
@ -104,6 +126,7 @@ class OpenTelemetryAdapter(Telemetry):
attributes={
"message": event.message,
"severity": event.severity.value,
"__ttl__": ttl_seconds,
**event.attributes,
},
timestamp=timestamp_ns,
@ -154,11 +177,14 @@ class OpenTelemetryAdapter(Telemetry):
)
return _GLOBAL_STORAGE["up_down_counters"][name]
def _log_structured(self, event: StructuredLogEvent) -> None:
def _log_structured(self, event: StructuredLogEvent, ttl_seconds: int) -> None:
with self._lock:
span_id = string_to_span_id(event.span_id)
trace_id = string_to_trace_id(event.trace_id)
tracer = trace.get_tracer(__name__)
if event.attributes is None:
event.attributes = {}
event.attributes["__ttl__"] = ttl_seconds
if isinstance(event.payload, SpanStartPayload):
# Check if span already exists to prevent duplicates
@ -170,7 +196,6 @@ class OpenTelemetryAdapter(Telemetry):
parent_span_id = string_to_span_id(event.payload.parent_span_id)
parent_span = _GLOBAL_STORAGE["active_spans"].get(parent_span_id)
# Create a new trace context with the trace_id
context = trace.Context(trace_id=trace_id)
if parent_span:
context = trace.set_span_in_context(parent_span, context)
@ -179,14 +204,9 @@ class OpenTelemetryAdapter(Telemetry):
name=event.payload.name,
context=context,
attributes=event.attributes or {},
start_time=int(event.timestamp.timestamp() * 1e9),
)
_GLOBAL_STORAGE["active_spans"][span_id] = span
# Set as current span using context manager
with trace.use_span(span, end_on_exit=False):
pass # Let the span continue beyond this block
elif isinstance(event.payload, SpanEndPayload):
span = _GLOBAL_STORAGE["active_spans"].get(span_id)
if span:
@ -199,10 +219,33 @@ class OpenTelemetryAdapter(Telemetry):
else trace.Status(status_code=trace.StatusCode.ERROR)
)
span.set_status(status)
span.end(end_time=int(event.timestamp.timestamp() * 1e9))
# Remove from active spans
span.end()
_GLOBAL_STORAGE["active_spans"].pop(span_id, None)
else:
raise ValueError(f"Unknown structured log event: {event}")
async def get_trace(self, trace_id: str) -> Trace:
raise NotImplementedError("Trace retrieval not implemented yet")
async def query_traces(
self,
attribute_filters: Optional[List[QueryCondition]] = None,
limit: Optional[int] = 100,
offset: Optional[int] = 0,
order_by: Optional[List[str]] = None,
) -> List[Trace]:
return await self.trace_store.query_traces(
attribute_filters=attribute_filters,
limit=limit,
offset=offset,
order_by=order_by,
)
async def get_span_tree(
self,
span_id: str,
attributes_to_return: Optional[List[str]] = None,
max_depth: Optional[int] = None,
) -> SpanWithChildren:
return await self.trace_store.get_span_tree(
span_id=span_id,
attributes_to_return=attributes_to_return,
max_depth=max_depth,
)

View file

@ -61,6 +61,17 @@ def available_providers() -> List[ProviderSpec]:
config_class="llama_stack.providers.remote.inference.sample.SampleConfig",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(
adapter_type="cerebras",
pip_packages=[
"cerebras_cloud_sdk",
],
module="llama_stack.providers.remote.inference.cerebras",
config_class="llama_stack.providers.remote.inference.cerebras.CerebrasImplConfig",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(

View file

@ -53,9 +53,16 @@ def available_providers() -> List[ProviderSpec]:
adapter_type="chromadb",
pip_packages=EMBEDDING_DEPS + ["chromadb-client"],
module="llama_stack.providers.remote.memory.chroma",
config_class="llama_stack.distribution.datatypes.RemoteProviderConfig",
config_class="llama_stack.providers.remote.memory.chroma.ChromaRemoteImplConfig",
),
),
InlineProviderSpec(
api=Api.memory,
provider_type="inline::chromadb",
pip_packages=EMBEDDING_DEPS + ["chromadb"],
module="llama_stack.providers.inline.memory.chroma",
config_class="llama_stack.providers.inline.memory.chroma.ChromaInlineImplConfig",
),
remote_provider_spec(
Api.memory,
AdapterSpec(

View file

@ -14,9 +14,13 @@ def available_providers() -> List[ProviderSpec]:
InlineProviderSpec(
api=Api.telemetry,
provider_type="inline::meta-reference",
pip_packages=[],
module="llama_stack.providers.inline.meta_reference.telemetry",
config_class="llama_stack.providers.inline.meta_reference.telemetry.ConsoleConfig",
pip_packages=[
"opentelemetry-sdk",
"opentelemetry-exporter-otlp-proto-http",
],
api_dependencies=[Api.datasetio],
module="llama_stack.providers.inline.telemetry.meta_reference",
config_class="llama_stack.providers.inline.telemetry.meta_reference.config.TelemetryConfig",
),
remote_provider_spec(
api=Api.telemetry,
@ -27,18 +31,4 @@ def available_providers() -> List[ProviderSpec]:
config_class="llama_stack.providers.remote.telemetry.sample.SampleConfig",
),
),
remote_provider_spec(
api=Api.telemetry,
adapter=AdapterSpec(
adapter_type="opentelemetry-jaeger",
pip_packages=[
"opentelemetry-api",
"opentelemetry-sdk",
"opentelemetry-exporter-jaeger",
"opentelemetry-semantic-conventions",
],
module="llama_stack.providers.remote.telemetry.opentelemetry",
config_class="llama_stack.providers.remote.telemetry.opentelemetry.OpenTelemetryConfig",
),
),
]

View file

@ -3,7 +3,7 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Optional
from typing import Any, Dict, List, Optional
from llama_stack.apis.datasetio import * # noqa: F403
@ -64,6 +64,11 @@ class HuggingfaceDatasetIOImpl(DatasetIO, DatasetsProtocolPrivate):
)
self.dataset_infos[dataset_def.identifier] = dataset_def
async def unregister_dataset(self, dataset_id: str) -> None:
key = f"{DATASETS_PREFIX}{dataset_id}"
await self.kvstore.delete(key=key)
del self.dataset_infos[dataset_id]
async def get_rows_paginated(
self,
dataset_id: str,
@ -95,3 +100,22 @@ class HuggingfaceDatasetIOImpl(DatasetIO, DatasetsProtocolPrivate):
total_count=len(rows),
next_page_token=str(end),
)
async def append_rows(self, dataset_id: str, rows: List[Dict[str, Any]]) -> None:
dataset_def = self.dataset_infos[dataset_id]
loaded_dataset = load_hf_dataset(dataset_def)
# Convert rows to HF Dataset format
new_dataset = hf_datasets.Dataset.from_list(rows)
# Concatenate the new rows with existing dataset
updated_dataset = hf_datasets.concatenate_datasets(
[loaded_dataset, new_dataset]
)
if dataset_def.metadata.get("path", None):
updated_dataset.push_to_hub(dataset_def.metadata["path"])
else:
raise NotImplementedError(
"Uploading to URL-based datasets is not supported yet"
)

View file

@ -0,0 +1,21 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .config import CerebrasImplConfig
async def get_adapter_impl(config: CerebrasImplConfig, _deps):
from .cerebras import CerebrasInferenceAdapter
assert isinstance(
config, CerebrasImplConfig
), f"Unexpected config type: {type(config)}"
impl = CerebrasInferenceAdapter(config)
await impl.initialize()
return impl

View file

@ -0,0 +1,191 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import AsyncGenerator
from cerebras.cloud.sdk import AsyncCerebras
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.datatypes import Message
from llama_models.llama3.api.tokenizer import Tokenizer
from llama_stack.apis.inference import * # noqa: F403
from llama_models.datatypes import CoreModelId
from llama_stack.providers.utils.inference.model_registry import (
build_model_alias,
ModelRegistryHelper,
)
from llama_stack.providers.utils.inference.openai_compat import (
get_sampling_options,
process_chat_completion_response,
process_chat_completion_stream_response,
process_completion_response,
process_completion_stream_response,
)
from llama_stack.providers.utils.inference.prompt_adapter import (
chat_completion_request_to_prompt,
completion_request_to_prompt,
)
from .config import CerebrasImplConfig
model_aliases = [
build_model_alias(
"llama3.1-8b",
CoreModelId.llama3_1_8b_instruct.value,
),
build_model_alias(
"llama3.1-70b",
CoreModelId.llama3_1_70b_instruct.value,
),
]
class CerebrasInferenceAdapter(ModelRegistryHelper, Inference):
def __init__(self, config: CerebrasImplConfig) -> None:
ModelRegistryHelper.__init__(
self,
model_aliases=model_aliases,
)
self.config = config
self.formatter = ChatFormat(Tokenizer.get_instance())
self.client = AsyncCerebras(
base_url=self.config.base_url, api_key=self.config.api_key
)
async def initialize(self) -> None:
return
async def shutdown(self) -> None:
pass
async def completion(
self,
model_id: str,
content: InterleavedTextMedia,
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> AsyncGenerator:
model = await self.model_store.get_model(model_id)
request = CompletionRequest(
model=model.provider_resource_id,
content=content,
sampling_params=sampling_params,
response_format=response_format,
stream=stream,
logprobs=logprobs,
)
if stream:
return self._stream_completion(
request,
)
else:
return await self._nonstream_completion(request)
async def _nonstream_completion(
self, request: CompletionRequest
) -> CompletionResponse:
params = self._get_params(request)
r = await self.client.completions.create(**params)
return process_completion_response(r, self.formatter)
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
params = self._get_params(request)
stream = await self.client.completions.create(**params)
async for chunk in process_completion_stream_response(stream, self.formatter):
yield chunk
async def chat_completion(
self,
model_id: str,
messages: List[Message],
sampling_params: Optional[SamplingParams] = SamplingParams(),
tools: Optional[List[ToolDefinition]] = None,
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> AsyncGenerator:
model = await self.model_store.get_model(model_id)
request = ChatCompletionRequest(
model=model.provider_resource_id,
messages=messages,
sampling_params=sampling_params,
tools=tools or [],
tool_choice=tool_choice,
tool_prompt_format=tool_prompt_format,
response_format=response_format,
stream=stream,
logprobs=logprobs,
)
if stream:
return self._stream_chat_completion(request)
else:
return await self._nonstream_chat_completion(request)
async def _nonstream_chat_completion(
self, request: CompletionRequest
) -> CompletionResponse:
params = self._get_params(request)
r = await self.client.completions.create(**params)
return process_chat_completion_response(r, self.formatter)
async def _stream_chat_completion(
self, request: CompletionRequest
) -> AsyncGenerator:
params = self._get_params(request)
stream = await self.client.completions.create(**params)
async for chunk in process_chat_completion_stream_response(
stream, self.formatter
):
yield chunk
def _get_params(
self, request: Union[ChatCompletionRequest, CompletionRequest]
) -> dict:
if request.sampling_params and request.sampling_params.top_k:
raise ValueError("`top_k` not supported by Cerebras")
prompt = ""
if type(request) == ChatCompletionRequest:
prompt = chat_completion_request_to_prompt(
request, self.get_llama_model(request.model), self.formatter
)
elif type(request) == CompletionRequest:
prompt = completion_request_to_prompt(request, self.formatter)
else:
raise ValueError(f"Unknown request type {type(request)}")
return {
"model": request.model,
"prompt": prompt,
"stream": request.stream,
**get_sampling_options(request.sampling_params),
}
async def embeddings(
self,
model_id: str,
contents: List[InterleavedTextMedia],
) -> EmbeddingsResponse:
raise NotImplementedError()

View file

@ -0,0 +1,32 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import os
from typing import Any, Dict, Optional
from llama_models.schema_utils import json_schema_type
from pydantic import BaseModel, Field
DEFAULT_BASE_URL = "https://api.cerebras.ai"
@json_schema_type
class CerebrasImplConfig(BaseModel):
base_url: str = Field(
default=os.environ.get("CEREBRAS_BASE_URL", DEFAULT_BASE_URL),
description="Base URL for the Cerebras API",
)
api_key: Optional[str] = Field(
default=os.environ.get("CEREBRAS_API_KEY"),
description="Cerebras API Key",
)
@classmethod
def sample_run_config(cls, **kwargs) -> Dict[str, Any]:
return {
"base_url": DEFAULT_BASE_URL,
"api_key": "${env.CEREBRAS_API_KEY}",
}

View file

@ -9,6 +9,7 @@ from typing import AsyncIterator, List, Optional, Union
from llama_models.datatypes import SamplingParams
from llama_models.llama3.api.datatypes import (
ImageMedia,
InterleavedTextMedia,
Message,
ToolChoice,
@ -22,6 +23,7 @@ from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseStreamChunk,
CompletionRequest,
CompletionResponse,
CompletionResponseStreamChunk,
EmbeddingsResponse,
@ -37,8 +39,11 @@ from llama_stack.providers.utils.inference.model_registry import (
from . import NVIDIAConfig
from .openai_utils import (
convert_chat_completion_request,
convert_completion_request,
convert_openai_chat_completion_choice,
convert_openai_chat_completion_stream,
convert_openai_completion_choice,
convert_openai_completion_stream,
)
from .utils import _is_nvidia_hosted, check_health
@ -115,7 +120,7 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
timeout=self._config.timeout,
)
def completion(
async def completion(
self,
model_id: str,
content: InterleavedTextMedia,
@ -124,7 +129,38 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> Union[CompletionResponse, AsyncIterator[CompletionResponseStreamChunk]]:
raise NotImplementedError()
if isinstance(content, ImageMedia) or (
isinstance(content, list)
and any(isinstance(c, ImageMedia) for c in content)
):
raise NotImplementedError("ImageMedia is not supported")
await check_health(self._config) # this raises errors
request = convert_completion_request(
request=CompletionRequest(
model=self.get_provider_model_id(model_id),
content=content,
sampling_params=sampling_params,
response_format=response_format,
stream=stream,
logprobs=logprobs,
),
n=1,
)
try:
response = await self._client.completions.create(**request)
except APIConnectionError as e:
raise ConnectionError(
f"Failed to connect to NVIDIA NIM at {self._config.url}: {e}"
) from e
if stream:
return convert_openai_completion_stream(response)
else:
# we pass n=1 to get only one completion
return convert_openai_completion_choice(response.choices[0])
async def embeddings(
self,

View file

@ -17,7 +17,6 @@ from llama_models.llama3.api.datatypes import (
ToolDefinition,
)
from openai import AsyncStream
from openai.types.chat import (
ChatCompletionAssistantMessageParam as OpenAIChatCompletionAssistantMessage,
ChatCompletionChunk as OpenAIChatCompletionChunk,
@ -31,10 +30,11 @@ from openai.types.chat.chat_completion import (
Choice as OpenAIChoice,
ChoiceLogprobs as OpenAIChoiceLogprobs, # same as chat_completion_chunk ChoiceLogprobs
)
from openai.types.chat.chat_completion_message_tool_call_param import (
Function as OpenAIFunction,
)
from openai.types.completion import Completion as OpenAICompletion
from openai.types.completion_choice import Logprobs as OpenAICompletionLogprobs
from llama_stack.apis.inference import (
ChatCompletionRequest,
@ -42,6 +42,9 @@ from llama_stack.apis.inference import (
ChatCompletionResponseEvent,
ChatCompletionResponseEventType,
ChatCompletionResponseStreamChunk,
CompletionRequest,
CompletionResponse,
CompletionResponseStreamChunk,
JsonSchemaResponseFormat,
Message,
SystemMessage,
@ -579,3 +582,165 @@ async def convert_openai_chat_completion_stream(
stop_reason=stop_reason,
)
)
def convert_completion_request(
request: CompletionRequest,
n: int = 1,
) -> dict:
"""
Convert a ChatCompletionRequest to an OpenAI API-compatible dictionary.
"""
# model -> model
# prompt -> prompt
# sampling_params TODO(mattf): review strategy
# strategy=greedy -> nvext.top_k = -1, temperature = temperature
# strategy=top_p -> nvext.top_k = -1, top_p = top_p
# strategy=top_k -> nvext.top_k = top_k
# temperature -> temperature
# top_p -> top_p
# top_k -> nvext.top_k
# max_tokens -> max_tokens
# repetition_penalty -> nvext.repetition_penalty
# response_format -> nvext.guided_json
# stream -> stream
# logprobs.top_k -> logprobs
nvext = {}
payload: Dict[str, Any] = dict(
model=request.model,
prompt=request.content,
stream=request.stream,
extra_body=dict(nvext=nvext),
extra_headers={
b"User-Agent": b"llama-stack: nvidia-inference-adapter",
},
n=n,
)
if request.response_format:
# this is not openai compliant, it is a nim extension
nvext.update(guided_json=request.response_format.json_schema)
if request.logprobs:
payload.update(logprobs=request.logprobs.top_k)
if request.sampling_params:
nvext.update(repetition_penalty=request.sampling_params.repetition_penalty)
if request.sampling_params.max_tokens:
payload.update(max_tokens=request.sampling_params.max_tokens)
if request.sampling_params.strategy == "top_p":
nvext.update(top_k=-1)
payload.update(top_p=request.sampling_params.top_p)
elif request.sampling_params.strategy == "top_k":
if (
request.sampling_params.top_k != -1
and request.sampling_params.top_k < 1
):
warnings.warn("top_k must be -1 or >= 1")
nvext.update(top_k=request.sampling_params.top_k)
elif request.sampling_params.strategy == "greedy":
nvext.update(top_k=-1)
payload.update(temperature=request.sampling_params.temperature)
return payload
def _convert_openai_completion_logprobs(
logprobs: Optional[OpenAICompletionLogprobs],
) -> Optional[List[TokenLogProbs]]:
"""
Convert an OpenAI CompletionLogprobs into a list of TokenLogProbs.
OpenAI CompletionLogprobs:
text_offset: Optional[List[int]]
token_logprobs: Optional[List[float]]
tokens: Optional[List[str]]
top_logprobs: Optional[List[Dict[str, float]]]
->
TokenLogProbs:
logprobs_by_token: Dict[str, float]
- token, logprob
"""
if not logprobs:
return None
return [
TokenLogProbs(logprobs_by_token=logprobs) for logprobs in logprobs.top_logprobs
]
def convert_openai_completion_choice(
choice: OpenAIChoice,
) -> CompletionResponse:
"""
Convert an OpenAI Completion Choice into a CompletionResponse.
OpenAI Completion Choice:
text: str
finish_reason: str
logprobs: Optional[ChoiceLogprobs]
->
CompletionResponse:
completion_message: CompletionMessage
logprobs: Optional[List[TokenLogProbs]]
CompletionMessage:
role: Literal["assistant"]
content: str | ImageMedia | List[str | ImageMedia]
stop_reason: StopReason
tool_calls: List[ToolCall]
class StopReason(Enum):
end_of_turn = "end_of_turn"
end_of_message = "end_of_message"
out_of_tokens = "out_of_tokens"
"""
return CompletionResponse(
content=choice.text,
stop_reason=_convert_openai_finish_reason(choice.finish_reason),
logprobs=_convert_openai_completion_logprobs(choice.logprobs),
)
async def convert_openai_completion_stream(
stream: AsyncStream[OpenAICompletion],
) -> AsyncGenerator[CompletionResponse, None]:
"""
Convert a stream of OpenAI Completions into a stream
of ChatCompletionResponseStreamChunks.
OpenAI Completion:
id: str
choices: List[OpenAICompletionChoice]
created: int
model: str
system_fingerprint: Optional[str]
usage: Optional[OpenAICompletionUsage]
OpenAI CompletionChoice:
finish_reason: str
index: int
logprobs: Optional[OpenAILogprobs]
text: str
->
CompletionResponseStreamChunk:
delta: str
stop_reason: Optional[StopReason]
logprobs: Optional[List[TokenLogProbs]]
"""
async for chunk in stream:
choice = chunk.choices[0]
yield CompletionResponseStreamChunk(
delta=choice.text,
stop_reason=_convert_openai_finish_reason(choice.finish_reason),
logprobs=_convert_openai_completion_logprobs(choice.logprobs),
)

View file

@ -180,7 +180,6 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
async def _nonstream_completion(self, request: CompletionRequest) -> AsyncGenerator:
params = await self._get_params(request)
r = await self.client.generate(**params)
assert isinstance(r, dict)
choice = OpenAICompatCompletionChoice(
finish_reason=r["done_reason"] if r["done"] else None,
@ -270,7 +269,6 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
r = await self.client.chat(**params)
else:
r = await self.client.generate(**params)
assert isinstance(r, dict)
if "message" in r:
choice = OpenAICompatCompletionChoice(

View file

@ -100,6 +100,7 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
tool_prompt_format=tool_prompt_format,
stream=stream,
logprobs=logprobs,
response_format=response_format,
)
if stream:
return self._stream_chat_completion(request, self.client)
@ -180,6 +181,16 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
self.formatter,
)
if fmt := request.response_format:
if fmt.type == ResponseFormatType.json_schema.value:
input_dict["extra_body"] = {
"guided_json": request.response_format.json_schema
}
elif fmt.type == ResponseFormatType.grammar.value:
raise NotImplementedError("Grammar response format not supported yet")
else:
raise ValueError(f"Unknown response format {fmt.type}")
return {
"model": request.model,
**input_dict,

View file

@ -4,12 +4,12 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.distribution.datatypes import RemoteProviderConfig
from .config import ChromaRemoteImplConfig
async def get_adapter_impl(config: RemoteProviderConfig, _deps):
async def get_adapter_impl(config: ChromaRemoteImplConfig, _deps):
from .chroma import ChromaMemoryAdapter
impl = ChromaMemoryAdapter(config.url)
impl = ChromaMemoryAdapter(config)
await impl.initialize()
return impl

View file

@ -3,7 +3,7 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import asyncio
import json
import logging
from typing import List
@ -12,21 +12,31 @@ from urllib.parse import urlparse
import chromadb
from numpy.typing import NDArray
from pydantic import parse_obj_as
from llama_stack.apis.memory import * # noqa: F403
from llama_stack.providers.datatypes import MemoryBanksProtocolPrivate
from llama_stack.providers.inline.memory.chroma import ChromaInlineImplConfig
from llama_stack.providers.utils.memory.vector_store import (
BankWithIndex,
EmbeddingIndex,
)
from .config import ChromaRemoteImplConfig
log = logging.getLogger(__name__)
ChromaClientType = Union[chromadb.AsyncHttpClient, chromadb.PersistentClient]
# this is a helper to allow us to use async and non-async chroma clients interchangeably
async def maybe_await(result):
if asyncio.iscoroutine(result):
return await result
return result
class ChromaIndex(EmbeddingIndex):
def __init__(self, client: chromadb.AsyncHttpClient, collection):
def __init__(self, client: ChromaClientType, collection):
self.client = client
self.collection = collection
@ -35,19 +45,23 @@ class ChromaIndex(EmbeddingIndex):
embeddings
), f"Chunk length {len(chunks)} does not match embedding length {len(embeddings)}"
await self.collection.add(
documents=[chunk.json() for chunk in chunks],
embeddings=embeddings,
ids=[f"{c.document_id}:chunk-{i}" for i, c in enumerate(chunks)],
await maybe_await(
self.collection.add(
documents=[chunk.model_dump_json() for chunk in chunks],
embeddings=embeddings,
ids=[f"{c.document_id}:chunk-{i}" for i, c in enumerate(chunks)],
)
)
async def query(
self, embedding: NDArray, k: int, score_threshold: float
) -> QueryDocumentsResponse:
results = await self.collection.query(
query_embeddings=[embedding.tolist()],
n_results=k,
include=["documents", "distances"],
results = await maybe_await(
self.collection.query(
query_embeddings=[embedding.tolist()],
n_results=k,
include=["documents", "distances"],
)
)
distances = results["distances"][0]
documents = results["documents"][0]
@ -68,31 +82,33 @@ class ChromaIndex(EmbeddingIndex):
return QueryDocumentsResponse(chunks=chunks, scores=scores)
async def delete(self):
await self.client.delete_collection(self.collection.name)
await maybe_await(self.client.delete_collection(self.collection.name))
class ChromaMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
def __init__(self, url: str) -> None:
log.info(f"Initializing ChromaMemoryAdapter with url: {url}")
url = url.rstrip("/")
parsed = urlparse(url)
if parsed.path and parsed.path != "/":
raise ValueError("URL should not contain a path")
self.host = parsed.hostname
self.port = parsed.port
def __init__(
self, config: Union[ChromaRemoteImplConfig, ChromaInlineImplConfig]
) -> None:
log.info(f"Initializing ChromaMemoryAdapter with url: {config}")
self.config = config
self.client = None
self.cache = {}
async def initialize(self) -> None:
try:
log.info(f"Connecting to Chroma server at: {self.host}:{self.port}")
self.client = await chromadb.AsyncHttpClient(host=self.host, port=self.port)
except Exception as e:
log.exception("Could not connect to Chroma server")
raise RuntimeError("Could not connect to Chroma server") from e
if isinstance(self.config, ChromaRemoteImplConfig):
log.info(f"Connecting to Chroma server at: {self.config.url}")
url = self.config.url.rstrip("/")
parsed = urlparse(url)
if parsed.path and parsed.path != "/":
raise ValueError("URL should not contain a path")
self.client = await chromadb.AsyncHttpClient(
host=parsed.hostname, port=parsed.port
)
else:
log.info(f"Connecting to Chroma local db at: {self.config.db_path}")
self.client = chromadb.PersistentClient(path=self.config.db_path)
async def shutdown(self) -> None:
pass
@ -105,33 +121,17 @@ class ChromaMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
memory_bank.memory_bank_type == MemoryBankType.vector.value
), f"Only vector banks are supported {memory_bank.memory_bank_type}"
collection = await self.client.get_or_create_collection(
name=memory_bank.identifier,
metadata={"bank": memory_bank.model_dump_json()},
collection = await maybe_await(
self.client.get_or_create_collection(
name=memory_bank.identifier,
metadata={"bank": memory_bank.model_dump_json()},
)
)
bank_index = BankWithIndex(
bank=memory_bank, index=ChromaIndex(self.client, collection)
)
self.cache[memory_bank.identifier] = bank_index
async def list_memory_banks(self) -> List[MemoryBank]:
collections = await self.client.list_collections()
for collection in collections:
try:
data = json.loads(collection.metadata["bank"])
bank = parse_obj_as(VectorMemoryBank, data)
except Exception:
log.exception(f"Failed to parse bank: {collection.metadata}")
continue
index = BankWithIndex(
bank=bank,
index=ChromaIndex(self.client, collection),
)
self.cache[bank.identifier] = index
return [i.bank for i in self.cache.values()]
async def unregister_memory_bank(self, memory_bank_id: str) -> None:
await self.cache[memory_bank_id].index.delete()
del self.cache[memory_bank_id]
@ -163,7 +163,7 @@ class ChromaMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
bank = await self.memory_bank_store.get_memory_bank(bank_id)
if not bank:
raise ValueError(f"Bank {bank_id} not found in Llama Stack")
collection = await self.client.get_collection(bank_id)
collection = await maybe_await(self.client.get_collection(bank_id))
if not collection:
raise ValueError(f"Bank {bank_id} not found in Chroma")
index = BankWithIndex(bank=bank, index=ChromaIndex(self.client, collection))

View file

@ -0,0 +1,17 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict
from pydantic import BaseModel
class ChromaRemoteImplConfig(BaseModel):
url: str
@classmethod
def sample_config(cls) -> Dict[str, Any]:
return {"url": "{env.CHROMADB_URL}"}

View file

@ -185,17 +185,6 @@ class PGVectorMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
await self.cache[memory_bank_id].index.delete()
del self.cache[memory_bank_id]
async def list_memory_banks(self) -> List[MemoryBank]:
banks = load_models(self.cursor, VectorMemoryBank)
for bank in banks:
if bank.identifier not in self.cache:
index = BankWithIndex(
bank=bank,
index=PGVectorIndex(bank, ALL_MINILM_L6_V2_DIMENSION, self.cursor),
)
self.cache[bank.identifier] = index
return banks
async def insert_documents(
self,
bank_id: str,

View file

@ -127,11 +127,6 @@ class QdrantVectorMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
self.cache[memory_bank.identifier] = index
async def list_memory_banks(self) -> List[MemoryBank]:
# Qdrant doesn't have collection level metadata to store the bank properties
# So we only return from the cache value
return [i.bank for i in self.cache.values()]
async def _get_and_cache_bank_index(self, bank_id: str) -> Optional[BankWithIndex]:
if bank_id in self.cache:
return self.cache[bank_id]

View file

@ -14,7 +14,7 @@ class SampleMemoryImpl(Memory):
def __init__(self, config: SampleConfig):
self.config = config
async def register_memory_bank(self, memory_bank: MemoryBankDef) -> None:
async def register_memory_bank(self, memory_bank: MemoryBank) -> None:
# these are the memory banks the Llama Stack will use to route requests to this provider
# perform validation here if necessary
pass

View file

@ -141,13 +141,6 @@ class WeaviateMemoryAdapter(
)
self.cache[memory_bank.identifier] = index
async def list_memory_banks(self) -> List[MemoryBank]:
# TODO: right now the Llama Stack is the source of truth for these banks. That is
# not ideal. It should be Weaviate which is the source of truth. Unfortunately,
# list() happens at Stack startup when the Weaviate client (credentials) is not
# yet available. We need to figure out a way to make this work.
return [i.bank for i in self.cache.values()]
async def _get_and_cache_bank_index(self, bank_id: str) -> Optional[BankWithIndex]:
if bank_id in self.cache:
return self.cache[bank_id]

View file

@ -1,15 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .config import OpenTelemetryConfig
async def get_adapter_impl(config: OpenTelemetryConfig, _deps):
from .opentelemetry import OpenTelemetryAdapter
impl = OpenTelemetryAdapter(config)
await impl.initialize()
return impl

View file

@ -1,27 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict
from pydantic import BaseModel, Field
class OpenTelemetryConfig(BaseModel):
otel_endpoint: str = Field(
default="http://localhost:4318/v1/traces",
description="The OpenTelemetry collector endpoint URL",
)
service_name: str = Field(
default="llama-stack",
description="The service name to use for telemetry",
)
@classmethod
def sample_run_config(cls, **kwargs) -> Dict[str, Any]:
return {
"otel_endpoint": "${env.OTEL_ENDPOINT:http://localhost:4318/v1/traces}",
"service_name": "${env.OTEL_SERVICE_NAME:llama-stack}",
}

View file

@ -81,6 +81,18 @@ class TestDatasetIO:
assert len(response) == 1
assert response[0].identifier == "test_dataset"
with pytest.raises(Exception) as exc_info:
# unregister a dataset that does not exist
await datasets_impl.unregister_dataset("test_dataset2")
await datasets_impl.unregister_dataset("test_dataset")
response = await datasets_impl.list_datasets()
assert isinstance(response, list)
assert len(response) == 0
with pytest.raises(Exception) as exc_info:
await datasets_impl.unregister_dataset("test_dataset")
@pytest.mark.asyncio
async def test_get_rows_paginated(self, datasetio_stack):
datasetio_impl, datasets_impl = datasetio_stack

Some files were not shown because too many files have changed in this diff Show more