Merge branch 'main' into remove-authorization-from-provider-data

This commit is contained in:
Omar Abdelwahab 2025-11-14 17:55:25 -08:00 committed by GitHub
commit fd1fa568c9
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
64 changed files with 47592 additions and 30218 deletions

View file

@ -42,7 +42,6 @@ repos:
hooks: hooks:
- id: ruff - id: ruff
args: [ --fix ] args: [ --fix ]
exclude: ^(src/llama_stack_api/strong_typing/.*)$
- id: ruff-format - id: ruff-format
- repo: https://github.com/adamchainz/blacken-docs - repo: https://github.com/adamchainz/blacken-docs
@ -106,16 +105,16 @@ repos:
language: python language: python
pass_filenames: false pass_filenames: false
require_serial: true require_serial: true
files: ^src/llama_stack/providers/.*$ files: ^src/llama_stack/providers/.*$|^scripts/run_openapi_generator.sh$
- id: openapi-codegen - id: openapi-codegen
name: API Spec Codegen name: API Spec Codegen
additional_dependencies: additional_dependencies:
- uv==0.7.8 - uv==0.7.8
entry: sh -c './scripts/uv-run-with-index.sh run ./docs/openapi_generator/run_openapi_generator.sh > /dev/null' entry: sh -c './scripts/uv-run-with-index.sh run scripts/run_openapi_generator.sh'
language: python language: python
pass_filenames: false pass_filenames: false
require_serial: true require_serial: true
files: ^src/llama_stack/apis/|^docs/openapi_generator/ files: ^src/llama_stack_api/.*$
- id: check-workflows-use-hashes - id: check-workflows-use-hashes
name: Check GitHub Actions use SHA-pinned actions name: Check GitHub Actions use SHA-pinned actions
entry: ./scripts/check-workflows-use-hashes.sh entry: ./scripts/check-workflows-use-hashes.sh

View file

@ -231,7 +231,7 @@ npm run serve
If you modify or add new API endpoints, update the API documentation accordingly. You can do this by running the following command: If you modify or add new API endpoints, update the API documentation accordingly. You can do this by running the following command:
```bash ```bash
uv run ./docs/openapi_generator/run_openapi_generator.sh uv run ./scripts/run_openapi_generator.sh
``` ```
The generated API schema will be available in `docs/static/`. Make sure to review the changes before committing. The generated API schema will be available in `docs/static/`. Make sure to review the changes before committing.

View file

@ -5,4 +5,4 @@ These are the source-of-truth configuration files used to generate the Stainless
A small side note: notice the `.yml` suffixes since Stainless uses that suffix typically for its configuration files. A small side note: notice the `.yml` suffixes since Stainless uses that suffix typically for its configuration files.
These files go hand-in-hand. As of now, only the `openapi.yml` file is automatically generated using the `run_openapi_generator.sh` script. These files go hand-in-hand. As of now, only the `openapi.yml` file is automatically generated using the `scripts/run_openapi_generator.sh` script.

View file

@ -115,9 +115,6 @@ resources:
sampling_params: SamplingParams sampling_params: SamplingParams
scoring_result: ScoringResult scoring_result: ScoringResult
system_message: SystemMessage system_message: SystemMessage
query_result: RAGQueryResult
document: RAGDocument
query_config: RAGQueryConfig
toolgroups: toolgroups:
models: models:
tool_group: ToolGroup tool_group: ToolGroup
@ -143,11 +140,6 @@ resources:
endpoint: get /v1/tool-runtime/list-tools endpoint: get /v1/tool-runtime/list-tools
paginated: false paginated: false
invoke_tool: post /v1/tool-runtime/invoke invoke_tool: post /v1/tool-runtime/invoke
subresources:
rag_tool:
methods:
insert: post /v1/tool-runtime/rag-tool/insert
query: post /v1/tool-runtime/rag-tool/query
responses: responses:
models: models:
@ -173,6 +165,7 @@ resources:
list: list:
type: http type: http
endpoint: get /v1/responses/{response_id}/input_items endpoint: get /v1/responses/{response_id}/input_items
paginated: false
prompts: prompts:
models: models:
@ -220,6 +213,9 @@ resources:
create: create:
type: http type: http
endpoint: post /v1/conversations/{conversation_id}/items endpoint: post /v1/conversations/{conversation_id}/items
delete:
type: http
endpoint: delete /v1/conversations/{conversation_id}/items/{item_id}
inspect: inspect:
models: models:
@ -252,6 +248,7 @@ resources:
list: list:
type: http type: http
endpoint: get /v1/chat/completions endpoint: get /v1/chat/completions
paginated: false
retrieve: retrieve:
type: http type: http
endpoint: get /v1/chat/completions/{completion_id} endpoint: get /v1/chat/completions/{completion_id}
@ -375,6 +372,7 @@ resources:
endpoint: get /v1/scoring-functions endpoint: get /v1/scoring-functions
paginated: false paginated: false
register: post /v1/scoring-functions register: post /v1/scoring-functions
unregister: delete /v1/scoring-functions/{scoring_fn_id}
models: models:
scoring_fn: ScoringFn scoring_fn: ScoringFn
scoring_fn_params: ScoringFnParams scoring_fn_params: ScoringFnParams
@ -392,6 +390,13 @@ resources:
list_files_response: ListOpenAIFileResponse list_files_response: ListOpenAIFileResponse
delete_file_response: OpenAIFileDeleteResponse delete_file_response: OpenAIFileDeleteResponse
batches:
methods:
create: post /v1/batches
list: get /v1/batches
retrieve: get /v1/batches/{batch_id}
cancel: post /v1/batches/{batch_id}/cancel
alpha: alpha:
subresources: subresources:
inference: inference:
@ -423,6 +428,7 @@ resources:
endpoint: get /v1alpha/eval/benchmarks endpoint: get /v1alpha/eval/benchmarks
paginated: false paginated: false
register: post /v1alpha/eval/benchmarks register: post /v1alpha/eval/benchmarks
unregister: delete /v1alpha/eval/benchmarks/{benchmark_id}
models: models:
benchmark: Benchmark benchmark: Benchmark
list_benchmarks_response: ListBenchmarksResponse list_benchmarks_response: ListBenchmarksResponse
@ -519,7 +525,7 @@ readme:
params: &ref_0 {} params: &ref_0 {}
headline: headline:
type: request type: request
endpoint: post /v1/models endpoint: get /v1/models
params: *ref_0 params: *ref_0
pagination: pagination:
type: request type: request

File diff suppressed because it is too large Load diff

View file

@ -1 +0,0 @@
The RFC Specification (OpenAPI format) is generated from the set of API endpoints located in `llama_stack.core/server/endpoints.py` using the `generate.py` utility.

View file

@ -1,134 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described found in the
# LICENSE file in the root directory of this source tree.
from datetime import datetime
from pathlib import Path
import sys
import fire
import ruamel.yaml as yaml
from llama_stack_api import LLAMA_STACK_API_V1 # noqa: E402
from llama_stack.core.stack import LlamaStack # noqa: E402
from .pyopenapi.options import Options # noqa: E402
from .pyopenapi.specification import Info, Server # noqa: E402
from .pyopenapi.utility import Specification, validate_api # noqa: E402
def str_presenter(dumper, data):
if data.startswith(f"/{LLAMA_STACK_API_V1}") or data.startswith(
"#/components/schemas/"
):
style = None
else:
style = ">" if "\n" in data or len(data) > 40 else None
return dumper.represent_scalar("tag:yaml.org,2002:str", data, style=style)
def generate_spec(output_dir: Path, stability_filter: str = None, main_spec: bool = False, combined_spec: bool = False):
"""Generate OpenAPI spec with optional stability filtering."""
if combined_spec:
# Special case for combined stable + experimental APIs
title_suffix = " - Stable & Experimental APIs"
filename_prefix = "stainless-"
description_suffix = "\n\n**🔗 COMBINED**: This specification includes both stable production-ready APIs and experimental pre-release APIs. Use stable APIs for production deployments and experimental APIs for testing new features."
# Use the special "stainless" filter to include stable + experimental APIs
stability_filter = "stainless"
elif stability_filter:
title_suffix = {
"stable": " - Stable APIs" if not main_spec else "",
"experimental": " - Experimental APIs",
"deprecated": " - Deprecated APIs"
}.get(stability_filter, f" - {stability_filter.title()} APIs")
# Use main spec filename for stable when main_spec=True
if main_spec and stability_filter == "stable":
filename_prefix = ""
else:
filename_prefix = f"{stability_filter}-"
description_suffix = {
"stable": "\n\n**✅ STABLE**: Production-ready APIs with backward compatibility guarantees.",
"experimental": "\n\n**🧪 EXPERIMENTAL**: Pre-release APIs (v1alpha, v1beta) that may change before becoming stable.",
"deprecated": "\n\n**⚠️ DEPRECATED**: Legacy APIs that may be removed in future versions. Use for migration reference only."
}.get(stability_filter, "")
else:
title_suffix = ""
filename_prefix = ""
description_suffix = ""
spec = Specification(
LlamaStack,
Options(
server=Server(url="http://any-hosted-llama-stack.com"),
info=Info(
title=f"Llama Stack Specification{title_suffix}",
version=LLAMA_STACK_API_V1,
description=f"""This is the specification of the Llama Stack that provides
a set of endpoints and their corresponding interfaces that are tailored to
best leverage Llama Models.{description_suffix}""",
),
include_standard_error_responses=True,
stability_filter=stability_filter, # Pass the filter to the generator
),
)
yaml_filename = f"{filename_prefix}llama-stack-spec.yaml"
with open(output_dir / yaml_filename, "w", encoding="utf-8") as fp:
y = yaml.YAML()
y.default_flow_style = False
y.block_seq_indent = 2
y.map_indent = 2
y.sequence_indent = 4
y.sequence_dash_offset = 2
y.width = 80
y.allow_unicode = True
y.representer.add_representer(str, str_presenter)
y.dump(
spec.get_json(),
fp,
)
def main(output_dir: str):
output_dir = Path(output_dir)
if not output_dir.exists():
raise ValueError(f"Directory {output_dir} does not exist")
# Validate API protocols before generating spec
return_type_errors = validate_api()
if return_type_errors:
print("\nAPI Method Return Type Validation Errors:\n")
for error in return_type_errors:
print(error, file=sys.stderr)
sys.exit(1)
now = str(datetime.now())
print(f"Converting the spec to YAML (openapi.yaml) and HTML (openapi.html) at {now}")
print("")
# Generate main spec as stable APIs (llama-stack-spec.yaml)
print("Generating main specification (stable APIs)...")
generate_spec(output_dir, "stable", main_spec=True)
print("Generating other stability-filtered specifications...")
generate_spec(output_dir, "experimental")
generate_spec(output_dir, "deprecated")
print("Generating combined stable + experimental specification...")
generate_spec(output_dir, combined_spec=True)
if __name__ == "__main__":
fire.Fire(main)

View file

@ -1 +0,0 @@
This is forked from https://github.com/hunyadi/pyopenapi

File diff suppressed because it is too large Load diff

View file

@ -1,459 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import collections.abc
import enum
import inspect
import typing
from dataclasses import dataclass
from typing import Any, Callable, Dict, Iterable, Iterator, List, Optional, Tuple, Union
from termcolor import colored
from typing import get_origin, get_args
from fastapi import UploadFile
from fastapi.params import File, Form
from typing import Annotated
from llama_stack_api import (
ExtraBodyField,
LLAMA_STACK_API_V1,
LLAMA_STACK_API_V1ALPHA,
LLAMA_STACK_API_V1BETA,
get_signature,
)
def split_prefix(
s: str, sep: str, prefix: Union[str, Iterable[str]]
) -> Tuple[Optional[str], str]:
"""
Recognizes a prefix at the beginning of a string.
:param s: The string to check.
:param sep: A separator between (one of) the prefix(es) and the rest of the string.
:param prefix: A string or a set of strings to identify as a prefix.
:return: A tuple of the recognized prefix (if any) and the rest of the string excluding the separator (or the entire string).
"""
if isinstance(prefix, str):
if s.startswith(prefix + sep):
return prefix, s[len(prefix) + len(sep) :]
else:
return None, s
for p in prefix:
if s.startswith(p + sep):
return p, s[len(p) + len(sep) :]
return None, s
def _get_annotation_type(annotation: Union[type, str], callable: Callable) -> type:
"Maps a stringized reference to a type, as if using `from __future__ import annotations`."
if isinstance(annotation, str):
return eval(annotation, callable.__globals__)
else:
return annotation
class HTTPMethod(enum.Enum):
"HTTP method used to invoke an endpoint operation."
GET = "GET"
POST = "POST"
PUT = "PUT"
DELETE = "DELETE"
PATCH = "PATCH"
OperationParameter = Tuple[str, type]
class ValidationError(TypeError):
pass
@dataclass
class EndpointOperation:
"""
Type information and metadata associated with an endpoint operation.
"param defining_class: The most specific class that defines the endpoint operation.
:param name: The short name of the endpoint operation.
:param func_name: The name of the function to invoke when the operation is triggered.
:param func_ref: The callable to invoke when the operation is triggered.
:param route: A custom route string assigned to the operation.
:param path_params: Parameters of the operation signature that are passed in the path component of the URL string.
:param query_params: Parameters of the operation signature that are passed in the query string as `key=value` pairs.
:param request_params: The parameter that corresponds to the data transmitted in the request body.
:param multipart_params: Parameters that indicate multipart/form-data request body.
:param extra_body_params: Parameters that arrive via extra_body and are documented but not in SDK.
:param event_type: The Python type of the data that is transmitted out-of-band (e.g. via websockets) while the operation is in progress.
:param response_type: The Python type of the data that is transmitted in the response body.
:param http_method: The HTTP method used to invoke the endpoint such as POST, GET or PUT.
:param public: True if the operation can be invoked without prior authentication.
:param request_examples: Sample requests that the operation might take.
:param response_examples: Sample responses that the operation might produce.
"""
defining_class: type
name: str
func_name: str
func_ref: Callable[..., Any]
route: Optional[str]
path_params: List[OperationParameter]
query_params: List[OperationParameter]
request_params: Optional[OperationParameter]
multipart_params: List[OperationParameter]
extra_body_params: List[tuple[str, type, str | None]]
event_type: Optional[type]
response_type: type
http_method: HTTPMethod
public: bool
request_examples: Optional[List[Any]] = None
response_examples: Optional[List[Any]] = None
def get_route(self, webmethod) -> str:
api_level = webmethod.level
if self.route is not None:
return "/".join(["", api_level, self.route.lstrip("/")])
route_parts = ["", api_level, self.name]
for param_name, _ in self.path_params:
route_parts.append("{" + param_name + "}")
return "/".join(route_parts)
class _FormatParameterExtractor:
"A visitor to exract parameters in a format string."
keys: List[str]
def __init__(self) -> None:
self.keys = []
def __getitem__(self, key: str) -> None:
self.keys.append(key)
return None
def _get_route_parameters(route: str) -> List[str]:
extractor = _FormatParameterExtractor()
# Replace all occurrences of ":path" with empty string
route = route.replace(":path", "")
route.format_map(extractor)
return extractor.keys
def _get_endpoint_functions(
endpoint: type, prefixes: List[str]
) -> Iterator[Tuple[str, str, str, Callable]]:
if not inspect.isclass(endpoint):
raise ValueError(f"object is not a class type: {endpoint}")
functions = inspect.getmembers(endpoint, inspect.isfunction)
for func_name, func_ref in functions:
webmethods = []
# Check for multiple webmethods (stacked decorators)
if hasattr(func_ref, "__webmethods__"):
webmethods = func_ref.__webmethods__
if not webmethods:
continue
for webmethod in webmethods:
print(f"Processing {colored(func_name, 'white')}...")
operation_name = func_name
if webmethod.method == "GET":
prefix = "get"
elif webmethod.method == "DELETE":
prefix = "delete"
elif webmethod.method == "POST":
prefix = "post"
elif operation_name.startswith("get_") or operation_name.endswith("/get"):
prefix = "get"
elif (
operation_name.startswith("delete_")
or operation_name.startswith("remove_")
or operation_name.endswith("/delete")
or operation_name.endswith("/remove")
):
prefix = "delete"
else:
# by default everything else is a POST
prefix = "post"
yield prefix, operation_name, func_name, func_ref
def _get_defining_class(member_fn: str, derived_cls: type) -> type:
"Find the class in which a member function is first defined in a class inheritance hierarchy."
# iterate in reverse member resolution order to find most specific class first
for cls in reversed(inspect.getmro(derived_cls)):
for name, _ in inspect.getmembers(cls, inspect.isfunction):
if name == member_fn:
return cls
raise ValidationError(
f"cannot find defining class for {member_fn} in {derived_cls}"
)
def get_endpoint_operations(
endpoint: type, use_examples: bool = True
) -> List[EndpointOperation]:
"""
Extracts a list of member functions in a class eligible for HTTP interface binding.
These member functions are expected to have a signature like
```
async def get_object(self, uuid: str, version: int) -> Object:
...
```
where the prefix `get_` translates to an HTTP GET, `object` corresponds to the name of the endpoint operation,
`uuid` and `version` are mapped to route path elements in "/object/{uuid}/{version}", and `Object` becomes
the response payload type, transmitted as an object serialized to JSON.
If the member function has a composite class type in the argument list, it becomes the request payload type,
and the caller is expected to provide the data as serialized JSON in an HTTP POST request.
:param endpoint: A class with member functions that can be mapped to an HTTP endpoint.
:param use_examples: Whether to return examples associated with member functions.
"""
result = []
for prefix, operation_name, func_name, func_ref in _get_endpoint_functions(
endpoint,
[
"create",
"delete",
"do",
"get",
"post",
"put",
"remove",
"set",
"update",
],
):
# Get all webmethods for this function
webmethods = getattr(func_ref, "__webmethods__", [])
# Create one EndpointOperation for each webmethod
for webmethod in webmethods:
route = webmethod.route
route_params = _get_route_parameters(route) if route is not None else None
public = webmethod.public
request_examples = webmethod.request_examples
response_examples = webmethod.response_examples
# inspect function signature for path and query parameters, and request/response payload type
signature = get_signature(func_ref)
path_params = []
query_params = []
request_params = []
multipart_params = []
extra_body_params = []
for param_name, parameter in signature.parameters.items():
param_type = _get_annotation_type(parameter.annotation, func_ref)
# omit "self" for instance methods
if param_name == "self" and param_type is inspect.Parameter.empty:
continue
# check if all parameters have explicit type
if parameter.annotation is inspect.Parameter.empty:
raise ValidationError(
f"parameter '{param_name}' in function '{func_name}' has no type annotation"
)
# Check if this is an extra_body parameter
is_extra_body, extra_body_desc = _is_extra_body_param(param_type)
if is_extra_body:
# Store in a separate list for documentation
extra_body_params.append((param_name, param_type, extra_body_desc))
continue # Skip adding to request_params
is_multipart = _is_multipart_param(param_type)
if prefix in ["get", "delete"]:
if route_params is not None and param_name in route_params:
path_params.append((param_name, param_type))
else:
query_params.append((param_name, param_type))
else:
if route_params is not None and param_name in route_params:
path_params.append((param_name, param_type))
elif is_multipart:
multipart_params.append((param_name, param_type))
else:
request_params.append((param_name, param_type))
# check if function has explicit return type
if signature.return_annotation is inspect.Signature.empty:
raise ValidationError(
f"function '{func_name}' has no return type annotation"
)
return_type = _get_annotation_type(signature.return_annotation, func_ref)
# operations that produce events are labeled as Generator[YieldType, SendType, ReturnType]
# where YieldType is the event type, SendType is None, and ReturnType is the immediate response type to the request
if typing.get_origin(return_type) is collections.abc.Generator:
event_type, send_type, response_type = typing.get_args(return_type)
if send_type is not type(None):
raise ValidationError(
f"function '{func_name}' has a return type Generator[Y,S,R] and therefore looks like an event but has an explicit send type"
)
else:
event_type = None
def process_type(t):
if typing.get_origin(t) is collections.abc.AsyncIterator:
# NOTE(ashwin): this is SSE and there is no way to represent it. either we make it a List
# or the item type. I am choosing it to be the latter
args = typing.get_args(t)
return args[0]
elif typing.get_origin(t) is typing.Union:
types = [process_type(a) for a in typing.get_args(t)]
return typing._UnionGenericAlias(typing.Union, tuple(types))
else:
return t
response_type = process_type(return_type)
if prefix in ["delete", "remove"]:
http_method = HTTPMethod.DELETE
elif prefix == "post":
http_method = HTTPMethod.POST
elif prefix == "get":
http_method = HTTPMethod.GET
elif prefix == "set":
http_method = HTTPMethod.PUT
elif prefix == "update":
http_method = HTTPMethod.PATCH
else:
raise ValidationError(f"unknown prefix {prefix}")
# Create an EndpointOperation for this specific webmethod
operation = EndpointOperation(
defining_class=_get_defining_class(func_name, endpoint),
name=operation_name,
func_name=func_name,
func_ref=func_ref,
route=route,
path_params=path_params,
query_params=query_params,
request_params=request_params,
multipart_params=multipart_params,
extra_body_params=extra_body_params,
event_type=event_type,
response_type=response_type,
http_method=http_method,
public=public,
request_examples=request_examples if use_examples else None,
response_examples=response_examples if use_examples else None,
)
# Store the specific webmethod with this operation
operation.webmethod = webmethod
result.append(operation)
if not result:
raise ValidationError(f"no eligible endpoint operations in type {endpoint}")
return result
def get_endpoint_events(endpoint: type) -> Dict[str, type]:
results = {}
for decl in typing.get_type_hints(endpoint).values():
# check if signature is Callable[...]
origin = typing.get_origin(decl)
if origin is None or not issubclass(origin, Callable): # type: ignore
continue
# check if signature is Callable[[...], Any]
args = typing.get_args(decl)
if len(args) != 2:
continue
params_type, return_type = args
if not isinstance(params_type, list):
continue
# check if signature is Callable[[...], None]
if not issubclass(return_type, type(None)):
continue
# check if signature is Callable[[EventType], None]
if len(params_type) != 1:
continue
param_type = params_type[0]
results[param_type.__name__] = param_type
return results
def _is_multipart_param(param_type: type) -> bool:
"""
Check if a parameter type indicates multipart form data.
Returns True if the type is:
- UploadFile
- Annotated[UploadFile, File()]
- Annotated[str, Form()]
- Annotated[Any, File()]
- Annotated[Any, Form()]
"""
if param_type is UploadFile:
return True
# Check for Annotated types
origin = get_origin(param_type)
if origin is None:
return False
if origin is Annotated:
args = get_args(param_type)
if len(args) < 2:
return False
# Check the annotations for File() or Form()
for annotation in args[1:]:
if isinstance(annotation, (File, Form)):
return True
return False
def _is_extra_body_param(param_type: type) -> tuple[bool, str | None]:
"""
Check if parameter is marked as coming from extra_body.
Returns:
(is_extra_body, description): Tuple of boolean and optional description
"""
origin = get_origin(param_type)
if origin is Annotated:
args = get_args(param_type)
for annotation in args[1:]:
if isinstance(annotation, ExtraBodyField):
return True, annotation.description
# Also check by type name for cases where import matters
if type(annotation).__name__ == 'ExtraBodyField':
return True, getattr(annotation, 'description', None)
return False, None

View file

@ -1,78 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import dataclasses
from dataclasses import dataclass
from http import HTTPStatus
from typing import Callable, ClassVar, Dict, List, Optional, Tuple, Union
from .specification import (
Info,
SecurityScheme,
SecuritySchemeAPI,
SecuritySchemeHTTP,
SecuritySchemeOpenIDConnect,
Server,
)
HTTPStatusCode = Union[HTTPStatus, int, str]
@dataclass
class Options:
"""
:param server: Base URL for the API endpoint.
:param info: Meta-information for the endpoint specification.
:param version: OpenAPI specification version as a tuple of major, minor, revision.
:param default_security_scheme: Security scheme to apply to endpoints, unless overridden on a per-endpoint basis.
:param extra_types: Extra types in addition to those found in operation signatures. Use a dictionary to group related types.
:param use_examples: Whether to emit examples for operations.
:param success_responses: Associates operation response types with HTTP status codes.
:param error_responses: Associates error response types with HTTP status codes.
:param error_wrapper: True if errors are encapsulated in an error object wrapper.
:param property_description_fun: Custom transformation function to apply to class property documentation strings.
:param captions: User-defined captions for sections such as "Operations" or "Types", and (if applicable) groups of extra types.
:param include_standard_error_responses: Whether to include standard error responses (400, 429, 500, 503) in all operations.
"""
server: Server
info: Info
version: Tuple[int, int, int] = (3, 1, 0)
default_security_scheme: Optional[SecurityScheme] = None
extra_types: Union[List[type], Dict[str, List[type]], None] = None
use_examples: bool = True
success_responses: Dict[type, HTTPStatusCode] = dataclasses.field(
default_factory=dict
)
error_responses: Dict[type, HTTPStatusCode] = dataclasses.field(
default_factory=dict
)
error_wrapper: bool = False
property_description_fun: Optional[Callable[[type, str, str], str]] = None
captions: Optional[Dict[str, str]] = None
include_standard_error_responses: bool = True
stability_filter: Optional[str] = None
default_captions: ClassVar[Dict[str, str]] = {
"Operations": "Operations",
"Types": "Types",
"Events": "Events",
"AdditionalTypes": "Additional types",
}
def map(self, id: str) -> str:
"Maps a language-neutral placeholder string to language-dependent text."
if self.captions is not None:
caption = self.captions.get(id)
if caption is not None:
return caption
caption = self.__class__.default_captions.get(id)
if caption is not None:
return caption
raise KeyError(f"no caption found for ID: {id}")

View file

@ -1,269 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import dataclasses
import enum
from dataclasses import dataclass
from typing import Any, ClassVar, Dict, List, Optional, Union
from llama_stack_api import JsonType, Schema, StrictJsonType
URL = str
@dataclass
class Ref:
ref_type: ClassVar[str]
id: str
def to_json(self) -> StrictJsonType:
return {"$ref": f"#/components/{self.ref_type}/{self.id}"}
@dataclass
class SchemaRef(Ref):
ref_type: ClassVar[str] = "schemas"
SchemaOrRef = Union[Schema, SchemaRef]
@dataclass
class ResponseRef(Ref):
ref_type: ClassVar[str] = "responses"
@dataclass
class ParameterRef(Ref):
ref_type: ClassVar[str] = "parameters"
@dataclass
class ExampleRef(Ref):
ref_type: ClassVar[str] = "examples"
@dataclass
class Contact:
name: Optional[str] = None
url: Optional[URL] = None
email: Optional[str] = None
@dataclass
class License:
name: str
url: Optional[URL] = None
@dataclass
class Info:
title: str
version: str
description: Optional[str] = None
termsOfService: Optional[str] = None
contact: Optional[Contact] = None
license: Optional[License] = None
@dataclass
class MediaType:
schema: Optional[SchemaOrRef] = None
example: Optional[Any] = None
examples: Optional[Dict[str, Union["Example", ExampleRef]]] = None
@dataclass
class RequestBody:
content: Dict[str, MediaType | Dict[str, Any]]
description: Optional[str] = None
required: Optional[bool] = None
@dataclass
class Response:
description: str
content: Optional[Dict[str, MediaType]] = None
class ParameterLocation(enum.Enum):
Query = "query"
Header = "header"
Path = "path"
Cookie = "cookie"
@dataclass
class Parameter:
name: str
in_: ParameterLocation
description: Optional[str] = None
required: Optional[bool] = None
schema: Optional[SchemaOrRef] = None
example: Optional[Any] = None
@dataclass
class ExtraBodyParameter:
"""Represents a parameter that arrives via extra_body in the request."""
name: str
schema: SchemaOrRef
description: Optional[str] = None
required: Optional[bool] = None
@dataclass
class Operation:
responses: Dict[str, Union[Response, ResponseRef]]
tags: Optional[List[str]] = None
summary: Optional[str] = None
description: Optional[str] = None
operationId: Optional[str] = None
parameters: Optional[List[Parameter]] = None
requestBody: Optional[RequestBody] = None
callbacks: Optional[Dict[str, "Callback"]] = None
security: Optional[List["SecurityRequirement"]] = None
deprecated: Optional[bool] = None
extraBodyParameters: Optional[List[ExtraBodyParameter]] = None
@dataclass
class PathItem:
summary: Optional[str] = None
description: Optional[str] = None
get: Optional[Operation] = None
put: Optional[Operation] = None
post: Optional[Operation] = None
delete: Optional[Operation] = None
options: Optional[Operation] = None
head: Optional[Operation] = None
patch: Optional[Operation] = None
trace: Optional[Operation] = None
def update(self, other: "PathItem") -> None:
"Merges another instance of this class into this object."
for field in dataclasses.fields(self.__class__):
value = getattr(other, field.name)
if value is not None:
setattr(self, field.name, value)
# maps run-time expressions such as "$request.body#/url" to path items
Callback = Dict[str, PathItem]
@dataclass
class Example:
summary: Optional[str] = None
description: Optional[str] = None
value: Optional[Any] = None
externalValue: Optional[URL] = None
@dataclass
class Server:
url: URL
description: Optional[str] = None
class SecuritySchemeType(enum.Enum):
ApiKey = "apiKey"
HTTP = "http"
OAuth2 = "oauth2"
OpenIDConnect = "openIdConnect"
@dataclass
class SecurityScheme:
type: SecuritySchemeType
description: str
@dataclass(init=False)
class SecuritySchemeAPI(SecurityScheme):
name: str
in_: ParameterLocation
def __init__(self, description: str, name: str, in_: ParameterLocation) -> None:
super().__init__(SecuritySchemeType.ApiKey, description)
self.name = name
self.in_ = in_
@dataclass(init=False)
class SecuritySchemeHTTP(SecurityScheme):
scheme: str
bearerFormat: Optional[str] = None
def __init__(
self, description: str, scheme: str, bearerFormat: Optional[str] = None
) -> None:
super().__init__(SecuritySchemeType.HTTP, description)
self.scheme = scheme
self.bearerFormat = bearerFormat
@dataclass(init=False)
class SecuritySchemeOpenIDConnect(SecurityScheme):
openIdConnectUrl: str
def __init__(self, description: str, openIdConnectUrl: str) -> None:
super().__init__(SecuritySchemeType.OpenIDConnect, description)
self.openIdConnectUrl = openIdConnectUrl
@dataclass
class Components:
schemas: Optional[Dict[str, Schema]] = None
responses: Optional[Dict[str, Response]] = None
parameters: Optional[Dict[str, Parameter]] = None
examples: Optional[Dict[str, Example]] = None
requestBodies: Optional[Dict[str, RequestBody]] = None
securitySchemes: Optional[Dict[str, SecurityScheme]] = None
callbacks: Optional[Dict[str, Callback]] = None
SecurityScope = str
SecurityRequirement = Dict[str, List[SecurityScope]]
@dataclass
class Tag:
name: str
description: Optional[str] = None
displayName: Optional[str] = None
@dataclass
class TagGroup:
"""
A ReDoc extension to provide information about groups of tags.
Exposed via the vendor-specific property "x-tagGroups" of the top-level object.
"""
name: str
tags: List[str]
@dataclass
class Document:
"""
This class is a Python dataclass adaptation of the OpenAPI Specification.
For details, see <https://swagger.io/specification/>
"""
openapi: str
info: Info
servers: List[Server]
paths: Dict[str, PathItem]
jsonSchemaDialect: Optional[str] = None
components: Optional[Components] = None
security: Optional[List[SecurityRequirement]] = None
tags: Optional[List[Tag]] = None
tagGroups: Optional[List[TagGroup]] = None

View file

@ -1,41 +0,0 @@
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>OpenAPI specification</title>
<link href="https://fonts.googleapis.com/css?family=Montserrat:300,400,700|Roboto:300,400,700" rel="stylesheet">
<script type="module" src="https://cdn.jsdelivr.net/npm/@stoplight/elements/web-components.min.js"></script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/@stoplight/elements/styles.min.css">
<style>
body {
margin: 0;
padding: 0;
height: 100vh;
}
elements-api {
height: 100%;
}
</style>
</head>
<body>
<elements-api id="openapi-container" router="hash" layout="sidebar" hideExport="true"
hideInternal="true"></elements-api>
<script>
document.addEventListener("DOMContentLoaded", function () {
const spec = { /* OPENAPI_SPECIFICATION */ };
const element = document.getElementById("openapi-container");
element.apiDescriptionDocument = spec;
if (spec.info && spec.info.title) {
document.title = spec.info.title;
}
});
</script>
</body>
</html>

View file

@ -1,287 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import json
import typing
import inspect
from pathlib import Path
from typing import Any, List, Optional, TextIO, Union, get_type_hints, get_origin, get_args
from pydantic import BaseModel
from llama_stack_api import StrictJsonType, is_unwrapped_body_param, object_to_json
from llama_stack.core.resolver import api_protocol_map
from .generator import Generator
from .options import Options
from .specification import Document
THIS_DIR = Path(__file__).parent
class Specification:
document: Document
def __init__(self, endpoint: type, options: Options):
generator = Generator(endpoint, options)
self.document = generator.generate()
def get_json(self) -> StrictJsonType:
"""
Returns the OpenAPI specification as a Python data type (e.g. `dict` for an object, `list` for an array).
The result can be serialized to a JSON string with `json.dump` or `json.dumps`.
"""
json_doc = typing.cast(StrictJsonType, object_to_json(self.document))
if isinstance(json_doc, dict):
# rename vendor-specific properties
tag_groups = json_doc.pop("tagGroups", None)
if tag_groups:
json_doc["x-tagGroups"] = tag_groups
tags = json_doc.get("tags")
if tags and isinstance(tags, list):
for tag in tags:
if not isinstance(tag, dict):
continue
display_name = tag.pop("displayName", None)
if display_name:
tag["x-displayName"] = display_name
# Handle operations to rename extraBodyParameters -> x-llama-stack-extra-body-params
paths = json_doc.get("paths", {})
for path_item in paths.values():
if isinstance(path_item, dict):
for method in ["get", "post", "put", "delete", "patch"]:
operation = path_item.get(method)
if operation and isinstance(operation, dict):
extra_body_params = operation.pop("extraBodyParameters", None)
if extra_body_params:
operation["x-llama-stack-extra-body-params"] = extra_body_params
return json_doc
def get_json_string(self, pretty_print: bool = False) -> str:
"""
Returns the OpenAPI specification as a JSON string.
:param pretty_print: Whether to use line indents to beautify the output.
"""
json_doc = self.get_json()
if pretty_print:
return json.dumps(
json_doc, check_circular=False, ensure_ascii=False, indent=4
)
else:
return json.dumps(
json_doc,
check_circular=False,
ensure_ascii=False,
separators=(",", ":"),
)
def write_json(self, f: TextIO, pretty_print: bool = False) -> None:
"""
Writes the OpenAPI specification to a file as a JSON string.
:param pretty_print: Whether to use line indents to beautify the output.
"""
json_doc = self.get_json()
if pretty_print:
json.dump(
json_doc,
f,
check_circular=False,
ensure_ascii=False,
indent=4,
)
else:
json.dump(
json_doc,
f,
check_circular=False,
ensure_ascii=False,
separators=(",", ":"),
)
def write_html(self, f: TextIO, pretty_print: bool = False) -> None:
"""
Creates a stand-alone HTML page for the OpenAPI specification with ReDoc.
:param pretty_print: Whether to use line indents to beautify the JSON string in the HTML file.
"""
path = THIS_DIR / "template.html"
with path.open(encoding="utf-8", errors="strict") as html_template_file:
html_template = html_template_file.read()
html = html_template.replace(
"{ /* OPENAPI_SPECIFICATION */ }",
self.get_json_string(pretty_print=pretty_print),
)
f.write(html)
def is_optional_type(type_: Any) -> bool:
"""Check if a type is Optional."""
origin = get_origin(type_)
args = get_args(type_)
return origin is Optional or (origin is Union and type(None) in args)
def _validate_api_method_return_type(method) -> str | None:
hints = get_type_hints(method)
if 'return' not in hints:
return "has no return type annotation"
return_type = hints['return']
if is_optional_type(return_type):
return "returns Optional type where a return value is mandatory"
def _validate_api_method_doesnt_return_list(method) -> str | None:
hints = get_type_hints(method)
if 'return' not in hints:
return "has no return type annotation"
return_type = hints['return']
if get_origin(return_type) is list:
return "returns a list where a PaginatedResponse or List*Response object is expected"
def _validate_api_delete_method_returns_none(method) -> str | None:
hints = get_type_hints(method)
if 'return' not in hints:
return "has no return type annotation"
return_type = hints['return']
# Allow OpenAI endpoints to return response objects since they follow OpenAI specification
method_name = getattr(method, '__name__', '')
if method_name.__contains__('openai_'):
return None
if return_type is not None and return_type is not type(None):
return "does not return None where None is mandatory"
def _validate_list_parameters_contain_data(method) -> str | None:
hints = get_type_hints(method)
if 'return' not in hints:
return "has no return type annotation"
return_type = hints['return']
if not inspect.isclass(return_type):
return
if not return_type.__name__.startswith('List'):
return
if 'data' not in return_type.model_fields:
return "does not have a mandatory data attribute containing the list of objects"
def _validate_has_ellipsis(method) -> str | None:
source = inspect.getsource(method)
if "..." not in source and not "NotImplementedError" in source:
return "does not contain ellipsis (...) in its implementation"
def _validate_has_return_in_docstring(method) -> str | None:
source = inspect.getsource(method)
return_type = method.__annotations__.get('return')
if return_type is not None and return_type != type(None) and ":returns:" not in source:
return "does not have a ':returns:' in its docstring"
def _validate_has_params_in_docstring(method) -> str | None:
source = inspect.getsource(method)
sig = inspect.signature(method)
params_list = [p for p in sig.parameters.values() if p.name != "self"]
if len(params_list) == 1:
param = params_list[0]
param_type = param.annotation
if is_unwrapped_body_param(param_type):
return
# Only check if the method has more than one parameter
if len(sig.parameters) > 1 and ":param" not in source:
return "does not have a ':param' in its docstring"
def _validate_has_no_return_none_in_docstring(method) -> str | None:
source = inspect.getsource(method)
return_type = method.__annotations__.get('return')
if return_type is None and ":returns: None" in source:
return "has a ':returns: None' in its docstring which is redundant for None-returning functions"
def _validate_docstring_lines_end_with_dot(method) -> str | None:
docstring = inspect.getdoc(method)
if docstring is None:
return None
lines = docstring.split('\n')
for line in lines:
line = line.strip()
if line and not any(line.endswith(char) for char in '.:{}[]()",'):
return f"docstring line '{line}' does not end with a valid character: . : {{ }} [ ] ( ) , \""
_VALIDATORS = {
"GET": [
_validate_api_method_return_type,
_validate_list_parameters_contain_data,
_validate_api_method_doesnt_return_list,
_validate_has_ellipsis,
_validate_has_return_in_docstring,
_validate_has_params_in_docstring,
_validate_docstring_lines_end_with_dot,
],
"DELETE": [
_validate_api_delete_method_returns_none,
_validate_has_ellipsis,
_validate_has_return_in_docstring,
_validate_has_params_in_docstring,
_validate_has_no_return_none_in_docstring
],
"POST": [
_validate_has_ellipsis,
_validate_has_return_in_docstring,
_validate_has_params_in_docstring,
_validate_has_no_return_none_in_docstring,
_validate_docstring_lines_end_with_dot,
],
}
def _get_methods_by_type(protocol, method_type: str):
members = inspect.getmembers(protocol, predicate=inspect.isfunction)
return {
method_name: method
for method_name, method in members
if (webmethod := getattr(method, '__webmethod__', None))
if webmethod and webmethod.method == method_type
}
def validate_api() -> List[str]:
"""Validate the API protocols."""
errors = []
protocols = api_protocol_map()
for target, validators in _VALIDATORS.items():
for protocol_name, protocol in protocols.items():
for validator in validators:
for method_name, method in _get_methods_by_type(protocol, target).items():
err = validator(method)
if err:
errors.append(f"Method {protocol_name}.{method_name} {err}")
return errors

View file

@ -1,34 +0,0 @@
#!/bin/bash
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
PYTHONPATH=${PYTHONPATH:-}
THIS_DIR="$(cd "$(dirname "$(readlink -f "${BASH_SOURCE[0]}")")" && pwd)"
set -euo pipefail
missing_packages=()
check_package() {
if ! pip show "$1" &>/dev/null; then
missing_packages+=("$1")
fi
}
if [ ${#missing_packages[@]} -ne 0 ]; then
echo "Error: The following package(s) are not installed:"
printf " - %s\n" "${missing_packages[@]}"
echo "Please install them using:"
echo "pip install ${missing_packages[*]}"
exit 1
fi
stack_dir=$(dirname $(dirname $THIS_DIR))
PYTHONPATH=$PYTHONPATH:$stack_dir \
python -m docs.openapi_generator.generate $(dirname $THIS_DIR)/static
cp $stack_dir/docs/static/stainless-llama-stack-spec.yaml $stack_dir/client-sdks/stainless/openapi.yml

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -50,6 +50,7 @@ dependencies = [
"aiosqlite>=0.21.0", # server - for metadata store "aiosqlite>=0.21.0", # server - for metadata store
"asyncpg", # for metadata store "asyncpg", # for metadata store
"sqlalchemy[asyncio]>=2.0.41", # server - for conversations "sqlalchemy[asyncio]>=2.0.41", # server - for conversations
"pyyaml>=6.0.2",
"starlette>=0.49.1", "starlette>=0.49.1",
] ]
@ -73,6 +74,7 @@ dev = [
"mypy", "mypy",
"pre-commit>=4.4.0", "pre-commit>=4.4.0",
"ruamel.yaml", # needed for openapi generator "ruamel.yaml", # needed for openapi generator
"openapi-spec-validator>=0.7.2",
] ]
# Type checking dependencies - includes type stubs and optional runtime dependencies # Type checking dependencies - includes type stubs and optional runtime dependencies
# needed for complete mypy coverage across all optional features # needed for complete mypy coverage across all optional features
@ -182,7 +184,12 @@ install-wheel-from-presigned = "llama_stack.cli.scripts.run:install_wheel_from_p
[tool.setuptools.packages.find] [tool.setuptools.packages.find]
where = ["src"] where = ["src"]
include = ["llama_stack", "llama_stack.*", "llama_stack_api", "llama_stack_api.*"] include = [
"llama_stack",
"llama_stack.*",
"llama_stack_api",
"llama_stack_api.*",
]
[[tool.uv.index]] [[tool.uv.index]]
name = "pytorch-cpu" name = "pytorch-cpu"
@ -249,7 +256,9 @@ unfixable = [
# Ignore the following errors for the following files # Ignore the following errors for the following files
[tool.ruff.lint.per-file-ignores] [tool.ruff.lint.per-file-ignores]
"tests/**/*.py" = ["DTZ"] # Ignore datetime rules for tests "tests/**/*.py" = ["DTZ"] # Ignore datetime rules for tests
"src/llama_stack/providers/inline/scoring/basic/utils/ifeval_utils.py" = ["RUF001"] "src/llama_stack/providers/inline/scoring/basic/utils/ifeval_utils.py" = [
"RUF001",
]
"src/llama_stack/providers/inline/scoring/basic/scoring_fn/fn_defs/regex_parser_multiple_choice_answer.py" = [ "src/llama_stack/providers/inline/scoring/basic/scoring_fn/fn_defs/regex_parser_multiple_choice_answer.py" = [
"RUF001", "RUF001",
"PLE2515", "PLE2515",
@ -341,7 +350,6 @@ exclude = [
"^src/llama_stack/providers/utils/telemetry/dataset_mixin\\.py$", "^src/llama_stack/providers/utils/telemetry/dataset_mixin\\.py$",
"^src/llama_stack/providers/utils/telemetry/trace_protocol\\.py$", "^src/llama_stack/providers/utils/telemetry/trace_protocol\\.py$",
"^src/llama_stack/providers/utils/telemetry/tracing\\.py$", "^src/llama_stack/providers/utils/telemetry/tracing\\.py$",
"^src/llama_stack_api/strong_typing/auxiliary\\.py$",
"^src/llama_stack/distributions/template\\.py$", "^src/llama_stack/distributions/template\\.py$",
] ]

View file

@ -0,0 +1,16 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
"""
OpenAPI generator module for Llama Stack.
This module provides functionality to generate OpenAPI specifications
from FastAPI applications.
"""
from .main import generate_openapi_spec, main
__all__ = ["generate_openapi_spec", "main"]

View file

@ -3,3 +3,12 @@
# #
# This source code is licensed under the terms described in the LICENSE file in # This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree. # the root directory of this source tree.
"""
Entry point for running the openapi_generator module as a package.
"""
from .main import main
if __name__ == "__main__":
main()

View file

@ -0,0 +1,502 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
"""
Temporary ordering helpers extracted from origin/main client-sdks/stainless/openapi.yml.
These lists help the new generator match the previous ordering so that diffs
remain readable while we debug schema content regressions. Remove once stable.
"""
LEGACY_PATH_ORDER = [
"/v1/batches",
"/v1/batches/{batch_id}",
"/v1/batches/{batch_id}/cancel",
"/v1/chat/completions",
"/v1/chat/completions/{completion_id}",
"/v1/completions",
"/v1/conversations",
"/v1/conversations/{conversation_id}",
"/v1/conversations/{conversation_id}/items",
"/v1/conversations/{conversation_id}/items/{item_id}",
"/v1/embeddings",
"/v1/files",
"/v1/files/{file_id}",
"/v1/files/{file_id}/content",
"/v1/health",
"/v1/inspect/routes",
"/v1/models",
"/v1/models/{model_id}",
"/v1/moderations",
"/v1/prompts",
"/v1/prompts/{prompt_id}",
"/v1/prompts/{prompt_id}/set-default-version",
"/v1/prompts/{prompt_id}/versions",
"/v1/providers",
"/v1/providers/{provider_id}",
"/v1/responses",
"/v1/responses/{response_id}",
"/v1/responses/{response_id}/input_items",
"/v1/safety/run-shield",
"/v1/scoring-functions",
"/v1/scoring-functions/{scoring_fn_id}",
"/v1/scoring/score",
"/v1/scoring/score-batch",
"/v1/shields",
"/v1/shields/{identifier}",
"/v1/tool-runtime/invoke",
"/v1/tool-runtime/list-tools",
"/v1/toolgroups",
"/v1/toolgroups/{toolgroup_id}",
"/v1/tools",
"/v1/tools/{tool_name}",
"/v1/vector-io/insert",
"/v1/vector-io/query",
"/v1/vector_stores",
"/v1/vector_stores/{vector_store_id}",
"/v1/vector_stores/{vector_store_id}/file_batches",
"/v1/vector_stores/{vector_store_id}/file_batches/{batch_id}",
"/v1/vector_stores/{vector_store_id}/file_batches/{batch_id}/cancel",
"/v1/vector_stores/{vector_store_id}/file_batches/{batch_id}/files",
"/v1/vector_stores/{vector_store_id}/files",
"/v1/vector_stores/{vector_store_id}/files/{file_id}",
"/v1/vector_stores/{vector_store_id}/files/{file_id}/content",
"/v1/vector_stores/{vector_store_id}/search",
"/v1/version",
"/v1beta/datasetio/append-rows/{dataset_id}",
"/v1beta/datasetio/iterrows/{dataset_id}",
"/v1beta/datasets",
"/v1beta/datasets/{dataset_id}",
"/v1alpha/eval/benchmarks",
"/v1alpha/eval/benchmarks/{benchmark_id}",
"/v1alpha/eval/benchmarks/{benchmark_id}/evaluations",
"/v1alpha/eval/benchmarks/{benchmark_id}/jobs",
"/v1alpha/eval/benchmarks/{benchmark_id}/jobs/{job_id}",
"/v1alpha/eval/benchmarks/{benchmark_id}/jobs/{job_id}/result",
"/v1alpha/inference/rerank",
"/v1alpha/post-training/job/artifacts",
"/v1alpha/post-training/job/cancel",
"/v1alpha/post-training/job/status",
"/v1alpha/post-training/jobs",
"/v1alpha/post-training/preference-optimize",
"/v1alpha/post-training/supervised-fine-tune",
]
LEGACY_SCHEMA_ORDER = [
"Error",
"ListBatchesResponse",
"CreateBatchRequest",
"Batch",
"Order",
"ListOpenAIChatCompletionResponse",
"OpenAIAssistantMessageParam",
"OpenAIChatCompletionContentPartImageParam",
"OpenAIChatCompletionContentPartParam",
"OpenAIChatCompletionContentPartTextParam",
"OpenAIChatCompletionToolCall",
"OpenAIChatCompletionToolCallFunction",
"OpenAIChatCompletionUsage",
"OpenAIChoice",
"OpenAIChoiceLogprobs",
"OpenAIDeveloperMessageParam",
"OpenAIFile",
"OpenAIFileFile",
"OpenAIImageURL",
"OpenAIMessageParam",
"OpenAISystemMessageParam",
"OpenAITokenLogProb",
"OpenAIToolMessageParam",
"OpenAITopLogProb",
"OpenAIUserMessageParam",
"OpenAIJSONSchema",
"OpenAIResponseFormatJSONObject",
"OpenAIResponseFormatJSONSchema",
"OpenAIResponseFormatParam",
"OpenAIResponseFormatText",
"OpenAIChatCompletionRequestWithExtraBody",
"OpenAIChatCompletion",
"OpenAIChatCompletionChunk",
"OpenAIChoiceDelta",
"OpenAIChunkChoice",
"OpenAICompletionWithInputMessages",
"OpenAICompletionRequestWithExtraBody",
"OpenAICompletion",
"OpenAICompletionChoice",
"ConversationItem",
"OpenAIResponseAnnotationCitation",
"OpenAIResponseAnnotationContainerFileCitation",
"OpenAIResponseAnnotationFileCitation",
"OpenAIResponseAnnotationFilePath",
"OpenAIResponseAnnotations",
"OpenAIResponseContentPartRefusal",
"OpenAIResponseInputFunctionToolCallOutput",
"OpenAIResponseInputMessageContent",
"OpenAIResponseInputMessageContentFile",
"OpenAIResponseInputMessageContentImage",
"OpenAIResponseInputMessageContentText",
"OpenAIResponseMCPApprovalRequest",
"OpenAIResponseMCPApprovalResponse",
"OpenAIResponseMessage",
"OpenAIResponseOutputMessageContent",
"OpenAIResponseOutputMessageContentOutputText",
"OpenAIResponseOutputMessageFileSearchToolCall",
"OpenAIResponseOutputMessageFunctionToolCall",
"OpenAIResponseOutputMessageMCPCall",
"OpenAIResponseOutputMessageMCPListTools",
"OpenAIResponseOutputMessageWebSearchToolCall",
"CreateConversationRequest",
"Conversation",
"UpdateConversationRequest",
"ConversationDeletedResource",
"ConversationItemList",
"AddItemsRequest",
"ConversationItemDeletedResource",
"OpenAIEmbeddingsRequestWithExtraBody",
"OpenAIEmbeddingData",
"OpenAIEmbeddingUsage",
"OpenAIEmbeddingsResponse",
"OpenAIFilePurpose",
"ListOpenAIFileResponse",
"OpenAIFileObject",
"ExpiresAfter",
"OpenAIFileDeleteResponse",
"Response",
"HealthInfo",
"RouteInfo",
"ListRoutesResponse",
"OpenAIModel",
"OpenAIListModelsResponse",
"Model",
"ModelType",
"RunModerationRequest",
"ModerationObject",
"ModerationObjectResults",
"Prompt",
"ListPromptsResponse",
"CreatePromptRequest",
"UpdatePromptRequest",
"SetDefaultVersionRequest",
"ProviderInfo",
"ListProvidersResponse",
"ListOpenAIResponseObject",
"OpenAIResponseError",
"OpenAIResponseInput",
"OpenAIResponseInputToolFileSearch",
"OpenAIResponseInputToolFunction",
"OpenAIResponseInputToolWebSearch",
"OpenAIResponseObjectWithInput",
"OpenAIResponseOutput",
"OpenAIResponsePrompt",
"OpenAIResponseText",
"OpenAIResponseTool",
"OpenAIResponseToolMCP",
"OpenAIResponseUsage",
"ResponseGuardrailSpec",
"OpenAIResponseInputTool",
"OpenAIResponseInputToolMCP",
"CreateOpenaiResponseRequest",
"OpenAIResponseObject",
"OpenAIResponseContentPartOutputText",
"OpenAIResponseContentPartReasoningSummary",
"OpenAIResponseContentPartReasoningText",
"OpenAIResponseObjectStream",
"OpenAIResponseObjectStreamResponseCompleted",
"OpenAIResponseObjectStreamResponseContentPartAdded",
"OpenAIResponseObjectStreamResponseContentPartDone",
"OpenAIResponseObjectStreamResponseCreated",
"OpenAIResponseObjectStreamResponseFailed",
"OpenAIResponseObjectStreamResponseFileSearchCallCompleted",
"OpenAIResponseObjectStreamResponseFileSearchCallInProgress",
"OpenAIResponseObjectStreamResponseFileSearchCallSearching",
"OpenAIResponseObjectStreamResponseFunctionCallArgumentsDelta",
"OpenAIResponseObjectStreamResponseFunctionCallArgumentsDone",
"OpenAIResponseObjectStreamResponseInProgress",
"OpenAIResponseObjectStreamResponseIncomplete",
"OpenAIResponseObjectStreamResponseMcpCallArgumentsDelta",
"OpenAIResponseObjectStreamResponseMcpCallArgumentsDone",
"OpenAIResponseObjectStreamResponseMcpCallCompleted",
"OpenAIResponseObjectStreamResponseMcpCallFailed",
"OpenAIResponseObjectStreamResponseMcpCallInProgress",
"OpenAIResponseObjectStreamResponseMcpListToolsCompleted",
"OpenAIResponseObjectStreamResponseMcpListToolsFailed",
"OpenAIResponseObjectStreamResponseMcpListToolsInProgress",
"OpenAIResponseObjectStreamResponseOutputItemAdded",
"OpenAIResponseObjectStreamResponseOutputItemDone",
"OpenAIResponseObjectStreamResponseOutputTextAnnotationAdded",
"OpenAIResponseObjectStreamResponseOutputTextDelta",
"OpenAIResponseObjectStreamResponseOutputTextDone",
"OpenAIResponseObjectStreamResponseReasoningSummaryPartAdded",
"OpenAIResponseObjectStreamResponseReasoningSummaryPartDone",
"OpenAIResponseObjectStreamResponseReasoningSummaryTextDelta",
"OpenAIResponseObjectStreamResponseReasoningSummaryTextDone",
"OpenAIResponseObjectStreamResponseReasoningTextDelta",
"OpenAIResponseObjectStreamResponseReasoningTextDone",
"OpenAIResponseObjectStreamResponseRefusalDelta",
"OpenAIResponseObjectStreamResponseRefusalDone",
"OpenAIResponseObjectStreamResponseWebSearchCallCompleted",
"OpenAIResponseObjectStreamResponseWebSearchCallInProgress",
"OpenAIResponseObjectStreamResponseWebSearchCallSearching",
"OpenAIDeleteResponseObject",
"ListOpenAIResponseInputItem",
"RunShieldRequest",
"RunShieldResponse",
"SafetyViolation",
"ViolationLevel",
"AggregationFunctionType",
"ArrayType",
"BasicScoringFnParams",
"BooleanType",
"ChatCompletionInputType",
"CompletionInputType",
"JsonType",
"LLMAsJudgeScoringFnParams",
"NumberType",
"ObjectType",
"RegexParserScoringFnParams",
"ScoringFn",
"ScoringFnParams",
"ScoringFnParamsType",
"StringType",
"UnionType",
"ListScoringFunctionsResponse",
"ScoreRequest",
"ScoreResponse",
"ScoringResult",
"ScoreBatchRequest",
"ScoreBatchResponse",
"Shield",
"ListShieldsResponse",
"InvokeToolRequest",
"ImageContentItem",
"InterleavedContent",
"InterleavedContentItem",
"TextContentItem",
"ToolInvocationResult",
"URL",
"ToolDef",
"ListToolDefsResponse",
"ToolGroup",
"ListToolGroupsResponse",
"Chunk",
"ChunkMetadata",
"InsertChunksRequest",
"QueryChunksRequest",
"QueryChunksResponse",
"VectorStoreFileCounts",
"VectorStoreListResponse",
"VectorStoreObject",
"VectorStoreChunkingStrategy",
"VectorStoreChunkingStrategyAuto",
"VectorStoreChunkingStrategyStatic",
"VectorStoreChunkingStrategyStaticConfig",
"OpenAICreateVectorStoreRequestWithExtraBody",
"OpenaiUpdateVectorStoreRequest",
"VectorStoreDeleteResponse",
"OpenAICreateVectorStoreFileBatchRequestWithExtraBody",
"VectorStoreFileBatchObject",
"VectorStoreFileStatus",
"VectorStoreFileLastError",
"VectorStoreFileObject",
"VectorStoreFilesListInBatchResponse",
"VectorStoreListFilesResponse",
"OpenaiAttachFileToVectorStoreRequest",
"OpenaiUpdateVectorStoreFileRequest",
"VectorStoreFileDeleteResponse",
"bool",
"VectorStoreContent",
"VectorStoreFileContentResponse",
"OpenaiSearchVectorStoreRequest",
"VectorStoreSearchResponse",
"VectorStoreSearchResponsePage",
"VersionInfo",
"AppendRowsRequest",
"PaginatedResponse",
"Dataset",
"RowsDataSource",
"URIDataSource",
"ListDatasetsResponse",
"Benchmark",
"ListBenchmarksResponse",
"BenchmarkConfig",
"GreedySamplingStrategy",
"ModelCandidate",
"SamplingParams",
"SystemMessage",
"TopKSamplingStrategy",
"TopPSamplingStrategy",
"EvaluateRowsRequest",
"EvaluateResponse",
"RunEvalRequest",
"Job",
"RerankRequest",
"RerankData",
"RerankResponse",
"Checkpoint",
"PostTrainingJobArtifactsResponse",
"PostTrainingMetric",
"CancelTrainingJobRequest",
"PostTrainingJobStatusResponse",
"ListPostTrainingJobsResponse",
"DPOAlignmentConfig",
"DPOLossType",
"DataConfig",
"DatasetFormat",
"EfficiencyConfig",
"OptimizerConfig",
"OptimizerType",
"TrainingConfig",
"PreferenceOptimizeRequest",
"PostTrainingJob",
"AlgorithmConfig",
"LoraFinetuningConfig",
"QATFinetuningConfig",
"SupervisedFineTuneRequest",
"RegisterModelRequest",
"ParamType",
"RegisterScoringFunctionRequest",
"RegisterShieldRequest",
"RegisterToolGroupRequest",
"DataSource",
"RegisterDatasetRequest",
"RegisterBenchmarkRequest",
]
LEGACY_RESPONSE_ORDER = ["BadRequest400", "TooManyRequests429", "InternalServerError500", "DefaultError"]
LEGACY_TAGS = [
{
"description": "APIs for creating and interacting with agentic systems.",
"name": "Agents",
"x-displayName": "Agents",
},
{
"description": "The API is designed to allow use of openai client libraries for seamless integration.\n"
"\n"
"This API provides the following extensions:\n"
" - idempotent batch creation\n"
"\n"
"Note: This API is currently under active development and may undergo changes.",
"name": "Batches",
"x-displayName": "The Batches API enables efficient processing of multiple requests in a single operation, "
"particularly useful for processing large datasets, batch evaluation workflows, and cost-effective "
"inference at scale.",
},
{"description": "", "name": "Benchmarks"},
{
"description": "Protocol for conversation management operations.",
"name": "Conversations",
"x-displayName": "Conversations",
},
{"description": "", "name": "DatasetIO"},
{"description": "", "name": "Datasets"},
{
"description": "Llama Stack Evaluation API for running evaluations on model and agent candidates.",
"name": "Eval",
"x-displayName": "Evaluations",
},
{
"description": "This API is used to upload documents that can be used with other Llama Stack APIs.",
"name": "Files",
"x-displayName": "Files",
},
{
"description": "Llama Stack Inference API for generating completions, chat completions, and embeddings.\n"
"\n"
"This API provides the raw interface to the underlying models. Three kinds of models are supported:\n"
'- LLM models: these models generate "raw" and "chat" (conversational) completions.\n'
"- Embedding models: these models generate embeddings to be used for semantic search.\n"
"- Rerank models: these models reorder the documents based on their relevance to a query.",
"name": "Inference",
"x-displayName": "Inference",
},
{
"description": "APIs for inspecting the Llama Stack service, including health status, available API routes with "
"methods and implementing providers.",
"name": "Inspect",
"x-displayName": "Inspect",
},
{"description": "", "name": "Models"},
{"description": "", "name": "PostTraining (Coming Soon)"},
{"description": "Protocol for prompt management operations.", "name": "Prompts", "x-displayName": "Prompts"},
{
"description": "Providers API for inspecting, listing, and modifying providers and their configurations.",
"name": "Providers",
"x-displayName": "Providers",
},
{"description": "OpenAI-compatible Moderations API.", "name": "Safety", "x-displayName": "Safety"},
{"description": "", "name": "Scoring"},
{"description": "", "name": "ScoringFunctions"},
{"description": "", "name": "Shields"},
{"description": "", "name": "ToolGroups"},
{"description": "", "name": "ToolRuntime"},
{"description": "", "name": "VectorIO"},
]
LEGACY_TAG_ORDER = [
"Agents",
"Batches",
"Benchmarks",
"Conversations",
"DatasetIO",
"Datasets",
"Eval",
"Files",
"Inference",
"Inspect",
"Models",
"PostTraining (Coming Soon)",
"Prompts",
"Providers",
"Safety",
"Scoring",
"ScoringFunctions",
"Shields",
"ToolGroups",
"ToolRuntime",
"VectorIO",
]
LEGACY_TAG_GROUPS = [
{
"name": "Operations",
"tags": [
"Agents",
"Batches",
"Benchmarks",
"Conversations",
"DatasetIO",
"Datasets",
"Eval",
"Files",
"Inference",
"Inspect",
"Models",
"PostTraining (Coming Soon)",
"Prompts",
"Providers",
"Safety",
"Scoring",
"ScoringFunctions",
"Shields",
"ToolGroups",
"ToolRuntime",
"VectorIO",
],
}
]
LEGACY_SECURITY = [{"Default": []}]
LEGACY_OPERATION_KEYS = [
"responses",
"tags",
"summary",
"description",
"operationId",
"parameters",
"requestBody",
"deprecated",
]

View file

@ -0,0 +1,91 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
"""
FastAPI app creation for OpenAPI generation.
"""
import inspect
from typing import Any
from fastapi import FastAPI
from llama_stack.core.resolver import api_protocol_map
from llama_stack_api import Api
from .state import _protocol_methods_cache
def _get_protocol_method(api: Api, method_name: str) -> Any | None:
"""
Get a protocol method function by API and method name.
Uses caching to avoid repeated lookups.
Args:
api: The API enum
method_name: The method name (function name)
Returns:
The function object, or None if not found
"""
global _protocol_methods_cache
if _protocol_methods_cache is None:
_protocol_methods_cache = {}
protocols = api_protocol_map()
from llama_stack_api.tools import SpecialToolGroup, ToolRuntime
toolgroup_protocols = {
SpecialToolGroup.rag_tool: ToolRuntime,
}
for api_key, protocol in protocols.items():
method_map: dict[str, Any] = {}
protocol_methods = inspect.getmembers(protocol, predicate=inspect.isfunction)
for name, method in protocol_methods:
method_map[name] = method
# Handle tool_runtime special case
if api_key == Api.tool_runtime:
for tool_group, sub_protocol in toolgroup_protocols.items():
sub_protocol_methods = inspect.getmembers(sub_protocol, predicate=inspect.isfunction)
for name, method in sub_protocol_methods:
if hasattr(method, "__webmethod__"):
method_map[f"{tool_group.value}.{name}"] = method
_protocol_methods_cache[api_key] = method_map
return _protocol_methods_cache.get(api, {}).get(method_name)
def create_llama_stack_app() -> FastAPI:
"""
Create a FastAPI app that represents the Llama Stack API.
This uses the existing route discovery system to automatically find all routes.
"""
app = FastAPI(
title="Llama Stack API",
description="A comprehensive API for building and deploying AI applications",
version="1.0.0",
servers=[
{"url": "http://any-hosted-llama-stack.com"},
],
)
# Get all API routes
from llama_stack.core.server.routes import get_all_api_routes
api_routes = get_all_api_routes()
# Create FastAPI routes from the discovered routes
from . import endpoints
for api, routes in api_routes.items():
for route, webmethod in routes:
# Convert the route to a FastAPI endpoint
endpoints._create_fastapi_endpoint(app, route, webmethod, api)
return app

View file

@ -0,0 +1,657 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
"""
Endpoint generation logic for FastAPI OpenAPI generation.
"""
import inspect
import re
import types
import typing
from typing import Annotated, Any, get_args, get_origin
from fastapi import FastAPI
from pydantic import Field, create_model
from llama_stack.log import get_logger
from llama_stack_api import Api
from llama_stack_api.schema_utils import get_registered_schema_info
from . import app as app_module
from .state import _extra_body_fields, register_dynamic_model
logger = get_logger(name=__name__, category="core")
def _to_pascal_case(segment: str) -> str:
tokens = re.findall(r"[A-Za-z]+|\d+", segment)
return "".join(token.capitalize() for token in tokens if token)
def _compose_request_model_name(api: Api, method_name: str, variant: str | None = None) -> str:
"""Generate a deterministic model name from the protocol method."""
def _to_pascal_from_snake(value: str) -> str:
return "".join(segment.capitalize() for segment in value.split("_") if segment)
base_name = _to_pascal_from_snake(method_name)
if not base_name:
base_name = _to_pascal_case(api.value)
base_name = f"{base_name}Request"
if variant:
base_name = f"{base_name}{variant}"
return base_name
def _extract_path_parameters(path: str) -> list[dict[str, Any]]:
"""Extract path parameters from a URL path and return them as OpenAPI parameter definitions."""
matches = re.findall(r"\{([^}:]+)(?::[^}]+)?\}", path)
return [
{
"name": param_name,
"in": "path",
"required": True,
"schema": {"type": "string"},
"description": f"Path parameter: {param_name}",
}
for param_name in matches
]
def _create_endpoint_with_request_model(
request_model: type, response_model: type | None, operation_description: str | None
):
"""Create an endpoint function with a request body model."""
async def endpoint(request: request_model) -> response_model:
return response_model() if response_model else {}
if operation_description:
endpoint.__doc__ = operation_description
return endpoint
def _build_field_definitions(query_parameters: list[tuple[str, type, Any]], use_any: bool = False) -> dict[str, tuple]:
"""Build field definitions for a Pydantic model from query parameters."""
from typing import Any
field_definitions = {}
for param_name, param_type, default_value in query_parameters:
if use_any:
field_definitions[param_name] = (Any, ... if default_value is inspect.Parameter.empty else default_value)
continue
base_type = param_type
extracted_field = None
if get_origin(param_type) is Annotated:
args = get_args(param_type)
if args:
base_type = args[0]
for arg in args[1:]:
if isinstance(arg, Field):
extracted_field = arg
break
try:
if extracted_field:
field_definitions[param_name] = (base_type, extracted_field)
else:
field_definitions[param_name] = (
base_type,
... if default_value is inspect.Parameter.empty else default_value,
)
except (TypeError, ValueError):
field_definitions[param_name] = (Any, ... if default_value is inspect.Parameter.empty else default_value)
# Ensure all parameters are included
expected_params = {name for name, _, _ in query_parameters}
missing = expected_params - set(field_definitions.keys())
if missing:
for param_name, _, default_value in query_parameters:
if param_name in missing:
field_definitions[param_name] = (
Any,
... if default_value is inspect.Parameter.empty else default_value,
)
return field_definitions
def _create_dynamic_request_model(
api: Api,
webmethod,
method_name: str,
http_method: str,
query_parameters: list[tuple[str, type, Any]],
use_any: bool = False,
variant_suffix: str | None = None,
) -> type | None:
"""Create a dynamic Pydantic model for request body."""
try:
field_definitions = _build_field_definitions(query_parameters, use_any)
if not field_definitions:
return None
model_name = _compose_request_model_name(api, method_name, variant_suffix or None)
request_model = create_model(model_name, **field_definitions)
return register_dynamic_model(model_name, request_model)
except Exception:
return None
def _build_signature_params(
query_parameters: list[tuple[str, type, Any]],
) -> tuple[list[inspect.Parameter], dict[str, type]]:
"""Build signature parameters and annotations from query parameters."""
signature_params = []
param_annotations = {}
for param_name, param_type, default_value in query_parameters:
param_annotations[param_name] = param_type
signature_params.append(
inspect.Parameter(
param_name,
inspect.Parameter.POSITIONAL_OR_KEYWORD,
default=default_value if default_value is not inspect.Parameter.empty else inspect.Parameter.empty,
annotation=param_type,
)
)
return signature_params, param_annotations
def _extract_operation_description_from_docstring(api: Api, method_name: str) -> str | None:
"""Extract operation description from the actual function docstring."""
func = app_module._get_protocol_method(api, method_name)
if not func or not func.__doc__:
return None
doc_lines = func.__doc__.split("\n")
description_lines = []
metadata_markers = (":param", ":type", ":return", ":returns", ":raises", ":exception", ":yield", ":yields", ":cvar")
for line in doc_lines:
if line.strip().startswith(metadata_markers):
break
description_lines.append(line)
description = "\n".join(description_lines).strip()
return description if description else None
def _extract_response_description_from_docstring(webmethod, response_model, api: Api, method_name: str) -> str:
"""Extract response description from the actual function docstring."""
func = app_module._get_protocol_method(api, method_name)
if not func or not func.__doc__:
return "Successful Response"
for line in func.__doc__.split("\n"):
if line.strip().startswith(":returns:"):
if desc := line.strip()[9:].strip():
return desc
return "Successful Response"
def _get_tag_from_api(api: Api) -> str:
"""Extract a tag name from the API enum for API grouping."""
return api.value.replace("_", " ").title()
def _is_file_or_form_param(param_type: Any) -> bool:
"""Check if a parameter type is annotated with File() or Form()."""
if get_origin(param_type) is Annotated:
args = get_args(param_type)
if len(args) > 1:
# Check metadata for File or Form
for metadata in args[1:]:
# Check if it's a File or Form instance
if hasattr(metadata, "__class__"):
class_name = metadata.__class__.__name__
if class_name in ("File", "Form"):
return True
return False
def _is_extra_body_field(metadata_item: Any) -> bool:
"""Check if a metadata item is an ExtraBodyField instance."""
from llama_stack_api.schema_utils import ExtraBodyField
return isinstance(metadata_item, ExtraBodyField)
def _is_async_iterator_type(type_obj: Any) -> bool:
"""Check if a type is AsyncIterator or AsyncIterable."""
from collections.abc import AsyncIterable, AsyncIterator
origin = get_origin(type_obj)
if origin is None:
# Check if it's the class itself
return type_obj in (AsyncIterator, AsyncIterable) or (
hasattr(type_obj, "__origin__") and type_obj.__origin__ in (AsyncIterator, AsyncIterable)
)
return origin in (AsyncIterator, AsyncIterable)
def _extract_response_models_from_union(union_type: Any) -> tuple[type | None, type | None]:
"""
Extract non-streaming and streaming response models from a union type.
Returns:
tuple: (non_streaming_model, streaming_model)
"""
non_streaming_model = None
streaming_model = None
args = get_args(union_type)
for arg in args:
# Check if it's an AsyncIterator
if _is_async_iterator_type(arg):
# Extract the type argument from AsyncIterator[T]
iterator_args = get_args(arg)
if iterator_args:
inner_type = iterator_args[0]
# Check if the inner type is a registered schema (union type)
# or a Pydantic model
if hasattr(inner_type, "model_json_schema"):
streaming_model = inner_type
else:
# Might be a registered schema - check if it's registered
if get_registered_schema_info(inner_type):
# We'll need to look this up later, but for now store the type
streaming_model = inner_type
elif hasattr(arg, "model_json_schema"):
# Non-streaming Pydantic model
if non_streaming_model is None:
non_streaming_model = arg
return non_streaming_model, streaming_model
def _find_models_for_endpoint(
webmethod, api: Api, method_name: str, is_post_put: bool = False
) -> tuple[type | None, type | None, list[tuple[str, type, Any]], list[inspect.Parameter], type | None, str | None]:
"""
Find appropriate request and response models for an endpoint by analyzing the actual function signature.
This uses the protocol function to determine the correct models dynamically.
Args:
webmethod: The webmethod metadata
api: The API enum for looking up the function
method_name: The method name (function name)
is_post_put: Whether this is a POST, PUT, or PATCH request (GET requests should never have request bodies)
Returns:
tuple: (request_model, response_model, query_parameters, file_form_params, streaming_response_model, response_schema_name)
where query_parameters is a list of (name, type, default_value) tuples
and file_form_params is a list of inspect.Parameter objects for File()/Form() params
and streaming_response_model is the model for streaming responses (AsyncIterator content)
"""
route_descriptor = f"{webmethod.method or 'UNKNOWN'} {webmethod.route}"
try:
# Get the function from the protocol
func = app_module._get_protocol_method(api, method_name)
if not func:
logger.warning("No protocol method for %s.%s (%s)", api, method_name, route_descriptor)
return None, None, [], [], None, None
# Analyze the function signature
sig = inspect.signature(func)
# Find request model and collect all body parameters
request_model = None
query_parameters = []
file_form_params = []
path_params = set()
extra_body_params = []
response_schema_name = None
# Extract path parameters from the route
if webmethod and hasattr(webmethod, "route"):
path_matches = re.findall(r"\{([^}:]+)(?::[^}]+)?\}", webmethod.route)
path_params = set(path_matches)
for param_name, param in sig.parameters.items():
if param_name == "self":
continue
# Skip *args and **kwargs parameters - these are not real API parameters
if param.kind in (inspect.Parameter.VAR_POSITIONAL, inspect.Parameter.VAR_KEYWORD):
continue
# Check if this is a path parameter
if param_name in path_params:
# Path parameters are handled separately, skip them
continue
# Check if it's a File() or Form() parameter - these need special handling
param_type = param.annotation
if _is_file_or_form_param(param_type):
# File() and Form() parameters must be in the function signature directly
# They cannot be part of a Pydantic model
file_form_params.append(param)
continue
# Check for ExtraBodyField in Annotated types
is_extra_body = False
extra_body_description = None
if get_origin(param_type) is Annotated:
args = get_args(param_type)
base_type = args[0] if args else param_type
metadata = args[1:] if len(args) > 1 else []
# Check if any metadata item is an ExtraBodyField
for metadata_item in metadata:
if _is_extra_body_field(metadata_item):
is_extra_body = True
extra_body_description = metadata_item.description
break
if is_extra_body:
# Store as extra body parameter - exclude from request model
extra_body_params.append((param_name, base_type, extra_body_description))
continue
# Check if it's a Pydantic model (for POST/PUT requests)
if hasattr(param_type, "model_json_schema"):
# Collect all body parameters including Pydantic models
# We'll decide later whether to use a single model or create a combined one
query_parameters.append((param_name, param_type, param.default))
elif get_origin(param_type) is Annotated:
# Handle Annotated types - get the base type
args = get_args(param_type)
if args and hasattr(args[0], "model_json_schema"):
# Collect Pydantic models from Annotated types
query_parameters.append((param_name, args[0], param.default))
else:
# Regular annotated parameter (but not File/Form, already handled above)
query_parameters.append((param_name, param_type, param.default))
else:
# This is likely a body parameter for POST/PUT or query parameter for GET
# Store the parameter info for later use
# Preserve inspect.Parameter.empty to distinguish "no default" from "default=None"
default_value = param.default
# Extract the base type from union types (e.g., str | None -> str)
# Also make it safe for FastAPI to avoid forward reference issues
query_parameters.append((param_name, param_type, default_value))
# Store extra body fields for later use in post-processing
# We'll store them when the endpoint is created, as we need the full path
# For now, attach to the function for later retrieval
if extra_body_params:
func._extra_body_params = extra_body_params # type: ignore
# If there's exactly one body parameter and it's a Pydantic model, use it directly
# Otherwise, we'll create a combined request model from all parameters
# BUT: For GET requests, never create a request body - all parameters should be query parameters
if is_post_put and len(query_parameters) == 1:
param_name, param_type, default_value = query_parameters[0]
if hasattr(param_type, "model_json_schema"):
request_model = param_type
query_parameters = [] # Clear query_parameters so we use the single model
# Find response model from return annotation
# Also detect streaming response models (AsyncIterator)
response_model = None
streaming_response_model = None
return_annotation = sig.return_annotation
if return_annotation != inspect.Signature.empty:
origin = get_origin(return_annotation)
if hasattr(return_annotation, "model_json_schema"):
response_model = return_annotation
elif origin is Annotated:
# Handle Annotated return types
args = get_args(return_annotation)
if args:
# Check if the first argument is a Pydantic model
if hasattr(args[0], "model_json_schema"):
response_model = args[0]
else:
# Check if the first argument is a union type
inner_origin = get_origin(args[0])
if inner_origin is not None and (
inner_origin is types.UnionType or inner_origin is typing.Union
):
response_model, streaming_response_model = _extract_response_models_from_union(args[0])
elif origin is not None and (origin is types.UnionType or origin is typing.Union):
# Handle union types - extract both non-streaming and streaming models
response_model, streaming_response_model = _extract_response_models_from_union(return_annotation)
else:
try:
from fastapi import Response as FastAPIResponse
except ImportError:
fastapi_response_cls = None
else:
fastapi_response_cls = FastAPIResponse
try:
from starlette.responses import Response as StarletteResponse
except ImportError:
starlette_response_cls = None
else:
starlette_response_cls = StarletteResponse
response_types = tuple(t for t in (fastapi_response_cls, starlette_response_cls) if t is not None)
if response_types and any(return_annotation is t for t in response_types):
response_schema_name = "Response"
return (
request_model,
response_model,
query_parameters,
file_form_params,
streaming_response_model,
response_schema_name,
)
except Exception as exc:
logger.warning(
"Failed to analyze endpoint %s.%s (%s): %s", api, method_name, route_descriptor, exc, exc_info=True
)
return None, None, [], [], None, None
def _create_fastapi_endpoint(app: FastAPI, route, webmethod, api: Api):
"""Create a FastAPI endpoint from a discovered route and webmethod."""
path = route.path
raw_methods = route.methods or set()
method_list = sorted({method.upper() for method in raw_methods if method and method.upper() != "HEAD"})
if not method_list:
method_list = ["GET"]
primary_method = method_list[0]
name = route.name
fastapi_path = path.replace("{", "{").replace("}", "}")
is_post_put = any(method in ["POST", "PUT", "PATCH"] for method in method_list)
(
request_model,
response_model,
query_parameters,
file_form_params,
streaming_response_model,
response_schema_name,
) = _find_models_for_endpoint(webmethod, api, name, is_post_put)
operation_description = _extract_operation_description_from_docstring(api, name)
response_description = _extract_response_description_from_docstring(webmethod, response_model, api, name)
# Retrieve and store extra body fields for this endpoint
func = app_module._get_protocol_method(api, name)
extra_body_params = getattr(func, "_extra_body_params", []) if func else []
if extra_body_params:
for method in method_list:
key = (fastapi_path, method.upper())
_extra_body_fields[key] = extra_body_params
if is_post_put and not request_model and not file_form_params and query_parameters:
request_model = _create_dynamic_request_model(
api, webmethod, name, primary_method, query_parameters, use_any=False
)
if not request_model:
request_model = _create_dynamic_request_model(
api, webmethod, name, primary_method, query_parameters, use_any=True, variant_suffix="Loose"
)
if request_model:
query_parameters = []
if file_form_params and is_post_put:
signature_params = list(file_form_params)
param_annotations = {param.name: param.annotation for param in file_form_params}
for param_name, param_type, default_value in query_parameters:
signature_params.append(
inspect.Parameter(
param_name,
inspect.Parameter.POSITIONAL_OR_KEYWORD,
default=default_value if default_value is not inspect.Parameter.empty else inspect.Parameter.empty,
annotation=param_type,
)
)
param_annotations[param_name] = param_type
async def file_form_endpoint():
return response_model() if response_model else {}
if operation_description:
file_form_endpoint.__doc__ = operation_description
file_form_endpoint.__signature__ = inspect.Signature(signature_params)
file_form_endpoint.__annotations__ = param_annotations
endpoint_func = file_form_endpoint
elif request_model and response_model:
endpoint_func = _create_endpoint_with_request_model(request_model, response_model, operation_description)
elif request_model:
endpoint_func = _create_endpoint_with_request_model(request_model, None, operation_description)
elif response_model and query_parameters:
if is_post_put:
request_model = _create_dynamic_request_model(
api, webmethod, name, primary_method, query_parameters, use_any=False
)
if not request_model:
request_model = _create_dynamic_request_model(
api, webmethod, name, primary_method, query_parameters, use_any=True, variant_suffix="Loose"
)
if request_model:
endpoint_func = _create_endpoint_with_request_model(
request_model, response_model, operation_description
)
else:
async def empty_endpoint() -> response_model:
return response_model() if response_model else {}
if operation_description:
empty_endpoint.__doc__ = operation_description
endpoint_func = empty_endpoint
else:
sorted_params = sorted(query_parameters, key=lambda x: (x[2] is not inspect.Parameter.empty, x[0]))
signature_params, param_annotations = _build_signature_params(sorted_params)
async def query_endpoint():
return response_model()
if operation_description:
query_endpoint.__doc__ = operation_description
query_endpoint.__signature__ = inspect.Signature(signature_params)
query_endpoint.__annotations__ = param_annotations
endpoint_func = query_endpoint
elif response_model:
async def response_only_endpoint() -> response_model:
return response_model()
if operation_description:
response_only_endpoint.__doc__ = operation_description
endpoint_func = response_only_endpoint
elif query_parameters:
signature_params, param_annotations = _build_signature_params(query_parameters)
async def params_only_endpoint():
return {}
if operation_description:
params_only_endpoint.__doc__ = operation_description
params_only_endpoint.__signature__ = inspect.Signature(signature_params)
params_only_endpoint.__annotations__ = param_annotations
endpoint_func = params_only_endpoint
else:
# Endpoint with no parameters and no response model
# If we have a response_model from the function signature, use it even if _find_models_for_endpoint didn't find it
# This can happen if there was an exception during model finding
if response_model is None:
# Try to get response model directly from the function signature as a fallback
func = app_module._get_protocol_method(api, name)
if func:
try:
sig = inspect.signature(func)
return_annotation = sig.return_annotation
if return_annotation != inspect.Signature.empty:
if hasattr(return_annotation, "model_json_schema"):
response_model = return_annotation
elif get_origin(return_annotation) is Annotated:
args = get_args(return_annotation)
if args and hasattr(args[0], "model_json_schema"):
response_model = args[0]
except Exception:
pass
if response_model:
async def no_params_endpoint() -> response_model:
return response_model() if response_model else {}
else:
async def no_params_endpoint():
return {}
if operation_description:
no_params_endpoint.__doc__ = operation_description
endpoint_func = no_params_endpoint
# Build response content with both application/json and text/event-stream if streaming
response_content: dict[str, Any] = {}
if response_model:
response_content["application/json"] = {"schema": {"$ref": f"#/components/schemas/{response_model.__name__}"}}
elif response_schema_name:
response_content["application/json"] = {"schema": {"$ref": f"#/components/schemas/{response_schema_name}"}}
if streaming_response_model:
# Get the schema name for the streaming model
# It might be a registered schema or a Pydantic model
streaming_schema_name = None
# Check if it's a registered schema first (before checking __name__)
# because registered schemas might be Annotated types
if schema_info := get_registered_schema_info(streaming_response_model):
streaming_schema_name = schema_info.name
elif hasattr(streaming_response_model, "__name__"):
streaming_schema_name = streaming_response_model.__name__
if streaming_schema_name:
response_content["text/event-stream"] = {
"schema": {"$ref": f"#/components/schemas/{streaming_schema_name}"}
}
# If no content types, use empty schema
# Add the endpoint to the FastAPI app
is_deprecated = webmethod.deprecated or False
route_kwargs = {
"name": name,
"tags": [_get_tag_from_api(api)],
"deprecated": is_deprecated,
"responses": {
400: {"$ref": "#/components/responses/BadRequest400"},
429: {"$ref": "#/components/responses/TooManyRequests429"},
500: {"$ref": "#/components/responses/InternalServerError500"},
"default": {"$ref": "#/components/responses/DefaultError"},
},
}
success_response: dict[str, Any] = {"description": response_description}
if response_content:
success_response["content"] = response_content
route_kwargs["responses"][200] = success_response
# FastAPI needs response_model parameter to properly generate OpenAPI spec
# Use the non-streaming response model if available
if response_model:
route_kwargs["response_model"] = response_model
method_map = {"GET": app.get, "POST": app.post, "PUT": app.put, "DELETE": app.delete, "PATCH": app.patch}
for method in method_list:
if handler := method_map.get(method):
handler(fastapi_path, **route_kwargs)(endpoint_func)

241
scripts/openapi_generator/main.py Executable file
View file

@ -0,0 +1,241 @@
#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
"""
Main entry point for the FastAPI OpenAPI generator.
"""
import copy
from pathlib import Path
from typing import Any
import yaml
from fastapi.openapi.utils import get_openapi
from . import app, schema_collection, schema_filtering, schema_transforms, state
def generate_openapi_spec(output_dir: str) -> dict[str, Any]:
"""
Generate OpenAPI specification using FastAPI's built-in method.
Args:
output_dir: Directory to save the generated files
Returns:
The generated OpenAPI specification as a dictionary
"""
state.reset_generator_state()
# Create the FastAPI app
fastapi_app = app.create_llama_stack_app()
# Generate the OpenAPI schema
openapi_schema = get_openapi(
title=fastapi_app.title,
version=fastapi_app.version,
description=fastapi_app.description,
routes=fastapi_app.routes,
servers=fastapi_app.servers,
)
# Set OpenAPI version to 3.1.0
openapi_schema["openapi"] = "3.1.0"
# Add standard error responses
openapi_schema = schema_transforms._add_error_responses(openapi_schema)
# Ensure all @json_schema_type decorated models are included
openapi_schema = schema_collection._ensure_json_schema_types_included(openapi_schema)
# Fix $ref references to point to components/schemas instead of $defs
openapi_schema = schema_transforms._fix_ref_references(openapi_schema)
# Fix path parameter resolution issues
openapi_schema = schema_transforms._fix_path_parameters(openapi_schema)
# Eliminate $defs section entirely for oasdiff compatibility
openapi_schema = schema_transforms._eliminate_defs_section(openapi_schema)
# Clean descriptions in schema definitions by removing docstring metadata
openapi_schema = schema_transforms._clean_schema_descriptions(openapi_schema)
openapi_schema = schema_transforms._normalize_empty_responses(openapi_schema)
# Remove query parameters from POST/PUT/PATCH endpoints that have a request body
# FastAPI sometimes infers parameters as query params even when they should be in the request body
openapi_schema = schema_transforms._remove_query_params_from_body_endpoints(openapi_schema)
# Add x-llama-stack-extra-body-params extension for ExtraBodyField parameters
openapi_schema = schema_transforms._add_extra_body_params_extension(openapi_schema)
# Remove request bodies from GET endpoints (GET requests should never have request bodies)
# This must run AFTER _add_extra_body_params_extension to ensure any request bodies
# that FastAPI incorrectly added to GET endpoints are removed
openapi_schema = schema_transforms._remove_request_bodies_from_get_endpoints(openapi_schema)
# Extract duplicate union types to shared schema references
openapi_schema = schema_transforms._extract_duplicate_union_types(openapi_schema)
# Split into stable (v1 only), experimental (v1alpha + v1beta), deprecated, and combined (stainless) specs
# Each spec needs its own deep copy of the full schema to avoid cross-contamination
stable_schema = schema_filtering._filter_schema_by_version(
copy.deepcopy(openapi_schema), stable_only=True, exclude_deprecated=True
)
experimental_schema = schema_filtering._filter_schema_by_version(
copy.deepcopy(openapi_schema), stable_only=False, exclude_deprecated=True
)
deprecated_schema = schema_filtering._filter_deprecated_schema(copy.deepcopy(openapi_schema))
combined_schema = schema_filtering._filter_combined_schema(copy.deepcopy(openapi_schema))
# Apply duplicate union extraction to combined schema (used by Stainless)
combined_schema = schema_transforms._extract_duplicate_union_types(combined_schema)
base_description = (
"This is the specification of the Llama Stack that provides\n"
" a set of endpoints and their corresponding interfaces that are\n"
" tailored to\n"
" best leverage Llama Models."
)
schema_configs = [
(
stable_schema,
"Llama Stack Specification",
"**✅ STABLE**: Production-ready APIs with backward compatibility guarantees.",
),
(
experimental_schema,
"Llama Stack Specification - Experimental APIs",
"**🧪 EXPERIMENTAL**: Pre-release APIs (v1alpha, v1beta) that may change before\n becoming stable.",
),
(
deprecated_schema,
"Llama Stack Specification - Deprecated APIs",
"**⚠️ DEPRECATED**: Legacy APIs that may be removed in future versions. Use for\n migration reference only.",
),
(
combined_schema,
"Llama Stack Specification - Stable & Experimental APIs",
"**🔗 COMBINED**: This specification includes both stable production-ready APIs\n and experimental pre-release APIs. Use stable APIs for production deployments\n and experimental APIs for testing new features.",
),
]
for schema, title, description_suffix in schema_configs:
if "info" not in schema:
schema["info"] = {}
schema["info"].update(
{
"title": title,
"version": "v1",
"description": f"{base_description}\n\n {description_suffix}",
}
)
schemas_to_validate = [
(stable_schema, "Stable schema"),
(experimental_schema, "Experimental schema"),
(deprecated_schema, "Deprecated schema"),
(combined_schema, "Combined (stainless) schema"),
]
for schema, _ in schemas_to_validate:
schema_transforms._fix_schema_issues(schema)
schema_transforms._apply_legacy_sorting(schema)
print("\nValidating generated schemas...")
failed_schemas = [
name for schema, name in schemas_to_validate if not schema_transforms.validate_openapi_schema(schema, name)
]
if failed_schemas:
raise ValueError(f"Invalid schemas: {', '.join(failed_schemas)}")
# Ensure output directory exists
output_path = Path(output_dir)
output_path.mkdir(parents=True, exist_ok=True)
# Save the stable specification
yaml_path = output_path / "llama-stack-spec.yaml"
schema_transforms._write_yaml_file(yaml_path, stable_schema)
# Post-process the YAML file to remove $defs section and fix references
with open(yaml_path) as f:
yaml_content = f.read()
if " $defs:" in yaml_content or "#/$defs/" in yaml_content:
# Use string replacement to fix references directly
if "#/$defs/" in yaml_content:
yaml_content = yaml_content.replace("#/$defs/", "#/components/schemas/")
# Parse the YAML content
yaml_data = yaml.safe_load(yaml_content)
# Move $defs to components/schemas if it exists
if "$defs" in yaml_data:
if "components" not in yaml_data:
yaml_data["components"] = {}
if "schemas" not in yaml_data["components"]:
yaml_data["components"]["schemas"] = {}
# Move all $defs to components/schemas
for def_name, def_schema in yaml_data["$defs"].items():
yaml_data["components"]["schemas"][def_name] = def_schema
# Remove the $defs section
del yaml_data["$defs"]
# Write the modified YAML back
schema_transforms._write_yaml_file(yaml_path, yaml_data)
print(f"Generated YAML (stable): {yaml_path}")
experimental_yaml_path = output_path / "experimental-llama-stack-spec.yaml"
schema_transforms._write_yaml_file(experimental_yaml_path, experimental_schema)
print(f"Generated YAML (experimental): {experimental_yaml_path}")
deprecated_yaml_path = output_path / "deprecated-llama-stack-spec.yaml"
schema_transforms._write_yaml_file(deprecated_yaml_path, deprecated_schema)
print(f"Generated YAML (deprecated): {deprecated_yaml_path}")
# Generate combined (stainless) spec
stainless_yaml_path = output_path / "stainless-llama-stack-spec.yaml"
schema_transforms._write_yaml_file(stainless_yaml_path, combined_schema)
print(f"Generated YAML (stainless/combined): {stainless_yaml_path}")
return stable_schema
def main():
"""Main entry point for the FastAPI OpenAPI generator."""
import argparse
parser = argparse.ArgumentParser(description="Generate OpenAPI specification using FastAPI")
parser.add_argument("output_dir", help="Output directory for generated files")
args = parser.parse_args()
print("Generating OpenAPI specification using FastAPI...")
print(f"Output directory: {args.output_dir}")
try:
openapi_schema = generate_openapi_spec(output_dir=args.output_dir)
print("\nOpenAPI specification generated successfully!")
print(f"Schemas: {len(openapi_schema.get('components', {}).get('schemas', {}))}")
print(f"Paths: {len(openapi_schema.get('paths', {}))}")
operation_count = sum(
1
for path_info in openapi_schema.get("paths", {}).values()
for method in ["get", "post", "put", "delete", "patch"]
if method in path_info
)
print(f"Operations: {operation_count}")
except Exception as e:
print(f"Error generating OpenAPI specification: {e}")
raise
if __name__ == "__main__":
main()

View file

@ -0,0 +1,131 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
"""
Schema discovery and collection for OpenAPI generation.
"""
import importlib
from typing import Any
def _ensure_components_schemas(openapi_schema: dict[str, Any]) -> None:
"""Ensure components.schemas exists in the schema."""
if "components" not in openapi_schema:
openapi_schema["components"] = {}
if "schemas" not in openapi_schema["components"]:
openapi_schema["components"]["schemas"] = {}
def _load_extra_schema_modules() -> None:
"""
Import modules outside llama_stack_api that use schema_utils to register schemas.
The API package already imports its submodules via __init__, but server-side modules
like telemetry need to be imported explicitly so their decorator side effects run.
"""
extra_modules = [
"llama_stack.core.telemetry.telemetry",
]
for module_name in extra_modules:
try:
importlib.import_module(module_name)
except ImportError:
continue
def _extract_and_fix_defs(schema: dict[str, Any], openapi_schema: dict[str, Any]) -> None:
"""
Extract $defs from a schema, move them to components/schemas, and fix references.
This handles both TypeAdapter-generated schemas and model_json_schema() schemas.
"""
if "$defs" in schema:
defs = schema.pop("$defs")
for def_name, def_schema in defs.items():
if def_name not in openapi_schema["components"]["schemas"]:
openapi_schema["components"]["schemas"][def_name] = def_schema
# Recursively handle $defs in nested schemas
_extract_and_fix_defs(def_schema, openapi_schema)
# Fix any references in the main schema that point to $defs
def fix_refs_in_schema(obj: Any) -> None:
if isinstance(obj, dict):
if "$ref" in obj and obj["$ref"].startswith("#/$defs/"):
obj["$ref"] = obj["$ref"].replace("#/$defs/", "#/components/schemas/")
for value in obj.values():
fix_refs_in_schema(value)
elif isinstance(obj, list):
for item in obj:
fix_refs_in_schema(item)
fix_refs_in_schema(schema)
def _ensure_json_schema_types_included(openapi_schema: dict[str, Any]) -> dict[str, Any]:
"""
Ensure all registered schemas (decorated, explicit, and dynamic) are included in the OpenAPI schema.
Relies on llama_stack_api's registry instead of recursively importing every module.
"""
_ensure_components_schemas(openapi_schema)
from pydantic import TypeAdapter
from llama_stack_api.schema_utils import (
iter_dynamic_schema_types,
iter_json_schema_types,
iter_registered_schema_types,
)
# Import extra modules (e.g., telemetry) whose schema registrations live outside llama_stack_api
_load_extra_schema_modules()
# Handle explicitly registered schemas first (union types, Annotated structs, etc.)
for registration_info in iter_registered_schema_types():
schema_type = registration_info.type
schema_name = registration_info.name
if schema_name not in openapi_schema["components"]["schemas"]:
try:
adapter = TypeAdapter(schema_type)
schema = adapter.json_schema(ref_template="#/components/schemas/{model}")
_extract_and_fix_defs(schema, openapi_schema)
openapi_schema["components"]["schemas"][schema_name] = schema
except Exception as e:
print(f"Warning: Failed to generate schema for registered type {schema_name}: {e}")
import traceback
traceback.print_exc()
continue
# Add @json_schema_type decorated models
for model in iter_json_schema_types():
schema_name = getattr(model, "_llama_stack_schema_name", None) or getattr(model, "__name__", None)
if not schema_name:
continue
if schema_name not in openapi_schema["components"]["schemas"]:
try:
if hasattr(model, "model_json_schema"):
schema = model.model_json_schema(ref_template="#/components/schemas/{model}")
else:
adapter = TypeAdapter(model)
schema = adapter.json_schema(ref_template="#/components/schemas/{model}")
_extract_and_fix_defs(schema, openapi_schema)
openapi_schema["components"]["schemas"][schema_name] = schema
except Exception as e:
print(f"Warning: Failed to generate schema for {schema_name}: {e}")
continue
# Include any dynamic models generated while building endpoints
for model in iter_dynamic_schema_types():
try:
schema_name = model.__name__
if schema_name not in openapi_schema["components"]["schemas"]:
schema = model.model_json_schema(ref_template="#/components/schemas/{model}")
_extract_and_fix_defs(schema, openapi_schema)
openapi_schema["components"]["schemas"][schema_name] = schema
except Exception:
continue
return openapi_schema

View file

@ -0,0 +1,297 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
"""
Schema filtering and version filtering for OpenAPI generation.
"""
from typing import Any
from llama_stack_api.schema_utils import iter_json_schema_types, iter_registered_schema_types
from llama_stack_api.version import (
LLAMA_STACK_API_V1,
LLAMA_STACK_API_V1ALPHA,
LLAMA_STACK_API_V1BETA,
)
def _get_all_json_schema_type_names() -> set[str]:
"""Collect schema names from @json_schema_type-decorated models."""
schema_names = set()
for model in iter_json_schema_types():
schema_name = getattr(model, "_llama_stack_schema_name", None) or getattr(model, "__name__", None)
if schema_name:
schema_names.add(schema_name)
return schema_names
def _get_explicit_schema_names(openapi_schema: dict[str, Any]) -> set[str]:
"""Schema names to keep even if not referenced by a path."""
registered_schema_names = {info.name for info in iter_registered_schema_types()}
json_schema_type_names = _get_all_json_schema_type_names()
return registered_schema_names | json_schema_type_names
def _find_schema_refs_in_object(obj: Any) -> set[str]:
"""
Recursively find all schema references ($ref) in an object.
"""
refs = set()
if isinstance(obj, dict):
for key, value in obj.items():
if key == "$ref" and isinstance(value, str) and value.startswith("#/components/schemas/"):
schema_name = value.split("/")[-1]
refs.add(schema_name)
else:
refs.update(_find_schema_refs_in_object(value))
elif isinstance(obj, list):
for item in obj:
refs.update(_find_schema_refs_in_object(item))
return refs
def _add_transitive_references(
referenced_schemas: set[str], all_schemas: dict[str, Any], initial_schemas: set[str] | None = None
) -> set[str]:
"""Add transitive references for given schemas."""
if initial_schemas:
referenced_schemas.update(initial_schemas)
additional_schemas = set()
for schema_name in initial_schemas:
if schema_name in all_schemas:
additional_schemas.update(_find_schema_refs_in_object(all_schemas[schema_name]))
else:
additional_schemas = set()
for schema_name in referenced_schemas:
if schema_name in all_schemas:
additional_schemas.update(_find_schema_refs_in_object(all_schemas[schema_name]))
while additional_schemas:
new_schemas = additional_schemas - referenced_schemas
if not new_schemas:
break
referenced_schemas.update(new_schemas)
additional_schemas = set()
for schema_name in new_schemas:
if schema_name in all_schemas:
additional_schemas.update(_find_schema_refs_in_object(all_schemas[schema_name]))
return referenced_schemas
def _find_schemas_referenced_by_paths(filtered_paths: dict[str, Any], openapi_schema: dict[str, Any]) -> set[str]:
"""
Find all schemas that are referenced by the filtered paths.
This recursively traverses the path definitions to find all $ref references.
"""
referenced_schemas = set()
# Traverse all filtered paths
for _, path_item in filtered_paths.items():
if not isinstance(path_item, dict):
continue
# Check each HTTP method in the path
for method in ["get", "post", "put", "delete", "patch", "head", "options"]:
if method in path_item:
operation = path_item[method]
if isinstance(operation, dict):
# Find all schema references in this operation
referenced_schemas.update(_find_schema_refs_in_object(operation))
# Also check the responses section for schema references
if "components" in openapi_schema and "responses" in openapi_schema["components"]:
referenced_schemas.update(_find_schema_refs_in_object(openapi_schema["components"]["responses"]))
# Also include schemas that are referenced by other schemas (transitive references)
# This ensures we include all dependencies
all_schemas = openapi_schema.get("components", {}).get("schemas", {})
additional_schemas = set()
for schema_name in referenced_schemas:
if schema_name in all_schemas:
additional_schemas.update(_find_schema_refs_in_object(all_schemas[schema_name]))
# Keep adding transitive references until no new ones are found
while additional_schemas:
new_schemas = additional_schemas - referenced_schemas
if not new_schemas:
break
referenced_schemas.update(new_schemas)
additional_schemas = set()
for schema_name in new_schemas:
if schema_name in all_schemas:
additional_schemas.update(_find_schema_refs_in_object(all_schemas[schema_name]))
return referenced_schemas
def _filter_schemas_by_references(
filtered_schema: dict[str, Any], filtered_paths: dict[str, Any], openapi_schema: dict[str, Any]
) -> dict[str, Any]:
"""Filter schemas to only include ones referenced by filtered paths and explicit schemas."""
if "components" not in filtered_schema or "schemas" not in filtered_schema["components"]:
return filtered_schema
referenced_schemas = _find_schemas_referenced_by_paths(filtered_paths, openapi_schema)
all_schemas = openapi_schema.get("components", {}).get("schemas", {})
explicit_names = _get_explicit_schema_names(openapi_schema)
referenced_schemas = _add_transitive_references(referenced_schemas, all_schemas, explicit_names)
filtered_schemas = {
name: schema for name, schema in filtered_schema["components"]["schemas"].items() if name in referenced_schemas
}
filtered_schema["components"]["schemas"] = filtered_schemas
if "components" in openapi_schema and "$defs" in openapi_schema["components"]:
if "components" not in filtered_schema:
filtered_schema["components"] = {}
filtered_schema["components"]["$defs"] = openapi_schema["components"]["$defs"]
return filtered_schema
def _path_starts_with_version(path: str, version: str) -> bool:
"""Check if a path starts with a specific API version prefix."""
return path.startswith(f"/{version}/")
def _is_stable_path(path: str) -> bool:
"""Check if a path is a stable v1 path (not v1alpha or v1beta)."""
return (
_path_starts_with_version(path, LLAMA_STACK_API_V1)
and not _path_starts_with_version(path, LLAMA_STACK_API_V1ALPHA)
and not _path_starts_with_version(path, LLAMA_STACK_API_V1BETA)
)
def _is_experimental_path(path: str) -> bool:
"""Check if a path is an experimental path (v1alpha or v1beta)."""
return _path_starts_with_version(path, LLAMA_STACK_API_V1ALPHA) or _path_starts_with_version(
path, LLAMA_STACK_API_V1BETA
)
def _is_path_deprecated(path_item: dict[str, Any]) -> bool:
"""Check if a path item has any deprecated operations."""
if not isinstance(path_item, dict):
return False
for method in ["get", "post", "put", "delete", "patch", "head", "options"]:
if isinstance(path_item.get(method), dict) and path_item[method].get("deprecated", False):
return True
return False
def _filter_schema_by_version(
openapi_schema: dict[str, Any], stable_only: bool = True, exclude_deprecated: bool = True
) -> dict[str, Any]:
"""
Filter OpenAPI schema by API version.
Args:
openapi_schema: The full OpenAPI schema
stable_only: If True, return only /v1/ paths (stable). If False, return only /v1alpha/ and /v1beta/ paths (experimental).
exclude_deprecated: If True, exclude deprecated endpoints from the result.
Returns:
Filtered OpenAPI schema
"""
filtered_schema = openapi_schema.copy()
if "paths" not in filtered_schema:
return filtered_schema
filtered_paths = {}
for path, path_item in filtered_schema["paths"].items():
if not isinstance(path_item, dict):
continue
# Filter at operation level, not path level
# This allows paths with both deprecated and non-deprecated operations
filtered_path_item = {}
for method in ["get", "post", "put", "delete", "patch", "head", "options"]:
if method not in path_item:
continue
operation = path_item[method]
if not isinstance(operation, dict):
continue
# Skip deprecated operations if exclude_deprecated is True
if exclude_deprecated and operation.get("deprecated", False):
continue
filtered_path_item[method] = operation
# Only include path if it has at least one operation after filtering
if filtered_path_item:
# Check if path matches version filter
if (stable_only and _is_stable_path(path)) or (not stable_only and _is_experimental_path(path)):
filtered_paths[path] = filtered_path_item
filtered_schema["paths"] = filtered_paths
return _filter_schemas_by_references(filtered_schema, filtered_paths, openapi_schema)
def _filter_deprecated_schema(openapi_schema: dict[str, Any]) -> dict[str, Any]:
"""
Filter OpenAPI schema to include only deprecated endpoints.
Includes all deprecated endpoints regardless of version (v1, v1alpha, v1beta).
"""
filtered_schema = openapi_schema.copy()
if "paths" not in filtered_schema:
return filtered_schema
# Filter paths to only include deprecated ones
filtered_paths = {}
for path, path_item in filtered_schema["paths"].items():
if _is_path_deprecated(path_item):
filtered_paths[path] = path_item
filtered_schema["paths"] = filtered_paths
return filtered_schema
def _filter_combined_schema(openapi_schema: dict[str, Any]) -> dict[str, Any]:
"""
Filter OpenAPI schema to include both stable (v1) and experimental (v1alpha, v1beta) APIs.
Includes deprecated endpoints. This is used for the combined "stainless" spec.
"""
filtered_schema = openapi_schema.copy()
if "paths" not in filtered_schema:
return filtered_schema
# Filter paths to include stable (v1) and experimental (v1alpha, v1beta), excluding deprecated
filtered_paths = {}
for path, path_item in filtered_schema["paths"].items():
if not isinstance(path_item, dict):
continue
# Filter at operation level, not path level
# This allows paths with both deprecated and non-deprecated operations
filtered_path_item = {}
for method in ["get", "post", "put", "delete", "patch", "head", "options"]:
if method not in path_item:
continue
operation = path_item[method]
if not isinstance(operation, dict):
continue
filtered_path_item[method] = operation
# Only include path if it has at least one operation after filtering
if filtered_path_item:
# Check if path matches version filter (stable or experimental)
if _is_stable_path(path) or _is_experimental_path(path):
filtered_paths[path] = filtered_path_item
filtered_schema["paths"] = filtered_paths
return _filter_schemas_by_references(filtered_schema, filtered_paths, openapi_schema)

View file

@ -0,0 +1,963 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
"""
Schema transformations and fixes for OpenAPI generation.
"""
import copy
from collections import OrderedDict
from pathlib import Path
from typing import Any
import yaml
from openapi_spec_validator import validate_spec
from openapi_spec_validator.exceptions import OpenAPISpecValidatorError
from . import endpoints, schema_collection
from ._legacy_order import (
LEGACY_OPERATION_KEYS,
LEGACY_PATH_ORDER,
LEGACY_RESPONSE_ORDER,
LEGACY_SCHEMA_ORDER,
LEGACY_SECURITY,
LEGACY_TAG_GROUPS,
LEGACY_TAGS,
)
from .state import _extra_body_fields
def _fix_ref_references(openapi_schema: dict[str, Any]) -> dict[str, Any]:
"""
Fix $ref references to point to components/schemas instead of $defs.
This prevents the YAML dumper from creating a root-level $defs section.
"""
def fix_refs(obj: Any) -> None:
if isinstance(obj, dict):
if "$ref" in obj and obj["$ref"].startswith("#/$defs/"):
# Replace #/$defs/ with #/components/schemas/
obj["$ref"] = obj["$ref"].replace("#/$defs/", "#/components/schemas/")
for value in obj.values():
fix_refs(value)
elif isinstance(obj, list):
for item in obj:
fix_refs(item)
fix_refs(openapi_schema)
return openapi_schema
def _normalize_empty_responses(openapi_schema: dict[str, Any]) -> dict[str, Any]:
"""Convert empty 200 responses into 204 No Content."""
for path_item in openapi_schema.get("paths", {}).values():
if not isinstance(path_item, dict):
continue
for method in list(path_item.keys()):
operation = path_item.get(method)
if not isinstance(operation, dict):
continue
responses = operation.get("responses")
if not isinstance(responses, dict):
continue
response_200 = responses.get("200") or responses.get(200)
if response_200 is None:
continue
content = response_200.get("content")
if content and any(
isinstance(media, dict) and media.get("schema") not in ({}, None) for media in content.values()
):
continue
responses.pop("200", None)
responses.pop(200, None)
responses["204"] = {"description": response_200.get("description", "No Content")}
return openapi_schema
def _eliminate_defs_section(openapi_schema: dict[str, Any]) -> dict[str, Any]:
"""
Eliminate $defs section entirely by moving all definitions to components/schemas.
This matches the structure of the old pyopenapi generator for oasdiff compatibility.
"""
schema_collection._ensure_components_schemas(openapi_schema)
# First pass: collect all $defs from anywhere in the schema
defs_to_move = {}
def collect_defs(obj: Any) -> None:
if isinstance(obj, dict):
if "$defs" in obj:
# Collect $defs for later processing
for def_name, def_schema in obj["$defs"].items():
if def_name not in defs_to_move:
defs_to_move[def_name] = def_schema
# Recursively process all values
for value in obj.values():
collect_defs(value)
elif isinstance(obj, list):
for item in obj:
collect_defs(item)
# Collect all $defs
collect_defs(openapi_schema)
# Move all $defs to components/schemas
for def_name, def_schema in defs_to_move.items():
if def_name not in openapi_schema["components"]["schemas"]:
openapi_schema["components"]["schemas"][def_name] = def_schema
# Also move any existing root-level $defs to components/schemas
if "$defs" in openapi_schema:
print(f"Found root-level $defs with {len(openapi_schema['$defs'])} items, moving to components/schemas")
for def_name, def_schema in openapi_schema["$defs"].items():
if def_name not in openapi_schema["components"]["schemas"]:
openapi_schema["components"]["schemas"][def_name] = def_schema
# Remove the root-level $defs
del openapi_schema["$defs"]
# Second pass: remove all $defs sections from anywhere in the schema
def remove_defs(obj: Any) -> None:
if isinstance(obj, dict):
if "$defs" in obj:
del obj["$defs"]
# Recursively process all values
for value in obj.values():
remove_defs(value)
elif isinstance(obj, list):
for item in obj:
remove_defs(item)
# Remove all $defs sections
remove_defs(openapi_schema)
return openapi_schema
def _add_error_responses(openapi_schema: dict[str, Any]) -> dict[str, Any]:
"""
Add standard error response definitions to the OpenAPI schema.
Uses the actual Error model from the codebase for consistency.
"""
if "components" not in openapi_schema:
openapi_schema["components"] = {}
if "responses" not in openapi_schema["components"]:
openapi_schema["components"]["responses"] = {}
try:
from llama_stack_api.datatypes import Error
schema_collection._ensure_components_schemas(openapi_schema)
if "Error" not in openapi_schema["components"]["schemas"]:
openapi_schema["components"]["schemas"]["Error"] = Error.model_json_schema()
except ImportError:
pass
schema_collection._ensure_components_schemas(openapi_schema)
if "Response" not in openapi_schema["components"]["schemas"]:
openapi_schema["components"]["schemas"]["Response"] = {"title": "Response", "type": "object"}
# Define standard HTTP error responses
error_responses = {
400: {
"name": "BadRequest400",
"description": "The request was invalid or malformed",
"example": {"status": 400, "title": "Bad Request", "detail": "The request was invalid or malformed"},
},
429: {
"name": "TooManyRequests429",
"description": "The client has sent too many requests in a given amount of time",
"example": {
"status": 429,
"title": "Too Many Requests",
"detail": "You have exceeded the rate limit. Please try again later.",
},
},
500: {
"name": "InternalServerError500",
"description": "The server encountered an unexpected error",
"example": {"status": 500, "title": "Internal Server Error", "detail": "An unexpected error occurred"},
},
}
# Add each error response to the schema
for _, error_info in error_responses.items():
response_name = error_info["name"]
openapi_schema["components"]["responses"][response_name] = {
"description": error_info["description"],
"content": {
"application/json": {"schema": {"$ref": "#/components/schemas/Error"}, "example": error_info["example"]}
},
}
# Add a default error response
openapi_schema["components"]["responses"]["DefaultError"] = {
"description": "An error occurred",
"content": {"application/json": {"schema": {"$ref": "#/components/schemas/Error"}}},
}
return openapi_schema
def _fix_path_parameters(openapi_schema: dict[str, Any]) -> dict[str, Any]:
"""
Fix path parameter resolution issues by adding explicit parameter definitions.
"""
if "paths" not in openapi_schema:
return openapi_schema
for path, path_item in openapi_schema["paths"].items():
# Extract path parameters from the URL
path_params = endpoints._extract_path_parameters(path)
if not path_params:
continue
# Add parameters to each operation in this path
for method in ["get", "post", "put", "delete", "patch", "head", "options"]:
if method in path_item and isinstance(path_item[method], dict):
operation = path_item[method]
if "parameters" not in operation:
operation["parameters"] = []
# Add path parameters that aren't already defined
existing_param_names = {p.get("name") for p in operation["parameters"] if p.get("in") == "path"}
for param in path_params:
if param["name"] not in existing_param_names:
operation["parameters"].append(param)
return openapi_schema
def _get_schema_title(item: dict[str, Any]) -> str | None:
"""Extract a title for a schema item to use in union variant names."""
if "$ref" in item:
return item["$ref"].split("/")[-1]
elif "type" in item:
type_val = item["type"]
if type_val == "null":
return None
if type_val == "array" and "items" in item:
items = item["items"]
if isinstance(items, dict):
if "anyOf" in items or "oneOf" in items:
nested_union = items.get("anyOf") or items.get("oneOf")
if isinstance(nested_union, list) and len(nested_union) > 0:
nested_types = []
for nested_item in nested_union:
if isinstance(nested_item, dict):
if "$ref" in nested_item:
nested_types.append(nested_item["$ref"].split("/")[-1])
elif "oneOf" in nested_item:
one_of_items = nested_item.get("oneOf", [])
if one_of_items and isinstance(one_of_items[0], dict) and "$ref" in one_of_items[0]:
base_name = one_of_items[0]["$ref"].split("/")[-1].split("-")[0]
nested_types.append(f"{base_name}Union")
else:
nested_types.append("Union")
elif "type" in nested_item and nested_item["type"] != "null":
nested_types.append(nested_item["type"])
if nested_types:
unique_nested = list(dict.fromkeys(nested_types))
# Use more descriptive names for better code generation
if len(unique_nested) <= 3:
return f"list[{' | '.join(unique_nested)}]"
else:
# Include first few types for better naming
return f"list[{unique_nested[0]} | {unique_nested[1]} | ...]"
return "list[Union]"
elif "$ref" in items:
return f"list[{items['$ref'].split('/')[-1]}]"
elif "type" in items:
return f"list[{items['type']}]"
return "array"
return type_val
elif "title" in item:
return item["title"]
return None
def _add_titles_to_unions(obj: Any, parent_key: str | None = None) -> None:
"""Recursively add titles to union schemas (anyOf/oneOf) to help code generators infer names."""
if isinstance(obj, dict):
# Check if this is a union schema (anyOf or oneOf)
if "anyOf" in obj or "oneOf" in obj:
union_type = "anyOf" if "anyOf" in obj else "oneOf"
union_items = obj[union_type]
if isinstance(union_items, list) and len(union_items) > 0:
# Skip simple nullable unions (type | null) - these don't need titles
is_simple_nullable = (
len(union_items) == 2
and any(isinstance(item, dict) and item.get("type") == "null" for item in union_items)
and any(
isinstance(item, dict) and "type" in item and item.get("type") != "null" for item in union_items
)
and not any(
isinstance(item, dict) and ("$ref" in item or "anyOf" in item or "oneOf" in item)
for item in union_items
)
)
if is_simple_nullable:
# Remove title from simple nullable unions if it exists
if "title" in obj:
del obj["title"]
else:
# Add titles to individual union variants that need them
for item in union_items:
if isinstance(item, dict):
# Skip null types
if item.get("type") == "null":
continue
# Add title to complex variants (arrays with unions, nested unions, etc.)
# Also add to simple types if they're part of a complex union
needs_title = (
"items" in item
or "anyOf" in item
or "oneOf" in item
or ("$ref" in item and "title" not in item)
)
if needs_title and "title" not in item:
variant_title = _get_schema_title(item)
if variant_title:
item["title"] = variant_title
# Try to infer a meaningful title from the union items for the parent
titles = []
for item in union_items:
if isinstance(item, dict):
title = _get_schema_title(item)
if title:
titles.append(title)
if titles:
# Create a title from the union items
unique_titles = list(dict.fromkeys(titles)) # Preserve order, remove duplicates
if len(unique_titles) <= 3:
title = " | ".join(unique_titles)
else:
title = f"{unique_titles[0]} | ... ({len(unique_titles)} variants)"
# Always set the title for unions to help code generators
# This will replace generic property titles with union-specific ones
obj["title"] = title
elif "title" not in obj and parent_key:
# Use parent key as fallback only if no title exists
obj["title"] = f"{parent_key.title()}Union"
# Recursively process all values
for key, value in obj.items():
_add_titles_to_unions(value, key)
elif isinstance(obj, list):
for item in obj:
_add_titles_to_unions(item, parent_key)
def _convert_anyof_const_to_enum(obj: Any) -> None:
"""Convert anyOf with multiple const string values to a proper enum."""
if isinstance(obj, dict):
if "anyOf" in obj:
any_of = obj["anyOf"]
if isinstance(any_of, list):
# Check if all items are const string values
const_values = []
has_null = False
can_convert = True
for item in any_of:
if isinstance(item, dict):
if item.get("type") == "null":
has_null = True
elif item.get("type") == "string" and "const" in item:
const_values.append(item["const"])
else:
# Not a simple const pattern, skip conversion for this anyOf
can_convert = False
break
# If we have const values and they're all strings, convert to enum
if can_convert and const_values and len(const_values) == len(any_of) - (1 if has_null else 0):
# Convert to enum
obj["type"] = "string"
obj["enum"] = const_values
# Preserve default if present, otherwise try to get from first const item
if "default" not in obj:
for item in any_of:
if isinstance(item, dict) and "const" in item:
obj["default"] = item["const"]
break
# Remove anyOf
del obj["anyOf"]
# Handle nullable
if has_null:
obj["nullable"] = True
# Remove title if it's just "string"
if obj.get("title") == "string":
del obj["title"]
# Recursively process all values
for value in obj.values():
_convert_anyof_const_to_enum(value)
elif isinstance(obj, list):
for item in obj:
_convert_anyof_const_to_enum(item)
def _fix_schema_recursive(obj: Any) -> None:
"""Recursively fix schema issues: exclusiveMinimum and null defaults."""
if isinstance(obj, dict):
if "exclusiveMinimum" in obj and isinstance(obj["exclusiveMinimum"], int | float):
obj["minimum"] = obj.pop("exclusiveMinimum")
if "default" in obj and obj["default"] is None:
del obj["default"]
obj["nullable"] = True
for value in obj.values():
_fix_schema_recursive(value)
elif isinstance(obj, list):
for item in obj:
_fix_schema_recursive(item)
def _clean_description(description: str) -> str:
"""Remove :param, :type, :returns, and other docstring metadata from description."""
if not description:
return description
lines = description.split("\n")
cleaned_lines = []
skip_until_empty = False
for line in lines:
stripped = line.strip()
# Skip lines that start with docstring metadata markers
if stripped.startswith(
(":param", ":type", ":return", ":returns", ":raises", ":exception", ":yield", ":yields", ":cvar")
):
skip_until_empty = True
continue
# If we're skipping and hit an empty line, resume normal processing
if skip_until_empty:
if not stripped:
skip_until_empty = False
continue
# Include the line if we're not skipping
cleaned_lines.append(line)
# Join and strip trailing whitespace
result = "\n".join(cleaned_lines).strip()
return result
def _clean_schema_descriptions(openapi_schema: dict[str, Any]) -> dict[str, Any]:
"""Clean descriptions in schema definitions by removing docstring metadata."""
if "components" not in openapi_schema or "schemas" not in openapi_schema["components"]:
return openapi_schema
schemas = openapi_schema["components"]["schemas"]
for schema_def in schemas.values():
if isinstance(schema_def, dict) and "description" in schema_def and isinstance(schema_def["description"], str):
schema_def["description"] = _clean_description(schema_def["description"])
return openapi_schema
def _add_extra_body_params_extension(openapi_schema: dict[str, Any]) -> dict[str, Any]:
"""
Add x-llama-stack-extra-body-params extension to requestBody for endpoints with ExtraBodyField parameters.
"""
if "paths" not in openapi_schema:
return openapi_schema
from pydantic import TypeAdapter
for path, path_item in openapi_schema["paths"].items():
if not isinstance(path_item, dict):
continue
for method in ["get", "post", "put", "delete", "patch", "head", "options"]:
if method not in path_item:
continue
operation = path_item[method]
if not isinstance(operation, dict):
continue
# Check if we have extra body fields for this path/method
key = (path, method.upper())
if key not in _extra_body_fields:
continue
extra_body_params = _extra_body_fields[key]
# Ensure requestBody exists
if "requestBody" not in operation:
continue
request_body = operation["requestBody"]
if not isinstance(request_body, dict):
continue
# Get the schema from requestBody
content = request_body.get("content", {})
json_content = content.get("application/json", {})
schema_ref = json_content.get("schema", {})
# Remove extra body fields from the schema if they exist as properties
# Handle both $ref schemas and inline schemas
if isinstance(schema_ref, dict):
if "$ref" in schema_ref:
# Schema is a reference - remove from the referenced schema
ref_path = schema_ref["$ref"]
if ref_path.startswith("#/components/schemas/"):
schema_name = ref_path.split("/")[-1]
if "components" in openapi_schema and "schemas" in openapi_schema["components"]:
schema_def = openapi_schema["components"]["schemas"].get(schema_name)
if isinstance(schema_def, dict) and "properties" in schema_def:
for param_name, _, _ in extra_body_params:
if param_name in schema_def["properties"]:
del schema_def["properties"][param_name]
# Also remove from required if present
if "required" in schema_def and param_name in schema_def["required"]:
schema_def["required"].remove(param_name)
elif "properties" in schema_ref:
# Schema is inline - remove directly from it
for param_name, _, _ in extra_body_params:
if param_name in schema_ref["properties"]:
del schema_ref["properties"][param_name]
# Also remove from required if present
if "required" in schema_ref and param_name in schema_ref["required"]:
schema_ref["required"].remove(param_name)
# Build the extra body params schema
extra_params_schema = {}
for param_name, param_type, description in extra_body_params:
try:
# Generate JSON schema for the parameter type
adapter = TypeAdapter(param_type)
param_schema = adapter.json_schema(ref_template="#/components/schemas/{model}")
# Add description if provided
if description:
param_schema["description"] = description
extra_params_schema[param_name] = param_schema
except Exception:
# If we can't generate schema, skip this parameter
continue
if extra_params_schema:
# Add the extension to requestBody
if "x-llama-stack-extra-body-params" not in request_body:
request_body["x-llama-stack-extra-body-params"] = extra_params_schema
return openapi_schema
def _remove_query_params_from_body_endpoints(openapi_schema: dict[str, Any]) -> dict[str, Any]:
"""
Remove query parameters from POST/PUT/PATCH endpoints that have a request body.
FastAPI sometimes infers parameters as query params even when they should be in the request body.
"""
if "paths" not in openapi_schema:
return openapi_schema
body_methods = {"post", "put", "patch"}
for _path, path_item in openapi_schema["paths"].items():
if not isinstance(path_item, dict):
continue
for method in body_methods:
if method not in path_item:
continue
operation = path_item[method]
if not isinstance(operation, dict):
continue
# Check if this operation has a request body
has_request_body = "requestBody" in operation and operation["requestBody"]
if has_request_body:
# Remove all query parameters (parameters with "in": "query")
if "parameters" in operation:
# Filter out query parameters, keep path and header parameters
operation["parameters"] = [
param
for param in operation["parameters"]
if isinstance(param, dict) and param.get("in") != "query"
]
# Remove the parameters key if it's now empty
if not operation["parameters"]:
del operation["parameters"]
return openapi_schema
def _remove_request_bodies_from_get_endpoints(openapi_schema: dict[str, Any]) -> dict[str, Any]:
"""
Remove request bodies from GET endpoints and convert their parameters to query parameters.
GET requests should never have request bodies - all parameters should be query parameters.
This function removes any requestBody that FastAPI may have incorrectly added to GET endpoints
and converts any parameters in the requestBody to query parameters.
"""
if "paths" not in openapi_schema:
return openapi_schema
for _path, path_item in openapi_schema["paths"].items():
if not isinstance(path_item, dict):
continue
# Check GET method specifically
if "get" in path_item:
operation = path_item["get"]
if not isinstance(operation, dict):
continue
if "requestBody" in operation:
request_body = operation["requestBody"]
# Extract parameters from requestBody and convert to query parameters
if isinstance(request_body, dict) and "content" in request_body:
content = request_body.get("content", {})
json_content = content.get("application/json", {})
schema = json_content.get("schema", {})
if "parameters" not in operation:
operation["parameters"] = []
elif not isinstance(operation["parameters"], list):
operation["parameters"] = []
# If the schema has properties, convert each to a query parameter
if isinstance(schema, dict) and "properties" in schema:
for param_name, param_schema in schema["properties"].items():
# Check if this parameter is already in the parameters list
existing_param = None
for existing in operation["parameters"]:
if isinstance(existing, dict) and existing.get("name") == param_name:
existing_param = existing
break
if not existing_param:
# Create a new query parameter from the requestBody property
required = param_name in schema.get("required", [])
query_param = {
"name": param_name,
"in": "query",
"required": required,
"schema": param_schema,
}
# Add description if present
if "description" in param_schema:
query_param["description"] = param_schema["description"]
operation["parameters"].append(query_param)
elif isinstance(schema, dict):
# Handle direct schema (not a model with properties)
# Try to infer parameter name from schema title
param_name = schema.get("title", "").lower().replace(" ", "_")
if param_name:
# Check if this parameter is already in the parameters list
existing_param = None
for existing in operation["parameters"]:
if isinstance(existing, dict) and existing.get("name") == param_name:
existing_param = existing
break
if not existing_param:
# Create a new query parameter from the requestBody schema
query_param = {
"name": param_name,
"in": "query",
"required": False, # Default to optional for GET requests
"schema": schema,
}
# Add description if present
if "description" in schema:
query_param["description"] = schema["description"]
operation["parameters"].append(query_param)
# Remove request body from GET endpoint
del operation["requestBody"]
return openapi_schema
def _extract_duplicate_union_types(openapi_schema: dict[str, Any]) -> dict[str, Any]:
"""
Extract duplicate union types to shared schema references.
Stainless generates type names from union types based on their context, which can cause
duplicate names when the same union appears in different places. This function extracts
these duplicate unions to shared schema definitions and replaces inline definitions with
references to them.
According to Stainless docs, when duplicate types are detected, they should be extracted
to the same ref and declared as a model. This ensures Stainless generates consistent
type names regardless of where the union is referenced.
Fixes: https://www.stainless.com/docs/reference/diagnostics#Python/DuplicateDeclaration
"""
if "components" not in openapi_schema or "schemas" not in openapi_schema["components"]:
return openapi_schema
schemas = openapi_schema["components"]["schemas"]
# Extract the Output union type (used in OpenAIResponseObjectWithInput-Output and ListOpenAIResponseInputItem)
output_union_schema_name = "OpenAIResponseMessageOutputUnion"
output_union_title = None
# Get the union type from OpenAIResponseObjectWithInput-Output.input.items.anyOf
if "OpenAIResponseObjectWithInput-Output" in schemas:
schema = schemas["OpenAIResponseObjectWithInput-Output"]
if isinstance(schema, dict) and "properties" in schema:
input_prop = schema["properties"].get("input")
if isinstance(input_prop, dict) and "items" in input_prop:
items = input_prop["items"]
if isinstance(items, dict) and "anyOf" in items:
# Extract the union schema with deep copy
output_union_schema = copy.deepcopy(items["anyOf"])
output_union_title = items.get("title", "OpenAIResponseMessageOutputUnion")
# Collect all refs from the oneOf to detect duplicates
refs_in_oneof = set()
for item in output_union_schema:
if isinstance(item, dict) and "oneOf" in item:
oneof = item["oneOf"]
if isinstance(oneof, list):
for variant in oneof:
if isinstance(variant, dict) and "$ref" in variant:
refs_in_oneof.add(variant["$ref"])
item["x-stainless-naming"] = "OpenAIResponseMessageOutputOneOf"
# Remove duplicate refs from anyOf that are already in oneOf
deduplicated_schema = []
for item in output_union_schema:
if isinstance(item, dict) and "$ref" in item:
if item["$ref"] not in refs_in_oneof:
deduplicated_schema.append(item)
else:
deduplicated_schema.append(item)
output_union_schema = deduplicated_schema
# Create the shared schema with x-stainless-naming to ensure consistent naming
if output_union_schema_name not in schemas:
schemas[output_union_schema_name] = {
"anyOf": output_union_schema,
"title": output_union_title,
"x-stainless-naming": output_union_schema_name,
}
# Replace with reference
input_prop["items"] = {"$ref": f"#/components/schemas/{output_union_schema_name}"}
# Replace the same union in ListOpenAIResponseInputItem.data.items.anyOf
if "ListOpenAIResponseInputItem" in schemas and output_union_schema_name in schemas:
schema = schemas["ListOpenAIResponseInputItem"]
if isinstance(schema, dict) and "properties" in schema:
data_prop = schema["properties"].get("data")
if isinstance(data_prop, dict) and "items" in data_prop:
items = data_prop["items"]
if isinstance(items, dict) and "anyOf" in items:
# Replace with reference
data_prop["items"] = {"$ref": f"#/components/schemas/{output_union_schema_name}"}
# Extract the Input union type (used in _responses_Request.input.anyOf[1].items.anyOf)
input_union_schema_name = "OpenAIResponseMessageInputUnion"
if "_responses_Request" in schemas:
schema = schemas["_responses_Request"]
if isinstance(schema, dict) and "properties" in schema:
input_prop = schema["properties"].get("input")
if isinstance(input_prop, dict) and "anyOf" in input_prop:
any_of = input_prop["anyOf"]
if isinstance(any_of, list) and len(any_of) > 1:
# Check the second item (index 1) which should be the array type
second_item = any_of[1]
if isinstance(second_item, dict) and "items" in second_item:
items = second_item["items"]
if isinstance(items, dict) and "anyOf" in items:
# Extract the union schema with deep copy
input_union_schema = copy.deepcopy(items["anyOf"])
input_union_title = items.get("title", "OpenAIResponseMessageInputUnion")
# Collect all refs from the oneOf to detect duplicates
refs_in_oneof = set()
for item in input_union_schema:
if isinstance(item, dict) and "oneOf" in item:
oneof = item["oneOf"]
if isinstance(oneof, list):
for variant in oneof:
if isinstance(variant, dict) and "$ref" in variant:
refs_in_oneof.add(variant["$ref"])
item["x-stainless-naming"] = "OpenAIResponseMessageInputOneOf"
# Remove duplicate refs from anyOf that are already in oneOf
deduplicated_schema = []
for item in input_union_schema:
if isinstance(item, dict) and "$ref" in item:
if item["$ref"] not in refs_in_oneof:
deduplicated_schema.append(item)
else:
deduplicated_schema.append(item)
input_union_schema = deduplicated_schema
# Create the shared schema with x-stainless-naming to ensure consistent naming
if input_union_schema_name not in schemas:
schemas[input_union_schema_name] = {
"anyOf": input_union_schema,
"title": input_union_title,
"x-stainless-naming": input_union_schema_name,
}
# Replace with reference
second_item["items"] = {"$ref": f"#/components/schemas/{input_union_schema_name}"}
return openapi_schema
def _convert_multiline_strings_to_literal(obj: Any) -> Any:
"""Recursively convert multi-line strings to LiteralScalarString for YAML block scalar formatting."""
try:
from ruamel.yaml.scalarstring import LiteralScalarString
if isinstance(obj, str) and "\n" in obj:
return LiteralScalarString(obj)
elif isinstance(obj, dict):
return {key: _convert_multiline_strings_to_literal(value) for key, value in obj.items()}
elif isinstance(obj, list):
return [_convert_multiline_strings_to_literal(item) for item in obj]
else:
return obj
except ImportError:
return obj
def _write_yaml_file(file_path: Path, schema: dict[str, Any]) -> None:
"""Write schema to YAML file using ruamel.yaml if available, otherwise standard yaml."""
try:
from ruamel.yaml import YAML
yaml_writer = YAML()
yaml_writer.default_flow_style = False
yaml_writer.sort_keys = False
yaml_writer.width = 4096
yaml_writer.allow_unicode = True
schema = _convert_multiline_strings_to_literal(schema)
with open(file_path, "w") as f:
yaml_writer.dump(schema, f)
except ImportError:
with open(file_path, "w") as f:
yaml.dump(schema, f, default_flow_style=False, sort_keys=False)
# Post-process to remove trailing whitespace from all lines
with open(file_path) as f:
lines = f.readlines()
# Strip trailing whitespace from each line, preserving newlines
cleaned_lines = [line.rstrip() + "\n" if line.endswith("\n") else line.rstrip() for line in lines]
with open(file_path, "w") as f:
f.writelines(cleaned_lines)
def _apply_legacy_sorting(openapi_schema: dict[str, Any]) -> dict[str, Any]:
"""
Temporarily match the legacy ordering from origin/main so diffs are easier to read.
Remove this once the generator output stabilizes and we no longer need legacy diffs.
"""
def order_mapping(data: dict[str, Any], priority: list[str]) -> OrderedDict[str, Any]:
ordered: OrderedDict[str, Any] = OrderedDict()
for key in priority:
if key in data:
ordered[key] = data[key]
for key, value in data.items():
if key not in ordered:
ordered[key] = value
return ordered
paths = openapi_schema.get("paths")
if isinstance(paths, dict):
openapi_schema["paths"] = order_mapping(paths, LEGACY_PATH_ORDER)
for path, path_item in openapi_schema["paths"].items():
if not isinstance(path_item, dict):
continue
ordered_path_item = OrderedDict()
for method in ["get", "post", "put", "delete", "patch", "head", "options"]:
if method in path_item:
ordered_path_item[method] = order_mapping(path_item[method], LEGACY_OPERATION_KEYS)
for key, value in path_item.items():
if key not in ordered_path_item:
if isinstance(value, dict) and key.lower() in {
"get",
"post",
"put",
"delete",
"patch",
"head",
"options",
}:
ordered_path_item[key] = order_mapping(value, LEGACY_OPERATION_KEYS)
else:
ordered_path_item[key] = value
openapi_schema["paths"][path] = ordered_path_item
components = openapi_schema.setdefault("components", {})
schemas = components.get("schemas")
if isinstance(schemas, dict):
components["schemas"] = order_mapping(schemas, LEGACY_SCHEMA_ORDER)
responses = components.get("responses")
if isinstance(responses, dict):
components["responses"] = order_mapping(responses, LEGACY_RESPONSE_ORDER)
if LEGACY_TAGS:
openapi_schema["tags"] = LEGACY_TAGS
if LEGACY_TAG_GROUPS:
openapi_schema["x-tagGroups"] = LEGACY_TAG_GROUPS
if LEGACY_SECURITY:
openapi_schema["security"] = LEGACY_SECURITY
return openapi_schema
def _fix_schema_issues(openapi_schema: dict[str, Any]) -> dict[str, Any]:
"""Fix common schema issues: exclusiveMinimum, null defaults, and add titles to unions."""
# Convert anyOf with const values to enums across the entire schema
_convert_anyof_const_to_enum(openapi_schema)
# Fix other schema issues and add titles to unions
if "components" in openapi_schema and "schemas" in openapi_schema["components"]:
for schema_name, schema_def in openapi_schema["components"]["schemas"].items():
_fix_schema_recursive(schema_def)
_add_titles_to_unions(schema_def, schema_name)
return openapi_schema
def validate_openapi_schema(schema: dict[str, Any], schema_name: str = "OpenAPI schema") -> bool:
"""
Validate an OpenAPI schema using openapi-spec-validator.
Args:
schema: The OpenAPI schema dictionary to validate
schema_name: Name of the schema for error reporting
Returns:
True if valid, False otherwise
Raises:
OpenAPIValidationError: If validation fails
"""
try:
validate_spec(schema)
print(f"{schema_name} is valid")
return True
except OpenAPISpecValidatorError as e:
print(f"{schema_name} validation failed: {e}")
return False
except Exception as e:
print(f"{schema_name} validation error: {e}")
return False

View file

@ -0,0 +1,41 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
"""
Shared state for the OpenAPI generator module.
"""
from typing import Any
from llama_stack_api import Api
from llama_stack_api.schema_utils import clear_dynamic_schema_types, register_dynamic_schema_type
_dynamic_model_registry: dict[str, type] = {}
# Cache for protocol methods to avoid repeated lookups
_protocol_methods_cache: dict[Api, dict[str, Any]] | None = None
# Global dict to store extra body field information by endpoint
# Key: (path, method) tuple, Value: list of (param_name, param_type, description) tuples
_extra_body_fields: dict[tuple[str, str], list[tuple[str, type, str | None]]] = {}
def register_dynamic_model(name: str, model: type) -> type:
"""Register and deduplicate dynamically generated request models."""
existing = _dynamic_model_registry.get(name)
if existing is not None:
register_dynamic_schema_type(existing)
return existing
_dynamic_model_registry[name] = model
register_dynamic_schema_type(model)
return model
def reset_generator_state() -> None:
"""Clear per-run caches so repeated generations stay deterministic."""
_dynamic_model_registry.clear()
_extra_body_fields.clear()
clear_dynamic_schema_types()

View file

@ -0,0 +1,19 @@
#!/usr/bin/env bash
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
PYTHONPATH=${PYTHONPATH:-}
THIS_DIR="$(cd "$(dirname "$(readlink -f "${BASH_SOURCE[0]}")")" && pwd)"
set -euo pipefail
stack_dir=$(dirname "$THIS_DIR")
PYTHONPATH=$PYTHONPATH:$stack_dir \
python3 -m scripts.openapi_generator "$stack_dir"/docs/static
cp "$stack_dir"/docs/static/stainless-llama-stack-spec.yaml "$stack_dir"/client-sdks/stainless/openapi.yml

View file

@ -19,7 +19,7 @@ import httpx
import yaml import yaml
from fastapi import Response as FastAPIResponse from fastapi import Response as FastAPIResponse
from llama_stack_api import is_unwrapped_body_param from llama_stack.core.utils.type_inspection import is_unwrapped_body_param
try: try:
from llama_stack_client import ( from llama_stack_client import (
@ -42,17 +42,10 @@ from termcolor import cprint
from llama_stack.core.build import print_pip_install_help from llama_stack.core.build import print_pip_install_help
from llama_stack.core.configure import parse_and_maybe_upgrade_config from llama_stack.core.configure import parse_and_maybe_upgrade_config
from llama_stack.core.datatypes import BuildConfig, BuildProvider, DistributionSpec from llama_stack.core.datatypes import BuildConfig, BuildProvider, DistributionSpec
from llama_stack.core.request_headers import ( from llama_stack.core.request_headers import PROVIDER_DATA_VAR, request_provider_data_context
PROVIDER_DATA_VAR,
request_provider_data_context,
)
from llama_stack.core.resolver import ProviderRegistry from llama_stack.core.resolver import ProviderRegistry
from llama_stack.core.server.routes import RouteImpls, find_matching_route, initialize_route_impls from llama_stack.core.server.routes import RouteImpls, find_matching_route, initialize_route_impls
from llama_stack.core.stack import ( from llama_stack.core.stack import Stack, get_stack_run_config_from_distro, replace_env_vars
Stack,
get_stack_run_config_from_distro,
replace_env_vars,
)
from llama_stack.core.telemetry import Telemetry from llama_stack.core.telemetry import Telemetry
from llama_stack.core.telemetry.tracing import CURRENT_TRACE_CONTEXT, end_trace, setup_logger, start_trace from llama_stack.core.telemetry.tracing import CURRENT_TRACE_CONTEXT, end_trace, setup_logger, start_trace
from llama_stack.core.utils.config import redact_sensitive_fields from llama_stack.core.utils.config import redact_sensitive_fields

View file

@ -0,0 +1,45 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
"""
Utility functions for type inspection and parameter handling.
"""
import inspect
import typing
from typing import Any, get_args, get_origin
from pydantic import BaseModel
from pydantic.fields import FieldInfo
def is_unwrapped_body_param(param_type: Any) -> bool:
"""
Check if a parameter type represents an unwrapped body parameter.
An unwrapped body parameter is an Annotated type with Body(embed=False)
This is used to determine whether request parameters should be flattened
in OpenAPI specs and client libraries (matching FastAPI's embed=False behavior).
Args:
param_type: The parameter type annotation to check
Returns:
True if the parameter should be treated as an unwrapped body parameter
"""
# Check if it's Annotated with Body(embed=False)
if get_origin(param_type) is typing.Annotated:
args = get_args(param_type)
base_type = args[0]
metadata = args[1:]
# Look for Body annotation with embed=False
# Body() returns a FieldInfo object, so we check for that type and the embed attribute
for item in metadata:
if isinstance(item, FieldInfo) and hasattr(item, "embed") and not item.embed:
return inspect.isclass(base_type) and issubclass(base_type, BaseModel)
return False

View file

@ -353,8 +353,15 @@ from .safety import (
from .schema_utils import ( from .schema_utils import (
CallableT, CallableT,
ExtraBodyField, ExtraBodyField,
SchemaInfo,
WebMethod, WebMethod,
clear_dynamic_schema_types,
get_registered_schema_info,
iter_dynamic_schema_types,
iter_json_schema_types,
iter_registered_schema_types,
json_schema_type, json_schema_type,
register_dynamic_schema_type,
register_schema, register_schema,
webmethod, webmethod,
) )
@ -388,27 +395,6 @@ from .shields import (
) )
# Import from strong_typing # Import from strong_typing
from .strong_typing.core import JsonType
from .strong_typing.docstring import Docstring, parse_type
from .strong_typing.inspection import (
get_signature,
is_generic_list,
is_type_optional,
is_type_union,
is_unwrapped_body_param,
unwrap_generic_list,
unwrap_optional_type,
unwrap_union_types,
)
from .strong_typing.name import python_type_to_name
from .strong_typing.schema import (
JsonSchemaGenerator,
Schema,
SchemaOptions,
StrictJsonType,
get_schema_identifier,
)
from .strong_typing.serialization import json_dump_string, object_to_json
from .tools import ( from .tools import (
ListToolDefsResponse, ListToolDefsResponse,
ListToolGroupsResponse, ListToolGroupsResponse,
@ -537,6 +523,7 @@ __all__ = [
"ExtraBodyField", "ExtraBodyField",
"Files", "Files",
"Fp8QuantizationConfig", "Fp8QuantizationConfig",
"clear_dynamic_schema_types",
"get_schema_identifier", "get_schema_identifier",
"get_signature", "get_signature",
"GrammarResponseFormat", "GrammarResponseFormat",
@ -557,6 +544,10 @@ __all__ = [
"is_type_optional", "is_type_optional",
"is_type_union", "is_type_union",
"is_unwrapped_body_param", "is_unwrapped_body_param",
"iter_dynamic_schema_types",
"iter_json_schema_types",
"iter_registered_schema_types",
"get_registered_schema_info",
"Job", "Job",
"JobStatus", "JobStatus",
"json_dump_string", "json_dump_string",
@ -759,6 +750,7 @@ __all__ = [
"RAGQueryGeneratorConfig", "RAGQueryGeneratorConfig",
"RAGQueryResult", "RAGQueryResult",
"RAGSearchMode", "RAGSearchMode",
"register_dynamic_schema_type",
"register_schema", "register_schema",
"RLHFAlgorithm", "RLHFAlgorithm",
"RRFRanker", "RRFRanker",
@ -796,6 +788,7 @@ __all__ = [
"ScoringResult", "ScoringResult",
"ScoringResultRow", "ScoringResultRow",
"Schema", "Schema",
"SchemaInfo",
"SchemaOptions", "SchemaOptions",
"SearchRankingOptions", "SearchRankingOptions",
"Shield", "Shield",

View file

@ -48,6 +48,7 @@ class BenchmarkInput(CommonBenchmarkFields, BaseModel):
provider_benchmark_id: str | None = None provider_benchmark_id: str | None = None
@json_schema_type
class ListBenchmarksResponse(BaseModel): class ListBenchmarksResponse(BaseModel):
data: list[Benchmark] data: list[Benchmark]

View file

@ -136,6 +136,7 @@ class DatasetInput(CommonDatasetFields, BaseModel):
dataset_id: str dataset_id: str
@json_schema_type
class ListDatasetsResponse(BaseModel): class ListDatasetsResponse(BaseModel):
"""Response from listing datasets. """Response from listing datasets.

View file

@ -54,6 +54,7 @@ class VersionInfo(BaseModel):
version: str version: str
@json_schema_type
class ListRoutesResponse(BaseModel): class ListRoutesResponse(BaseModel):
"""Response containing a list of all available API routes. """Response containing a list of all available API routes.

View file

@ -100,6 +100,7 @@ class OpenAIModel(BaseModel):
custom_metadata: dict[str, Any] | None = None custom_metadata: dict[str, Any] | None = None
@json_schema_type
class OpenAIListModelsResponse(BaseModel): class OpenAIListModelsResponse(BaseModel):
data: list[OpenAIModel] data: list[OpenAIModel]

View file

@ -1316,6 +1316,7 @@ OpenAIResponseInput = Annotated[
register_schema(OpenAIResponseInput, name="OpenAIResponseInput") register_schema(OpenAIResponseInput, name="OpenAIResponseInput")
@json_schema_type
class ListOpenAIResponseInputItem(BaseModel): class ListOpenAIResponseInputItem(BaseModel):
"""List container for OpenAI response input items. """List container for OpenAI response input items.

View file

@ -236,6 +236,7 @@ class PostTrainingRLHFRequest(BaseModel):
logger_config: dict[str, Any] logger_config: dict[str, Any]
@json_schema_type
class PostTrainingJob(BaseModel): class PostTrainingJob(BaseModel):
job_uuid: str job_uuid: str
@ -265,6 +266,7 @@ class PostTrainingJobStatusResponse(BaseModel):
checkpoints: list[Checkpoint] = Field(default_factory=list) checkpoints: list[Checkpoint] = Field(default_factory=list)
@json_schema_type
class ListPostTrainingJobsResponse(BaseModel): class ListPostTrainingJobsResponse(BaseModel):
data: list[PostTrainingJob] data: list[PostTrainingJob]

View file

@ -85,6 +85,7 @@ class Prompt(BaseModel):
return f"pmpt_{hex_string}" return f"pmpt_{hex_string}"
@json_schema_type
class ListPromptsResponse(BaseModel): class ListPromptsResponse(BaseModel):
"""Response model to list prompts.""" """Response model to list prompts."""

View file

@ -31,6 +31,7 @@ class ProviderInfo(BaseModel):
health: HealthResponse health: HealthResponse
@json_schema_type
class ListProvidersResponse(BaseModel): class ListProvidersResponse(BaseModel):
"""Response containing a list of all available providers. """Response containing a list of all available providers.

View file

@ -4,11 +4,9 @@
# This source code is licensed under the terms described in the LICENSE file in # This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree. # the root directory of this source tree.
from collections.abc import Callable from collections.abc import Callable, Iterable
from dataclasses import dataclass from dataclasses import dataclass
from typing import Any, TypeVar from typing import Any, Literal, TypeVar
from .strong_typing.schema import json_schema_type, register_schema # noqa: F401
class ExtraBodyField[T]: class ExtraBodyField[T]:
@ -48,6 +46,98 @@ class ExtraBodyField[T]:
self.description = description self.description = description
SchemaSource = Literal["json_schema_type", "registered_schema", "dynamic_schema"]
@dataclass(frozen=True)
class SchemaInfo:
"""Metadata describing a schema entry exposed to OpenAPI generation."""
name: str
type: Any
source: SchemaSource
_json_schema_types: dict[type, SchemaInfo] = {}
def json_schema_type(cls):
"""
Decorator to mark a Pydantic model for top-level component registration.
Models marked with this decorator will be registered as top-level components
in the OpenAPI schema, while unmarked models will be inlined.
This provides control over schema registration to avoid unnecessary indirection
for simple one-off types while keeping complex reusable types as components.
"""
cls._llama_stack_schema_type = True
schema_name = getattr(cls, "__name__", f"Anonymous_{id(cls)}")
cls._llama_stack_schema_name = schema_name
_json_schema_types.setdefault(cls, SchemaInfo(name=schema_name, type=cls, source="json_schema_type"))
return cls
# Global registries for schemas discoverable by the generator
_registered_schemas: dict[Any, SchemaInfo] = {}
_dynamic_schema_types: dict[type, SchemaInfo] = {}
def register_schema(schema_type, name: str | None = None):
"""
Register a schema type for top-level component registration.
This replicates the behavior of strong_typing's register_schema function.
It's used for union types and other complex types that should appear as
top-level components in the OpenAPI schema.
Args:
schema_type: The type to register (e.g., union types, Annotated types)
name: Optional name for the schema in the OpenAPI spec. If not provided,
uses the type's __name__ or a generated name.
"""
if name is None:
name = getattr(schema_type, "__name__", f"Anonymous_{id(schema_type)}")
# Store the registration information in a global registry
# since union types don't allow setting attributes
_registered_schemas[schema_type] = SchemaInfo(name=name, type=schema_type, source="registered_schema")
return schema_type
def get_registered_schema_info(schema_type: Any) -> SchemaInfo | None:
"""Return the registration metadata for a schema type if present."""
return _registered_schemas.get(schema_type)
def iter_registered_schema_types() -> Iterable[SchemaInfo]:
"""Iterate over all explicitly registered schema entries."""
return tuple(_registered_schemas.values())
def iter_json_schema_types() -> Iterable[type]:
"""Iterate over all Pydantic models decorated with @json_schema_type."""
return tuple(info.type for info in _json_schema_types.values())
def iter_dynamic_schema_types() -> Iterable[type]:
"""Iterate over dynamic models registered at generation time."""
return tuple(info.type for info in _dynamic_schema_types.values())
def register_dynamic_schema_type(schema_type: type, name: str | None = None) -> type:
"""Register a dynamic model generated at runtime for schema inclusion."""
schema_name = name if name is not None else getattr(schema_type, "__name__", f"Anonymous_{id(schema_type)}")
_dynamic_schema_types[schema_type] = SchemaInfo(name=schema_name, type=schema_type, source="dynamic_schema")
return schema_type
def clear_dynamic_schema_types() -> None:
"""Clear dynamic schema registrations."""
_dynamic_schema_types.clear()
@dataclass @dataclass
class WebMethod: class WebMethod:
level: str | None = None level: str | None = None

View file

@ -155,6 +155,7 @@ class ScoringFnInput(CommonScoringFnFields, BaseModel):
provider_scoring_fn_id: str | None = None provider_scoring_fn_id: str | None = None
@json_schema_type
class ListScoringFunctionsResponse(BaseModel): class ListScoringFunctionsResponse(BaseModel):
data: list[ScoringFn] data: list[ScoringFn]

View file

@ -43,6 +43,7 @@ class ShieldInput(CommonShieldFields):
provider_shield_id: str | None = None provider_shield_id: str | None = None
@json_schema_type
class ListShieldsResponse(BaseModel): class ListShieldsResponse(BaseModel):
data: list[Shield] data: list[Shield]

View file

@ -1,19 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
"""
Type-safe data interchange for Python data classes.
Provides auxiliary services for working with Python type annotations, converting typed data to and from JSON,
and generating a JSON schema for a complex type.
"""
__version__ = "0.3.4"
__author__ = "Levente Hunyadi"
__copyright__ = "Copyright 2021-2024, Levente Hunyadi"
__license__ = "MIT"
__maintainer__ = "Levente Hunyadi"
__status__ = "Production"

View file

@ -1,229 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
"""
Type-safe data interchange for Python data classes.
:see: https://github.com/hunyadi/strong_typing
"""
import dataclasses
import sys
from collections.abc import Callable
from dataclasses import is_dataclass
from typing import TypeVar, overload
if sys.version_info >= (3, 9):
from typing import Annotated as Annotated
else:
from typing import Annotated as Annotated
if sys.version_info >= (3, 10):
from typing import TypeAlias as TypeAlias
else:
from typing import TypeAlias as TypeAlias
if sys.version_info >= (3, 11):
from typing import dataclass_transform as dataclass_transform
else:
from typing import dataclass_transform as dataclass_transform
T = TypeVar("T")
def _compact_dataclass_repr(obj: object) -> str:
"""
Compact data-class representation where positional arguments are used instead of keyword arguments.
:param obj: A data-class object.
:returns: A string that matches the pattern `Class(arg1, arg2, ...)`.
"""
if is_dataclass(obj):
arglist = ", ".join(repr(getattr(obj, field.name)) for field in dataclasses.fields(obj))
return f"{obj.__class__.__name__}({arglist})"
else:
return obj.__class__.__name__
class CompactDataClass:
"A data class whose repr() uses positional rather than keyword arguments."
def __repr__(self) -> str:
return _compact_dataclass_repr(self)
@overload
def typeannotation(cls: type[T], /) -> type[T]: ...
@overload
def typeannotation(cls: None, *, eq: bool = True, order: bool = False) -> Callable[[type[T]], type[T]]: ...
@dataclass_transform(eq_default=True, order_default=False)
def typeannotation(
cls: type[T] | None = None, *, eq: bool = True, order: bool = False
) -> type[T] | Callable[[type[T]], type[T]]:
"""
Returns the same class as was passed in, with dunder methods added based on the fields defined in the class.
:param cls: The data-class type to transform into a type annotation.
:param eq: Whether to generate functions to support equality comparison.
:param order: Whether to generate functions to support ordering.
:returns: A data-class type, or a wrapper for data-class types.
"""
def wrap(cls: type[T]) -> type[T]:
# mypy fails to equate bound-y functions (first argument interpreted as
# the bound object) with class methods, hence the `ignore` directive.
cls.__repr__ = _compact_dataclass_repr # type: ignore[method-assign]
if not dataclasses.is_dataclass(cls):
cls = dataclasses.dataclass( # type: ignore[call-overload]
cls,
init=True,
repr=False,
eq=eq,
order=order,
unsafe_hash=False,
frozen=True,
)
return cls
# see if decorator is used as @typeannotation or @typeannotation()
if cls is None:
# called with parentheses
return wrap
else:
# called without parentheses
return wrap(cls)
@typeannotation
class Alias:
"Alternative name of a property, typically used in JSON serialization."
name: str
@typeannotation
class Signed:
"Signedness of an integer type."
is_signed: bool
@typeannotation
class Storage:
"Number of bytes the binary representation of an integer type takes, e.g. 4 bytes for an int32."
bytes: int
@typeannotation
class IntegerRange:
"Minimum and maximum value of an integer. The range is inclusive."
minimum: int
maximum: int
@typeannotation
class Precision:
"Precision of a floating-point value."
significant_digits: int
decimal_digits: int = 0
@property
def integer_digits(self) -> int:
return self.significant_digits - self.decimal_digits
@typeannotation
class TimePrecision:
"""
Precision of a timestamp or time interval.
:param decimal_digits: Number of fractional digits retained in the sub-seconds field for a timestamp.
"""
decimal_digits: int = 0
@typeannotation
class Length:
"Exact length of a string."
value: int
@typeannotation
class MinLength:
"Minimum length of a string."
value: int
@typeannotation
class MaxLength:
"Maximum length of a string."
value: int
@typeannotation
class SpecialConversion:
"Indicates that the annotated type is subject to custom conversion rules."
int8: TypeAlias = Annotated[int, Signed(True), Storage(1), IntegerRange(-128, 127)]
int16: TypeAlias = Annotated[int, Signed(True), Storage(2), IntegerRange(-32768, 32767)]
int32: TypeAlias = Annotated[
int,
Signed(True),
Storage(4),
IntegerRange(-2147483648, 2147483647),
]
int64: TypeAlias = Annotated[
int,
Signed(True),
Storage(8),
IntegerRange(-9223372036854775808, 9223372036854775807),
]
uint8: TypeAlias = Annotated[int, Signed(False), Storage(1), IntegerRange(0, 255)]
uint16: TypeAlias = Annotated[int, Signed(False), Storage(2), IntegerRange(0, 65535)]
uint32: TypeAlias = Annotated[
int,
Signed(False),
Storage(4),
IntegerRange(0, 4294967295),
]
uint64: TypeAlias = Annotated[
int,
Signed(False),
Storage(8),
IntegerRange(0, 18446744073709551615),
]
float32: TypeAlias = Annotated[float, Storage(4)]
float64: TypeAlias = Annotated[float, Storage(8)]
# maps globals of type Annotated[T, ...] defined in this module to their string names
_auxiliary_types: dict[object, str] = {}
module = sys.modules[__name__]
for var in dir(module):
typ = getattr(module, var)
if getattr(typ, "__metadata__", None) is not None:
# type is Annotated[T, ...]
_auxiliary_types[typ] = var
def get_auxiliary_format(data_type: object) -> str | None:
"Returns the JSON format string corresponding to an auxiliary type."
return _auxiliary_types.get(data_type)

View file

@ -1,440 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import copy
import dataclasses
import datetime
import decimal
import enum
import ipaddress
import math
import re
import sys
import types
import typing
import uuid
from dataclasses import dataclass
from typing import Any, Literal, TypeVar, Union
from .auxiliary import (
Alias,
Annotated,
MaxLength,
Precision,
float32,
float64,
int16,
int32,
int64,
)
from .core import JsonType, Schema
from .docstring import Docstring, DocstringParam
from .inspection import TypeLike
from .serialization import json_to_object, object_to_json
T = TypeVar("T")
@dataclass
class JsonSchemaNode:
title: str | None
description: str | None
@dataclass
class JsonSchemaType(JsonSchemaNode):
type: str
format: str | None
@dataclass
class JsonSchemaBoolean(JsonSchemaType):
type: Literal["boolean"]
const: bool | None
default: bool | None
examples: list[bool] | None
@dataclass
class JsonSchemaInteger(JsonSchemaType):
type: Literal["integer"]
const: int | None
default: int | None
examples: list[int] | None
enum: list[int] | None
minimum: int | None
maximum: int | None
@dataclass
class JsonSchemaNumber(JsonSchemaType):
type: Literal["number"]
const: float | None
default: float | None
examples: list[float] | None
minimum: float | None
maximum: float | None
exclusiveMinimum: float | None
exclusiveMaximum: float | None
multipleOf: float | None
@dataclass
class JsonSchemaString(JsonSchemaType):
type: Literal["string"]
const: str | None
default: str | None
examples: list[str] | None
enum: list[str] | None
minLength: int | None
maxLength: int | None
@dataclass
class JsonSchemaArray(JsonSchemaType):
type: Literal["array"]
items: "JsonSchemaAny"
@dataclass
class JsonSchemaObject(JsonSchemaType):
type: Literal["object"]
properties: dict[str, "JsonSchemaAny"] | None
additionalProperties: bool | None
required: list[str] | None
@dataclass
class JsonSchemaRef(JsonSchemaNode):
ref: Annotated[str, Alias("$ref")]
@dataclass
class JsonSchemaAllOf(JsonSchemaNode):
allOf: list["JsonSchemaAny"]
@dataclass
class JsonSchemaAnyOf(JsonSchemaNode):
anyOf: list["JsonSchemaAny"]
@dataclass
class Discriminator:
propertyName: str
mapping: dict[str, str]
@dataclass
class JsonSchemaOneOf(JsonSchemaNode):
oneOf: list["JsonSchemaAny"]
discriminator: Discriminator | None
JsonSchemaAny = Union[
JsonSchemaRef,
JsonSchemaBoolean,
JsonSchemaInteger,
JsonSchemaNumber,
JsonSchemaString,
JsonSchemaArray,
JsonSchemaObject,
JsonSchemaOneOf,
]
@dataclass
class JsonSchemaTopLevelObject(JsonSchemaObject):
schema: Annotated[str, Alias("$schema")]
definitions: dict[str, JsonSchemaAny] | None
def integer_range_to_type(min_value: float, max_value: float) -> type:
if min_value >= -(2**15) and max_value < 2**15:
return int16
elif min_value >= -(2**31) and max_value < 2**31:
return int32
else:
return int64
def enum_safe_name(name: str) -> str:
name = re.sub(r"\W", "_", name)
is_dunder = name.startswith("__")
is_sunder = name.startswith("_") and name.endswith("_")
if is_dunder or is_sunder: # provide an alternative for dunder and sunder names
name = f"v{name}"
return name
def enum_values_to_type(
module: types.ModuleType,
name: str,
values: dict[str, Any],
title: str | None = None,
description: str | None = None,
) -> type[enum.Enum]:
enum_class: type[enum.Enum] = enum.Enum(name, values) # type: ignore
# assign the newly created type to the same module where the defining class is
enum_class.__module__ = module.__name__
enum_class.__doc__ = str(Docstring(short_description=title, long_description=description))
setattr(module, name, enum_class)
return enum.unique(enum_class)
def schema_to_type(schema: Schema, *, module: types.ModuleType, class_name: str) -> TypeLike:
"""
Creates a Python type from a JSON schema.
:param schema: The JSON schema that the types would correspond to.
:param module: The module in which to create the new types.
:param class_name: The name assigned to the top-level class.
"""
top_node = typing.cast(JsonSchemaTopLevelObject, json_to_object(JsonSchemaTopLevelObject, schema))
if top_node.definitions is not None:
for type_name, type_node in top_node.definitions.items():
type_def = node_to_typedef(module, type_name, type_node)
if type_def.default is not dataclasses.MISSING:
raise TypeError("disallowed: `default` for top-level type definitions")
type_def.type.__module__ = module.__name__
setattr(module, type_name, type_def.type)
return node_to_typedef(module, class_name, top_node).type
@dataclass
class TypeDef:
type: TypeLike
default: Any = dataclasses.MISSING
def json_to_value(target_type: TypeLike, data: JsonType) -> Any:
if data is not None:
return json_to_object(target_type, data)
else:
return dataclasses.MISSING
def node_to_typedef(module: types.ModuleType, context: str, node: JsonSchemaNode) -> TypeDef:
if isinstance(node, JsonSchemaRef):
match_obj = re.match(r"^#/definitions/(\w+)$", node.ref)
if not match_obj:
raise ValueError(f"invalid reference: {node.ref}")
type_name = match_obj.group(1)
return TypeDef(getattr(module, type_name), dataclasses.MISSING)
elif isinstance(node, JsonSchemaBoolean):
if node.const is not None:
return TypeDef(Literal[node.const], dataclasses.MISSING)
default = json_to_value(bool, node.default)
return TypeDef(bool, default)
elif isinstance(node, JsonSchemaInteger):
if node.const is not None:
return TypeDef(Literal[node.const], dataclasses.MISSING)
integer_type: TypeLike
if node.format == "int16":
integer_type = int16
elif node.format == "int32":
integer_type = int32
elif node.format == "int64":
integer_type = int64
else:
if node.enum is not None:
integer_type = integer_range_to_type(min(node.enum), max(node.enum))
elif node.minimum is not None and node.maximum is not None:
integer_type = integer_range_to_type(node.minimum, node.maximum)
else:
integer_type = int
default = json_to_value(integer_type, node.default)
return TypeDef(integer_type, default)
elif isinstance(node, JsonSchemaNumber):
if node.const is not None:
return TypeDef(Literal[node.const], dataclasses.MISSING)
number_type: TypeLike
if node.format == "float32":
number_type = float32
elif node.format == "float64":
number_type = float64
else:
if (
node.exclusiveMinimum is not None
and node.exclusiveMaximum is not None
and node.exclusiveMinimum == -node.exclusiveMaximum
):
integer_digits = round(math.log10(node.exclusiveMaximum))
else:
integer_digits = None
if node.multipleOf is not None:
decimal_digits = -round(math.log10(node.multipleOf))
else:
decimal_digits = None
if integer_digits is not None and decimal_digits is not None:
number_type = Annotated[
decimal.Decimal,
Precision(integer_digits + decimal_digits, decimal_digits),
]
else:
number_type = float
default = json_to_value(number_type, node.default)
return TypeDef(number_type, default)
elif isinstance(node, JsonSchemaString):
if node.const is not None:
return TypeDef(Literal[node.const], dataclasses.MISSING)
string_type: TypeLike
if node.format == "date-time":
string_type = datetime.datetime
elif node.format == "uuid":
string_type = uuid.UUID
elif node.format == "ipv4":
string_type = ipaddress.IPv4Address
elif node.format == "ipv6":
string_type = ipaddress.IPv6Address
elif node.enum is not None:
string_type = enum_values_to_type(
module,
context,
{enum_safe_name(e): e for e in node.enum},
title=node.title,
description=node.description,
)
elif node.maxLength is not None:
string_type = Annotated[str, MaxLength(node.maxLength)]
else:
string_type = str
default = json_to_value(string_type, node.default)
return TypeDef(string_type, default)
elif isinstance(node, JsonSchemaArray):
type_def = node_to_typedef(module, context, node.items)
if type_def.default is not dataclasses.MISSING:
raise TypeError("disallowed: `default` for array element type")
list_type = list[(type_def.type,)] # type: ignore
return TypeDef(list_type, dataclasses.MISSING)
elif isinstance(node, JsonSchemaObject):
if node.properties is None:
return TypeDef(JsonType, dataclasses.MISSING)
if node.additionalProperties is None or node.additionalProperties is not False:
raise TypeError("expected: `additionalProperties` equals `false`")
required = node.required if node.required is not None else []
class_name = context
fields: list[tuple[str, Any, dataclasses.Field]] = []
params: dict[str, DocstringParam] = {}
for prop_name, prop_node in node.properties.items():
type_def = node_to_typedef(module, f"{class_name}__{prop_name}", prop_node)
if prop_name in required:
prop_type = type_def.type
else:
prop_type = Union[(None, type_def.type)]
fields.append((prop_name, prop_type, dataclasses.field(default=type_def.default)))
prop_desc = prop_node.title or prop_node.description
if prop_desc is not None:
params[prop_name] = DocstringParam(prop_name, prop_desc)
fields.sort(key=lambda t: t[2].default is not dataclasses.MISSING)
if sys.version_info >= (3, 12):
class_type = dataclasses.make_dataclass(class_name, fields, module=module.__name__)
else:
class_type = dataclasses.make_dataclass(class_name, fields, namespace={"__module__": module.__name__})
class_type.__doc__ = str(
Docstring(
short_description=node.title,
long_description=node.description,
params=params,
)
)
setattr(module, class_name, class_type)
return TypeDef(class_type, dataclasses.MISSING)
elif isinstance(node, JsonSchemaOneOf):
union_defs = tuple(node_to_typedef(module, context, n) for n in node.oneOf)
if any(d.default is not dataclasses.MISSING for d in union_defs):
raise TypeError("disallowed: `default` for union member type")
union_types = tuple(d.type for d in union_defs)
return TypeDef(Union[union_types], dataclasses.MISSING)
raise NotImplementedError()
@dataclass
class SchemaFlatteningOptions:
qualified_names: bool = False
recursive: bool = False
def flatten_schema(schema: Schema, *, options: SchemaFlatteningOptions | None = None) -> Schema:
top_node = typing.cast(JsonSchemaTopLevelObject, json_to_object(JsonSchemaTopLevelObject, schema))
flattener = SchemaFlattener(options)
obj = flattener.flatten(top_node)
return typing.cast(Schema, object_to_json(obj))
class SchemaFlattener:
options: SchemaFlatteningOptions
def __init__(self, options: SchemaFlatteningOptions | None = None) -> None:
self.options = options or SchemaFlatteningOptions()
def flatten(self, source_node: JsonSchemaObject) -> JsonSchemaObject:
if source_node.type != "object":
return source_node
source_props = source_node.properties or {}
target_props: dict[str, JsonSchemaAny] = {}
source_reqs = source_node.required or []
target_reqs: list[str] = []
for name, prop in source_props.items():
if not isinstance(prop, JsonSchemaObject):
target_props[name] = prop
if name in source_reqs:
target_reqs.append(name)
continue
if self.options.recursive:
obj = self.flatten(prop)
else:
obj = prop
if obj.properties is not None:
if self.options.qualified_names:
target_props.update((f"{name}.{n}", p) for n, p in obj.properties.items())
else:
target_props.update(obj.properties.items())
if obj.required is not None:
if self.options.qualified_names:
target_reqs.extend(f"{name}.{n}" for n in obj.required)
else:
target_reqs.extend(obj.required)
target_node = copy.copy(source_node)
target_node.properties = target_props or None
target_node.additionalProperties = False
target_node.required = target_reqs or None
return target_node

View file

@ -1,46 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
"""
Type-safe data interchange for Python data classes.
:see: https://github.com/hunyadi/strong_typing
"""
from typing import Union
class JsonObject:
"Placeholder type for an unrestricted JSON object."
class JsonArray:
"Placeholder type for an unrestricted JSON array."
# a JSON type with possible `null` values
JsonType = Union[
None,
bool,
int,
float,
str,
dict[str, "JsonType"],
list["JsonType"],
]
# a JSON type that cannot contain `null` values
StrictJsonType = Union[
bool,
int,
float,
str,
dict[str, "StrictJsonType"],
list["StrictJsonType"],
]
# a meta-type that captures the object type in a JSON schema
Schema = dict[str, JsonType]

View file

@ -1,872 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
"""
Type-safe data interchange for Python data classes.
:see: https://github.com/hunyadi/strong_typing
"""
import abc
import base64
import dataclasses
import datetime
import enum
import inspect
import ipaddress
import sys
import typing
import uuid
from collections.abc import Callable
from types import ModuleType
from typing import (
Any,
Generic,
Literal,
NamedTuple,
Optional,
TypeVar,
Union,
)
from .core import JsonType
from .exception import JsonKeyError, JsonTypeError, JsonValueError
from .inspection import (
TypeLike,
create_object,
enum_value_types,
evaluate_type,
get_class_properties,
get_class_property,
get_resolved_hints,
is_dataclass_instance,
is_dataclass_type,
is_named_tuple_type,
is_type_annotated,
is_type_literal,
is_type_optional,
unwrap_annotated_type,
unwrap_literal_values,
unwrap_optional_type,
)
from .mapping import python_field_to_json_property
from .name import python_type_to_str
E = TypeVar("E", bound=enum.Enum)
T = TypeVar("T")
R = TypeVar("R")
K = TypeVar("K")
V = TypeVar("V")
class Deserializer(abc.ABC, Generic[T]):
"Parses a JSON value into a Python type."
def build(self, context: ModuleType | None) -> None:
"""
Creates auxiliary parsers that this parser is depending on.
:param context: A module context for evaluating types specified as a string.
"""
@abc.abstractmethod
def parse(self, data: JsonType) -> T:
"""
Parses a JSON value into a Python type.
:param data: The JSON value to de-serialize.
:returns: The Python object that the JSON value de-serializes to.
"""
class NoneDeserializer(Deserializer[None]):
"Parses JSON `null` values into Python `None`."
def parse(self, data: JsonType) -> None:
if data is not None:
raise JsonTypeError(f"`None` type expects JSON `null` but instead received: {data}")
return None
class BoolDeserializer(Deserializer[bool]):
"Parses JSON `boolean` values into Python `bool` type."
def parse(self, data: JsonType) -> bool:
if not isinstance(data, bool):
raise JsonTypeError(f"`bool` type expects JSON `boolean` data but instead received: {data}")
return bool(data)
class IntDeserializer(Deserializer[int]):
"Parses JSON `number` values into Python `int` type."
def parse(self, data: JsonType) -> int:
if not isinstance(data, int):
raise JsonTypeError(f"`int` type expects integer data as JSON `number` but instead received: {data}")
return int(data)
class FloatDeserializer(Deserializer[float]):
"Parses JSON `number` values into Python `float` type."
def parse(self, data: JsonType) -> float:
if not isinstance(data, float) and not isinstance(data, int):
raise JsonTypeError(f"`int` type expects data as JSON `number` but instead received: {data}")
return float(data)
class StringDeserializer(Deserializer[str]):
"Parses JSON `string` values into Python `str` type."
def parse(self, data: JsonType) -> str:
if not isinstance(data, str):
raise JsonTypeError(f"`str` type expects JSON `string` data but instead received: {data}")
return str(data)
class BytesDeserializer(Deserializer[bytes]):
"Parses JSON `string` values of Base64-encoded strings into Python `bytes` type."
def parse(self, data: JsonType) -> bytes:
if not isinstance(data, str):
raise JsonTypeError(f"`bytes` type expects JSON `string` data but instead received: {data}")
return base64.b64decode(data, validate=True)
class DateTimeDeserializer(Deserializer[datetime.datetime]):
"Parses JSON `string` values representing timestamps in ISO 8601 format to Python `datetime` with time zone."
def parse(self, data: JsonType) -> datetime.datetime:
if not isinstance(data, str):
raise JsonTypeError(f"`datetime` type expects JSON `string` data but instead received: {data}")
if data.endswith("Z"):
data = f"{data[:-1]}+00:00" # Python's isoformat() does not support military time zones like "Zulu" for UTC
timestamp = datetime.datetime.fromisoformat(data)
if timestamp.tzinfo is None:
raise JsonValueError(f"timestamp lacks explicit time zone designator: {data}")
return timestamp
class DateDeserializer(Deserializer[datetime.date]):
"Parses JSON `string` values representing dates in ISO 8601 format to Python `date` type."
def parse(self, data: JsonType) -> datetime.date:
if not isinstance(data, str):
raise JsonTypeError(f"`date` type expects JSON `string` data but instead received: {data}")
return datetime.date.fromisoformat(data)
class TimeDeserializer(Deserializer[datetime.time]):
"Parses JSON `string` values representing time instances in ISO 8601 format to Python `time` type with time zone."
def parse(self, data: JsonType) -> datetime.time:
if not isinstance(data, str):
raise JsonTypeError(f"`time` type expects JSON `string` data but instead received: {data}")
return datetime.time.fromisoformat(data)
class UUIDDeserializer(Deserializer[uuid.UUID]):
"Parses JSON `string` values of UUID strings into Python `uuid.UUID` type."
def parse(self, data: JsonType) -> uuid.UUID:
if not isinstance(data, str):
raise JsonTypeError(f"`UUID` type expects JSON `string` data but instead received: {data}")
return uuid.UUID(data)
class IPv4Deserializer(Deserializer[ipaddress.IPv4Address]):
"Parses JSON `string` values of IPv4 address strings into Python `ipaddress.IPv4Address` type."
def parse(self, data: JsonType) -> ipaddress.IPv4Address:
if not isinstance(data, str):
raise JsonTypeError(f"`IPv4Address` type expects JSON `string` data but instead received: {data}")
return ipaddress.IPv4Address(data)
class IPv6Deserializer(Deserializer[ipaddress.IPv6Address]):
"Parses JSON `string` values of IPv6 address strings into Python `ipaddress.IPv6Address` type."
def parse(self, data: JsonType) -> ipaddress.IPv6Address:
if not isinstance(data, str):
raise JsonTypeError(f"`IPv6Address` type expects JSON `string` data but instead received: {data}")
return ipaddress.IPv6Address(data)
class ListDeserializer(Deserializer[list[T]]):
"Recursively de-serializes a JSON array into a Python `list`."
item_type: type[T]
item_parser: Deserializer
def __init__(self, item_type: type[T]) -> None:
self.item_type = item_type
def build(self, context: ModuleType | None) -> None:
self.item_parser = _get_deserializer(self.item_type, context)
def parse(self, data: JsonType) -> list[T]:
if not isinstance(data, list):
type_name = python_type_to_str(self.item_type)
raise JsonTypeError(f"type `List[{type_name}]` expects JSON `array` data but instead received: {data}")
return [self.item_parser.parse(item) for item in data]
class DictDeserializer(Deserializer[dict[K, V]]):
"Recursively de-serializes a JSON object into a Python `dict`."
key_type: type[K]
value_type: type[V]
value_parser: Deserializer[V]
def __init__(self, key_type: type[K], value_type: type[V]) -> None:
self.key_type = key_type
self.value_type = value_type
self._check_key_type()
def build(self, context: ModuleType | None) -> None:
self.value_parser = _get_deserializer(self.value_type, context)
def _check_key_type(self) -> None:
if self.key_type is str:
return
if issubclass(self.key_type, enum.Enum):
value_types = enum_value_types(self.key_type)
if len(value_types) != 1:
raise JsonTypeError(
f"type `{self.container_type}` has invalid key type, "
f"enumerations must have a consistent member value type but several types found: {value_types}"
)
value_type = value_types.pop()
if value_type is not str:
f"`type `{self.container_type}` has invalid enumeration key type, expected `enum.Enum` with string values"
return
raise JsonTypeError(
f"`type `{self.container_type}` has invalid key type, expected `str` or `enum.Enum` with string values"
)
@property
def container_type(self) -> str:
key_type_name = python_type_to_str(self.key_type)
value_type_name = python_type_to_str(self.value_type)
return f"Dict[{key_type_name}, {value_type_name}]"
def parse(self, data: JsonType) -> dict[K, V]:
if not isinstance(data, dict):
raise JsonTypeError(
f"`type `{self.container_type}` expects JSON `object` data but instead received: {data}"
)
return dict(
(self.key_type(key), self.value_parser.parse(value)) # type: ignore[call-arg]
for key, value in data.items()
)
class SetDeserializer(Deserializer[set[T]]):
"Recursively de-serializes a JSON list into a Python `set`."
member_type: type[T]
member_parser: Deserializer
def __init__(self, member_type: type[T]) -> None:
self.member_type = member_type
def build(self, context: ModuleType | None) -> None:
self.member_parser = _get_deserializer(self.member_type, context)
def parse(self, data: JsonType) -> set[T]:
if not isinstance(data, list):
type_name = python_type_to_str(self.member_type)
raise JsonTypeError(f"type `Set[{type_name}]` expects JSON `array` data but instead received: {data}")
return set(self.member_parser.parse(item) for item in data)
class TupleDeserializer(Deserializer[tuple[Any, ...]]):
"Recursively de-serializes a JSON list into a Python `tuple`."
item_types: tuple[type[Any], ...]
item_parsers: tuple[Deserializer[Any], ...]
def __init__(self, item_types: tuple[type[Any], ...]) -> None:
self.item_types = item_types
def build(self, context: ModuleType | None) -> None:
self.item_parsers = tuple(_get_deserializer(item_type, context) for item_type in self.item_types)
@property
def container_type(self) -> str:
type_names = ", ".join(python_type_to_str(item_type) for item_type in self.item_types)
return f"Tuple[{type_names}]"
def parse(self, data: JsonType) -> tuple[Any, ...]:
if not isinstance(data, list) or len(data) != len(self.item_parsers):
if not isinstance(data, list):
raise JsonTypeError(
f"type `{self.container_type}` expects JSON `array` data but instead received: {data}"
)
else:
count = len(self.item_parsers)
raise JsonValueError(
f"type `{self.container_type}` expects a JSON `array` of length {count} but received length {len(data)}"
)
return tuple(item_parser.parse(item) for item_parser, item in zip(self.item_parsers, data, strict=False))
class UnionDeserializer(Deserializer):
"De-serializes a JSON value (of any type) into a Python union type."
member_types: tuple[type, ...]
member_parsers: tuple[Deserializer, ...]
def __init__(self, member_types: tuple[type, ...]) -> None:
self.member_types = member_types
def build(self, context: ModuleType | None) -> None:
self.member_parsers = tuple(_get_deserializer(member_type, context) for member_type in self.member_types)
def parse(self, data: JsonType) -> Any:
for member_parser in self.member_parsers:
# iterate over potential types of discriminated union
try:
return member_parser.parse(data)
except (JsonKeyError, JsonTypeError):
# indicates a required field is missing from JSON dict -OR- the data cannot be cast to the expected type,
# i.e. we don't have the type that we are looking for
continue
type_names = ", ".join(python_type_to_str(member_type) for member_type in self.member_types)
raise JsonKeyError(f"type `Union[{type_names}]` could not be instantiated from: {data}")
def get_literal_properties(typ: type) -> set[str]:
"Returns the names of all properties in a class that are of a literal type."
return set(
property_name for property_name, property_type in get_class_properties(typ) if is_type_literal(property_type)
)
def get_discriminating_properties(types: tuple[type, ...]) -> set[str]:
"Returns a set of properties with literal type that are common across all specified classes."
if not types or not all(isinstance(typ, type) for typ in types):
return set()
props = get_literal_properties(types[0])
for typ in types[1:]:
props = props & get_literal_properties(typ)
return props
class TaggedUnionDeserializer(Deserializer):
"De-serializes a JSON value with one or more disambiguating properties into a Python union type."
member_types: tuple[type, ...]
disambiguating_properties: set[str]
member_parsers: dict[tuple[str, Any], Deserializer]
def __init__(self, member_types: tuple[type, ...]) -> None:
self.member_types = member_types
self.disambiguating_properties = get_discriminating_properties(member_types)
def build(self, context: ModuleType | None) -> None:
self.member_parsers = {}
for member_type in self.member_types:
for property_name in self.disambiguating_properties:
literal_type = get_class_property(member_type, property_name)
if not literal_type:
continue
for literal_value in unwrap_literal_values(literal_type):
tpl = (property_name, literal_value)
if tpl in self.member_parsers:
raise JsonTypeError(
f"disambiguating property `{property_name}` in type `{self.union_type}` has a duplicate value: {literal_value}"
)
self.member_parsers[tpl] = _get_deserializer(member_type, context)
@property
def union_type(self) -> str:
type_names = ", ".join(python_type_to_str(member_type) for member_type in self.member_types)
return f"Union[{type_names}]"
def parse(self, data: JsonType) -> Any:
if not isinstance(data, dict):
raise JsonTypeError(
f"tagged union type `{self.union_type}` expects JSON `object` data but instead received: {data}"
)
for property_name in self.disambiguating_properties:
disambiguating_value = data.get(property_name)
if disambiguating_value is None:
continue
member_parser = self.member_parsers.get((property_name, disambiguating_value))
if member_parser is None:
raise JsonTypeError(
f"disambiguating property value is invalid for tagged union type `{self.union_type}`: {data}"
)
return member_parser.parse(data)
raise JsonTypeError(
f"disambiguating property value is missing for tagged union type `{self.union_type}`: {data}"
)
class LiteralDeserializer(Deserializer):
"De-serializes a JSON value into a Python literal type."
values: tuple[Any, ...]
parser: Deserializer
def __init__(self, values: tuple[Any, ...]) -> None:
self.values = values
def build(self, context: ModuleType | None) -> None:
literal_type_tuple = tuple(type(value) for value in self.values)
literal_type_set = set(literal_type_tuple)
if len(literal_type_set) != 1:
value_names = ", ".join(repr(value) for value in self.values)
raise TypeError(
f"type `Literal[{value_names}]` expects consistent literal value types but got: {literal_type_tuple}"
)
literal_type = literal_type_set.pop()
self.parser = _get_deserializer(literal_type, context)
def parse(self, data: JsonType) -> Any:
value = self.parser.parse(data)
if value not in self.values:
value_names = ", ".join(repr(value) for value in self.values)
raise JsonTypeError(f"type `Literal[{value_names}]` could not be instantiated from: {data}")
return value
class EnumDeserializer(Deserializer[E]):
"Returns an enumeration instance based on the enumeration value read from a JSON value."
enum_type: type[E]
def __init__(self, enum_type: type[E]) -> None:
self.enum_type = enum_type
def parse(self, data: JsonType) -> E:
return self.enum_type(data)
class CustomDeserializer(Deserializer[T]):
"Uses the `from_json` class method in class to de-serialize the object from JSON."
converter: Callable[[JsonType], T]
def __init__(self, converter: Callable[[JsonType], T]) -> None:
self.converter = converter
def parse(self, data: JsonType) -> T:
return self.converter(data)
class FieldDeserializer(abc.ABC, Generic[T, R]):
"""
Deserializes a JSON property into a Python object field.
:param property_name: The name of the JSON property to read from a JSON `object`.
:param field_name: The name of the field in a Python class to write data to.
:param parser: A compatible deserializer that can handle the field's type.
"""
property_name: str
field_name: str
parser: Deserializer[T]
def __init__(self, property_name: str, field_name: str, parser: Deserializer[T]) -> None:
self.property_name = property_name
self.field_name = field_name
self.parser = parser
@abc.abstractmethod
def parse_field(self, data: dict[str, JsonType]) -> R: ...
class RequiredFieldDeserializer(FieldDeserializer[T, T]):
"Deserializes a JSON property into a mandatory Python object field."
def parse_field(self, data: dict[str, JsonType]) -> T:
if self.property_name not in data:
raise JsonKeyError(f"missing required property `{self.property_name}` from JSON object: {data}")
return self.parser.parse(data[self.property_name])
class OptionalFieldDeserializer(FieldDeserializer[T, Optional[T]]):
"Deserializes a JSON property into an optional Python object field with a default value of `None`."
def parse_field(self, data: dict[str, JsonType]) -> T | None:
value = data.get(self.property_name)
if value is not None:
return self.parser.parse(value)
else:
return None
class DefaultFieldDeserializer(FieldDeserializer[T, T]):
"Deserializes a JSON property into a Python object field with an explicit default value."
default_value: T
def __init__(
self,
property_name: str,
field_name: str,
parser: Deserializer,
default_value: T,
) -> None:
super().__init__(property_name, field_name, parser)
self.default_value = default_value
def parse_field(self, data: dict[str, JsonType]) -> T:
value = data.get(self.property_name)
if value is not None:
return self.parser.parse(value)
else:
return self.default_value
class DefaultFactoryFieldDeserializer(FieldDeserializer[T, T]):
"Deserializes a JSON property into an optional Python object field with an explicit default value factory."
default_factory: Callable[[], T]
def __init__(
self,
property_name: str,
field_name: str,
parser: Deserializer[T],
default_factory: Callable[[], T],
) -> None:
super().__init__(property_name, field_name, parser)
self.default_factory = default_factory
def parse_field(self, data: dict[str, JsonType]) -> T:
value = data.get(self.property_name)
if value is not None:
return self.parser.parse(value)
else:
return self.default_factory()
class ClassDeserializer(Deserializer[T]):
"Base class for de-serializing class-like types such as data classes, named tuples and regular classes."
class_type: type
property_parsers: list[FieldDeserializer]
property_fields: set[str]
def __init__(self, class_type: type[T]) -> None:
self.class_type = class_type
def assign(self, property_parsers: list[FieldDeserializer]) -> None:
self.property_parsers = property_parsers
self.property_fields = set(property_parser.property_name for property_parser in property_parsers)
def parse(self, data: JsonType) -> T:
if not isinstance(data, dict):
type_name = python_type_to_str(self.class_type)
raise JsonTypeError(f"`type `{type_name}` expects JSON `object` data but instead received: {data}")
object_data: dict[str, JsonType] = typing.cast(dict[str, JsonType], data)
field_values = {}
for property_parser in self.property_parsers:
field_values[property_parser.field_name] = property_parser.parse_field(object_data)
if not self.property_fields.issuperset(object_data):
unassigned_names = [name for name in object_data if name not in self.property_fields]
raise JsonKeyError(f"unrecognized fields in JSON object: {unassigned_names}")
return self.create(**field_values)
def create(self, **field_values: Any) -> T:
"Instantiates an object with a collection of property values."
obj: T = create_object(self.class_type)
# use `setattr` on newly created object instance
for field_name, field_value in field_values.items():
setattr(obj, field_name, field_value)
return obj
class NamedTupleDeserializer(ClassDeserializer[NamedTuple]):
"De-serializes a named tuple from a JSON `object`."
def build(self, context: ModuleType | None) -> None:
property_parsers: list[FieldDeserializer] = [
RequiredFieldDeserializer(field_name, field_name, _get_deserializer(field_type, context))
for field_name, field_type in get_resolved_hints(self.class_type).items()
]
super().assign(property_parsers)
def create(self, **field_values: Any) -> NamedTuple:
# mypy fails to deduce that this class returns NamedTuples only, hence the `ignore` directive
return self.class_type(**field_values) # type: ignore[no-any-return]
class DataclassDeserializer(ClassDeserializer[T]):
"De-serializes a data class from a JSON `object`."
def __init__(self, class_type: type[T]) -> None:
if not dataclasses.is_dataclass(class_type):
raise TypeError("expected: data-class type")
super().__init__(class_type) # type: ignore[arg-type]
def build(self, context: ModuleType | None) -> None:
property_parsers: list[FieldDeserializer] = []
resolved_hints = get_resolved_hints(self.class_type)
for field in dataclasses.fields(self.class_type):
field_type = resolved_hints[field.name]
property_name = python_field_to_json_property(field.name, field_type)
is_optional = is_type_optional(field_type)
has_default = field.default is not dataclasses.MISSING
has_default_factory = field.default_factory is not dataclasses.MISSING
if is_optional:
required_type: type[T] = unwrap_optional_type(field_type)
else:
required_type = field_type
parser = _get_deserializer(required_type, context)
if has_default:
field_parser: FieldDeserializer = DefaultFieldDeserializer(
property_name, field.name, parser, field.default
)
elif has_default_factory:
default_factory = typing.cast(Callable[[], Any], field.default_factory)
field_parser = DefaultFactoryFieldDeserializer(property_name, field.name, parser, default_factory)
elif is_optional:
field_parser = OptionalFieldDeserializer(property_name, field.name, parser)
else:
field_parser = RequiredFieldDeserializer(property_name, field.name, parser)
property_parsers.append(field_parser)
super().assign(property_parsers)
class FrozenDataclassDeserializer(DataclassDeserializer[T]):
"De-serializes a frozen data class from a JSON `object`."
def create(self, **field_values: Any) -> T:
"Instantiates an object with a collection of property values."
# create object instance without calling `__init__`
obj: T = create_object(self.class_type)
# can't use `setattr` on frozen dataclasses, pass member variable values to `__init__`
obj.__init__(**field_values) # type: ignore
return obj
class TypedClassDeserializer(ClassDeserializer[T]):
"De-serializes a class with type annotations from a JSON `object` by iterating over class properties."
def build(self, context: ModuleType | None) -> None:
property_parsers: list[FieldDeserializer] = []
for field_name, field_type in get_resolved_hints(self.class_type).items():
property_name = python_field_to_json_property(field_name, field_type)
is_optional = is_type_optional(field_type)
if is_optional:
required_type: type[T] = unwrap_optional_type(field_type)
else:
required_type = field_type
parser = _get_deserializer(required_type, context)
if is_optional:
field_parser: FieldDeserializer = OptionalFieldDeserializer(property_name, field_name, parser)
else:
field_parser = RequiredFieldDeserializer(property_name, field_name, parser)
property_parsers.append(field_parser)
super().assign(property_parsers)
def create_deserializer(typ: TypeLike, context: ModuleType | None = None) -> Deserializer:
"""
Creates a de-serializer engine to produce a Python object from an object obtained from a JSON string.
When de-serializing a JSON object into a Python object, the following transformations are applied:
* Fundamental types are parsed as `bool`, `int`, `float` or `str`.
* Date and time types are parsed from the ISO 8601 format with time zone into the corresponding Python type
`datetime`, `date` or `time`.
* Byte arrays are read from a string with Base64 encoding into a `bytes` instance.
* UUIDs are extracted from a UUID string compliant with RFC 4122 into a `uuid.UUID` instance.
* Enumerations are instantiated with a lookup on enumeration value.
* Containers (e.g. `list`, `dict`, `set`, `tuple`) are parsed recursively.
* Complex objects with properties (including data class types) are populated from dictionaries of key-value pairs
using reflection (enumerating type annotations).
:raises TypeError: A de-serializer engine cannot be constructed for the input type.
"""
if context is None:
if isinstance(typ, type):
context = sys.modules[typ.__module__]
return _get_deserializer(typ, context)
_CACHE: dict[tuple[str, str], Deserializer] = {}
def _get_deserializer(typ: TypeLike, context: ModuleType | None) -> Deserializer:
"Creates or re-uses a de-serializer engine to parse an object obtained from a JSON string."
cache_key = None
if isinstance(typ, (str, typing.ForwardRef)):
if context is None:
raise TypeError(f"missing context for evaluating type: {typ}")
if isinstance(typ, str):
if hasattr(context, typ):
cache_key = (context.__name__, typ)
elif isinstance(typ, typing.ForwardRef):
if hasattr(context, typ.__forward_arg__):
cache_key = (context.__name__, typ.__forward_arg__)
typ = evaluate_type(typ, context)
typ = unwrap_annotated_type(typ) if is_type_annotated(typ) else typ
if isinstance(typ, type) and typing.get_origin(typ) is None:
cache_key = (typ.__module__, typ.__name__)
if cache_key is not None:
deserializer = _CACHE.get(cache_key)
if deserializer is None:
deserializer = _create_deserializer(typ)
# store de-serializer immediately in cache to avoid stack overflow for recursive types
_CACHE[cache_key] = deserializer
if isinstance(typ, type):
# use type's own module as context for evaluating member types
context = sys.modules[typ.__module__]
# create any de-serializers this de-serializer is depending on
deserializer.build(context)
else:
# special forms are not always hashable, create a new de-serializer every time
deserializer = _create_deserializer(typ)
deserializer.build(context)
return deserializer
def _create_deserializer(typ: TypeLike) -> Deserializer:
"Creates a de-serializer engine to parse an object obtained from a JSON string."
# check for well-known types
if typ is type(None):
return NoneDeserializer()
elif typ is bool:
return BoolDeserializer()
elif typ is int:
return IntDeserializer()
elif typ is float:
return FloatDeserializer()
elif typ is str:
return StringDeserializer()
elif typ is bytes:
return BytesDeserializer()
elif typ is datetime.datetime:
return DateTimeDeserializer()
elif typ is datetime.date:
return DateDeserializer()
elif typ is datetime.time:
return TimeDeserializer()
elif typ is uuid.UUID:
return UUIDDeserializer()
elif typ is ipaddress.IPv4Address:
return IPv4Deserializer()
elif typ is ipaddress.IPv6Address:
return IPv6Deserializer()
# dynamically-typed collection types
if typ is list:
raise TypeError("explicit item type required: use `List[T]` instead of `list`")
if typ is dict:
raise TypeError("explicit key and value types required: use `Dict[K, V]` instead of `dict`")
if typ is set:
raise TypeError("explicit member type required: use `Set[T]` instead of `set`")
if typ is tuple:
raise TypeError("explicit item type list required: use `Tuple[T, ...]` instead of `tuple`")
# generic types (e.g. list, dict, set, etc.)
origin_type = typing.get_origin(typ)
if origin_type is list:
(list_item_type,) = typing.get_args(typ) # unpack single tuple element
return ListDeserializer(list_item_type)
elif origin_type is dict:
key_type, value_type = typing.get_args(typ)
return DictDeserializer(key_type, value_type)
elif origin_type is set:
(set_member_type,) = typing.get_args(typ) # unpack single tuple element
return SetDeserializer(set_member_type)
elif origin_type is tuple:
return TupleDeserializer(typing.get_args(typ))
elif origin_type is Union:
union_args = typing.get_args(typ)
if get_discriminating_properties(union_args):
return TaggedUnionDeserializer(union_args)
else:
return UnionDeserializer(union_args)
elif origin_type is Literal:
return LiteralDeserializer(typing.get_args(typ))
if not inspect.isclass(typ):
if is_dataclass_instance(typ):
raise TypeError(f"dataclass type expected but got instance: {typ}")
else:
raise TypeError(f"unable to de-serialize unrecognized type: {typ}")
if issubclass(typ, enum.Enum):
return EnumDeserializer(typ)
if is_named_tuple_type(typ):
return NamedTupleDeserializer(typ)
# check if object has custom serialization method
convert_func = getattr(typ, "from_json", None)
if callable(convert_func):
return CustomDeserializer(convert_func)
if is_dataclass_type(typ):
dataclass_params = getattr(typ, "__dataclass_params__", None)
if dataclass_params is not None and dataclass_params.frozen:
return FrozenDataclassDeserializer(typ)
else:
return DataclassDeserializer(typ)
return TypedClassDeserializer(typ)

View file

@ -1,410 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
"""
Type-safe data interchange for Python data classes.
:see: https://github.com/hunyadi/strong_typing
"""
import builtins
import collections.abc
import dataclasses
import inspect
import re
import sys
import types
import typing
from collections.abc import Callable
from dataclasses import dataclass
from io import StringIO
from typing import Any, Protocol, TypeVar
if sys.version_info >= (3, 10):
from typing import TypeGuard
else:
from typing import TypeGuard
from .inspection import (
DataclassInstance,
get_class_properties,
get_signature,
is_dataclass_type,
is_type_enum,
)
T = TypeVar("T")
@dataclass
class DocstringParam:
"""
A parameter declaration in a parameter block.
:param name: The name of the parameter.
:param description: The description text for the parameter.
"""
name: str
description: str
param_type: type | str = inspect.Signature.empty
def __str__(self) -> str:
return f":param {self.name}: {self.description}"
@dataclass
class DocstringReturns:
"""
A `returns` declaration extracted from a docstring.
:param description: The description text for the return value.
"""
description: str
return_type: type = inspect.Signature.empty
def __str__(self) -> str:
return f":returns: {self.description}"
@dataclass
class DocstringRaises:
"""
A `raises` declaration extracted from a docstring.
:param typename: The type name of the exception raised.
:param description: The description associated with the exception raised.
"""
typename: str
description: str
raise_type: type = inspect.Signature.empty
def __str__(self) -> str:
return f":raises {self.typename}: {self.description}"
@dataclass
class Docstring:
"""
Represents the documentation string (a.k.a. docstring) for a type such as a (data) class or function.
A docstring is broken down into the following components:
* A short description, which is the first block of text in the documentation string, and ends with a double
newline or a parameter block.
* A long description, which is the optional block of text following the short description, and ends with
a parameter block.
* A parameter block of named parameter and description string pairs in ReST-style.
* A `returns` declaration, which adds explanation to the return value.
* A `raises` declaration, which adds explanation to the exception type raised by the function on error.
When the docstring is attached to a data class, it is understood as the documentation string of the class
`__init__` method.
:param short_description: The short description text parsed from a docstring.
:param long_description: The long description text parsed from a docstring.
:param params: The parameter block extracted from a docstring.
:param returns: The returns declaration extracted from a docstring.
"""
short_description: str | None = None
long_description: str | None = None
params: dict[str, DocstringParam] = dataclasses.field(default_factory=dict)
returns: DocstringReturns | None = None
raises: dict[str, DocstringRaises] = dataclasses.field(default_factory=dict)
@property
def full_description(self) -> str | None:
if self.short_description and self.long_description:
return f"{self.short_description}\n\n{self.long_description}"
elif self.short_description:
return self.short_description
else:
return None
def __str__(self) -> str:
output = StringIO()
has_description = self.short_description or self.long_description
has_blocks = self.params or self.returns or self.raises
if has_description:
if self.short_description and self.long_description:
output.write(self.short_description)
output.write("\n\n")
output.write(self.long_description)
elif self.short_description:
output.write(self.short_description)
if has_blocks:
if has_description:
output.write("\n")
for param in self.params.values():
output.write("\n")
output.write(str(param))
if self.returns:
output.write("\n")
output.write(str(self.returns))
for raises in self.raises.values():
output.write("\n")
output.write(str(raises))
s = output.getvalue()
output.close()
return s
def is_exception(member: object) -> TypeGuard[type[BaseException]]:
return isinstance(member, type) and issubclass(member, BaseException)
def get_exceptions(module: types.ModuleType) -> dict[str, type[BaseException]]:
"Returns all exception classes declared in a module."
return {name: class_type for name, class_type in inspect.getmembers(module, is_exception)}
class SupportsDoc(Protocol):
__doc__: str | None
def _maybe_unwrap_async_iterator(t):
origin_type = typing.get_origin(t)
if origin_type is collections.abc.AsyncIterator:
return typing.get_args(t)[0]
return t
def parse_type(typ: SupportsDoc) -> Docstring:
"""
Parse the docstring of a type into its components.
:param typ: The type whose documentation string to parse.
:returns: Components of the documentation string.
"""
# Use docstring from the iterator origin type for streaming apis
typ = _maybe_unwrap_async_iterator(typ)
doc = get_docstring(typ)
if doc is None:
return Docstring()
docstring = parse_text(doc)
check_docstring(typ, docstring)
# assign parameter and return types
if is_dataclass_type(typ):
properties = dict(get_class_properties(typing.cast(type, typ)))
for name, param in docstring.params.items():
param.param_type = properties[name]
elif inspect.isfunction(typ):
signature = get_signature(typ)
for name, param in docstring.params.items():
param.param_type = signature.parameters[name].annotation
if docstring.returns:
docstring.returns.return_type = signature.return_annotation
# assign exception types
defining_module = inspect.getmodule(typ)
if defining_module:
context: dict[str, type] = {}
context.update(get_exceptions(builtins))
context.update(get_exceptions(defining_module))
for exc_name, exc in docstring.raises.items():
raise_type = context.get(exc_name)
if raise_type is None:
type_name = getattr(typ, "__qualname__", None) or getattr(typ, "__name__", None) or None
raise TypeError(
f"doc-string exception type `{exc_name}` is not an exception defined in the context of `{type_name}`"
)
exc.raise_type = raise_type
return docstring
def parse_text(text: str) -> Docstring:
"""
Parse a ReST-style docstring into its components.
:param text: The documentation string to parse, typically acquired as `type.__doc__`.
:returns: Components of the documentation string.
"""
if not text:
return Docstring()
# find block that starts object metadata block (e.g. `:param p:` or `:returns:`)
text = inspect.cleandoc(text)
match = re.search("^:", text, flags=re.MULTILINE)
if match:
desc_chunk = text[: match.start()]
meta_chunk = text[match.start() :] # noqa: E203
else:
desc_chunk = text
meta_chunk = ""
# split description text into short and long description
parts = desc_chunk.split("\n\n", 1)
# ensure short description has no newlines
short_description = parts[0].strip().replace("\n", " ") or None
# ensure long description preserves its structure (e.g. preformatted text)
if len(parts) > 1:
long_description = parts[1].strip() or None
else:
long_description = None
params: dict[str, DocstringParam] = {}
raises: dict[str, DocstringRaises] = {}
returns = None
for match in re.finditer(r"(^:.*?)(?=^:|\Z)", meta_chunk, flags=re.DOTALL | re.MULTILINE):
chunk = match.group(0)
if not chunk:
continue
args_chunk, desc_chunk = chunk.lstrip(":").split(":", 1)
args = args_chunk.split()
desc = re.sub(r"\s+", " ", desc_chunk.strip())
if len(args) > 0:
kw = args[0]
if len(args) == 2:
if kw == "param":
params[args[1]] = DocstringParam(
name=args[1],
description=desc,
)
elif kw == "raise" or kw == "raises":
raises[args[1]] = DocstringRaises(
typename=args[1],
description=desc,
)
elif len(args) == 1:
if kw == "return" or kw == "returns":
returns = DocstringReturns(description=desc)
return Docstring(
long_description=long_description,
short_description=short_description,
params=params,
returns=returns,
raises=raises,
)
def has_default_docstring(typ: SupportsDoc) -> bool:
"Check if class has the auto-generated string assigned by @dataclass."
if not isinstance(typ, type):
return False
if is_dataclass_type(typ):
return typ.__doc__ is not None and re.match(f"^{re.escape(typ.__name__)}[(].*[)]$", typ.__doc__) is not None
if is_type_enum(typ):
return typ.__doc__ is not None and typ.__doc__ == "An enumeration."
return False
def has_docstring(typ: SupportsDoc) -> bool:
"Check if class has a documentation string other than the auto-generated string assigned by @dataclass."
if has_default_docstring(typ):
return False
return bool(typ.__doc__)
def get_docstring(typ: SupportsDoc) -> str | None:
if typ.__doc__ is None:
return None
if has_default_docstring(typ):
return None
return typ.__doc__
def check_docstring(typ: SupportsDoc, docstring: Docstring, strict: bool = False) -> None:
"""
Verifies the doc-string of a type.
:raises TypeError: Raised on a mismatch between doc-string parameters, and function or type signature.
"""
if is_dataclass_type(typ):
check_dataclass_docstring(typ, docstring, strict)
elif inspect.isfunction(typ):
check_function_docstring(typ, docstring, strict)
def check_dataclass_docstring(typ: type[DataclassInstance], docstring: Docstring, strict: bool = False) -> None:
"""
Verifies the doc-string of a data-class type.
:param strict: Whether to check if all data-class members have doc-strings.
:raises TypeError: Raised on a mismatch between doc-string parameters and data-class members.
"""
if not is_dataclass_type(typ):
raise TypeError("not a data-class type")
properties = dict(get_class_properties(typ))
class_name = typ.__name__
for name in docstring.params:
if name not in properties:
raise TypeError(f"doc-string parameter `{name}` is not a member of the data-class `{class_name}`")
if not strict:
return
for name in properties:
if name not in docstring.params:
raise TypeError(f"member `{name}` in data-class `{class_name}` is missing its doc-string")
def check_function_docstring(fn: Callable[..., Any], docstring: Docstring, strict: bool = False) -> None:
"""
Verifies the doc-string of a function or member function.
:param strict: Whether to check if all function parameters and the return type have doc-strings.
:raises TypeError: Raised on a mismatch between doc-string parameters and function signature.
"""
signature = get_signature(fn)
func_name = fn.__qualname__
for name in docstring.params:
if name not in signature.parameters:
raise TypeError(f"doc-string parameter `{name}` is absent from signature of function `{func_name}`")
if docstring.returns is not None and signature.return_annotation is inspect.Signature.empty:
raise TypeError(f"doc-string has returns description in function `{func_name}` with no return type annotation")
if not strict:
return
for name, param in signature.parameters.items():
# ignore `self` in member function signatures
if name == "self" and (
param.kind is inspect.Parameter.POSITIONAL_ONLY or param.kind is inspect.Parameter.POSITIONAL_OR_KEYWORD
):
continue
if name not in docstring.params:
raise TypeError(f"function parameter `{name}` in `{func_name}` is missing its doc-string")
if signature.return_annotation is not inspect.Signature.empty and docstring.returns is None:
raise TypeError(f"function `{func_name}` has no returns description in its doc-string")

View file

@ -1,23 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
"""
Type-safe data interchange for Python data classes.
:see: https://github.com/hunyadi/strong_typing
"""
class JsonKeyError(Exception):
"Raised when deserialization for a class or union type has failed because a matching member was not found."
class JsonValueError(Exception):
"Raised when (de)serialization of data has failed due to invalid value."
class JsonTypeError(Exception):
"Raised when deserialization of data has failed due to a type mismatch."

File diff suppressed because it is too large Load diff

View file

@ -1,39 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
"""
Type-safe data interchange for Python data classes.
:see: https://github.com/hunyadi/strong_typing
"""
import keyword
from .auxiliary import Alias
from .inspection import get_annotation
def python_field_to_json_property(python_id: str, python_type: object | None = None) -> str:
"""
Map a Python field identifier to a JSON property name.
Authors may use an underscore appended at the end of a Python identifier as per PEP 8 if it clashes with a Python
keyword: e.g. `in` would become `in_` and `from` would become `from_`. Remove these suffixes when exporting to JSON.
Authors may supply an explicit alias with the type annotation `Alias`, e.g. `Annotated[MyType, Alias("alias")]`.
"""
if python_type is not None:
alias = get_annotation(python_type, Alias)
if alias:
return alias.name
if python_id.endswith("_"):
id = python_id[:-1]
if keyword.iskeyword(id):
return id
return python_id

View file

@ -1,188 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
"""
Type-safe data interchange for Python data classes.
:see: https://github.com/hunyadi/strong_typing
"""
import typing
from typing import Any, Literal, Union
from .auxiliary import _auxiliary_types
from .inspection import (
TypeLike,
is_generic_dict,
is_generic_list,
is_generic_sequence,
is_type_optional,
is_type_union,
unwrap_generic_dict,
unwrap_generic_list,
unwrap_generic_sequence,
unwrap_optional_type,
unwrap_union_types,
)
class TypeFormatter:
"""
Type formatter.
:param use_union_operator: Whether to emit union types as `X | Y` as per PEP 604.
"""
use_union_operator: bool
def __init__(self, use_union_operator: bool = False) -> None:
self.use_union_operator = use_union_operator
def union_to_str(self, data_type_args: tuple[TypeLike, ...]) -> str:
if self.use_union_operator:
return " | ".join(self.python_type_to_str(t) for t in data_type_args)
else:
if len(data_type_args) == 2 and type(None) in data_type_args:
# Optional[T] is represented as Union[T, None]
origin_name = "Optional"
data_type_args = tuple(t for t in data_type_args if t is not type(None))
else:
origin_name = "Union"
args = ", ".join(self.python_type_to_str(t) for t in data_type_args)
return f"{origin_name}[{args}]"
def plain_type_to_str(self, data_type: TypeLike) -> str:
"Returns the string representation of a Python type without metadata."
# return forward references as the annotation string
if isinstance(data_type, typing.ForwardRef):
fwd: typing.ForwardRef = data_type
return fwd.__forward_arg__
elif isinstance(data_type, str):
return data_type
origin = typing.get_origin(data_type)
if origin is not None:
data_type_args = typing.get_args(data_type)
if origin is dict: # Dict[T]
origin_name = "Dict"
elif origin is list: # List[T]
origin_name = "List"
elif origin is set: # Set[T]
origin_name = "Set"
elif origin is Union:
return self.union_to_str(data_type_args)
elif origin is Literal:
args = ", ".join(repr(arg) for arg in data_type_args)
return f"Literal[{args}]"
else:
origin_name = origin.__name__
args = ", ".join(self.python_type_to_str(t) for t in data_type_args)
return f"{origin_name}[{args}]"
return data_type.__name__
def python_type_to_str(self, data_type: TypeLike) -> str:
"Returns the string representation of a Python type."
if data_type is type(None):
return "None"
# use compact name for alias types
name = _auxiliary_types.get(data_type)
if name is not None:
return name
metadata = getattr(data_type, "__metadata__", None)
if metadata is not None:
# type is Annotated[T, ...]
metatuple: tuple[Any, ...] = metadata
arg = typing.get_args(data_type)[0]
# check for auxiliary types with user-defined annotations
metaset = set(metatuple)
for auxiliary_type, auxiliary_name in _auxiliary_types.items():
auxiliary_arg = typing.get_args(auxiliary_type)[0]
if arg is not auxiliary_arg:
continue
auxiliary_metatuple: tuple[Any, ...] | None = getattr(auxiliary_type, "__metadata__", None)
if auxiliary_metatuple is None:
continue
if metaset.issuperset(auxiliary_metatuple):
# type is an auxiliary type with extra annotations
auxiliary_args = ", ".join(repr(m) for m in metatuple if m not in auxiliary_metatuple)
return f"Annotated[{auxiliary_name}, {auxiliary_args}]"
# type is an annotated type
args = ", ".join(repr(m) for m in metatuple)
return f"Annotated[{self.plain_type_to_str(arg)}, {args}]"
else:
# type is a regular type
return self.plain_type_to_str(data_type)
def python_type_to_str(data_type: TypeLike, use_union_operator: bool = False) -> str:
"""
Returns the string representation of a Python type.
:param use_union_operator: Whether to emit union types as `X | Y` as per PEP 604.
"""
fmt = TypeFormatter(use_union_operator)
return fmt.python_type_to_str(data_type)
def python_type_to_name(data_type: TypeLike, force: bool = False) -> str:
"""
Returns the short name of a Python type.
:param force: Whether to produce a name for composite types such as generics.
"""
# use compact name for alias types
name = _auxiliary_types.get(data_type)
if name is not None:
return name
# unwrap annotated types
metadata = getattr(data_type, "__metadata__", None)
if metadata is not None:
# type is Annotated[T, ...]
arg = typing.get_args(data_type)[0]
return python_type_to_name(arg, force=force)
if force:
# generic types
if is_type_optional(data_type, strict=True):
inner_name = python_type_to_name(unwrap_optional_type(data_type), force=True)
return f"Optional__{inner_name}"
elif is_generic_list(data_type):
item_name = python_type_to_name(unwrap_generic_list(data_type), force=True)
return f"List__{item_name}"
elif is_generic_sequence(data_type):
# Treat Sequence the same as List for schema generation purposes
item_name = python_type_to_name(unwrap_generic_sequence(data_type), force=True)
return f"List__{item_name}"
elif is_generic_dict(data_type):
key_type, value_type = unwrap_generic_dict(data_type)
key_name = python_type_to_name(key_type, force=True)
value_name = python_type_to_name(value_type, force=True)
return f"Dict__{key_name}__{value_name}"
elif is_type_union(data_type):
member_types = unwrap_union_types(data_type)
member_names = "__".join(python_type_to_name(member_type, force=True) for member_type in member_types)
return f"Union__{member_names}"
# named system or user-defined type
if hasattr(data_type, "__name__") and not typing.get_args(data_type):
return data_type.__name__
raise TypeError(f"cannot assign a simple name to type: {data_type}")

View file

@ -1,791 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
"""
Type-safe data interchange for Python data classes.
:see: https://github.com/hunyadi/strong_typing
"""
import collections.abc
import dataclasses
import datetime
import decimal
import enum
import functools
import inspect
import json
import types
import typing
import uuid
from collections.abc import Callable
from copy import deepcopy
from typing import (
Annotated,
Any,
ClassVar,
Literal,
TypeVar,
Union,
overload,
)
import jsonschema
from . import docstring
from .auxiliary import (
Alias,
IntegerRange,
MaxLength,
MinLength,
Precision,
get_auxiliary_format,
)
from .core import JsonArray, JsonObject, JsonType, Schema, StrictJsonType
from .inspection import (
TypeLike,
enum_value_types,
get_annotation,
get_class_properties,
is_type_enum,
is_type_like,
is_type_optional,
unwrap_optional_type,
)
from .name import python_type_to_name
from .serialization import object_to_json
# determines the maximum number of distinct enum members up to which a Dict[EnumType, Any] is converted into a JSON
# schema with explicitly listed properties (rather than employing a pattern constraint on property names)
OBJECT_ENUM_EXPANSION_LIMIT = 4
T = TypeVar("T")
def get_class_docstrings(data_type: type) -> tuple[str | None, str | None]:
docstr = docstring.parse_type(data_type)
# check if class has a doc-string other than the auto-generated string assigned by @dataclass
if docstring.has_default_docstring(data_type):
return None, None
return docstr.short_description, docstr.long_description
def get_class_property_docstrings(
data_type: type, transform_fun: Callable[[type, str, str], str] | None = None
) -> dict[str, str]:
"""
Extracts the documentation strings associated with the properties of a composite type.
:param data_type: The object whose properties to iterate over.
:param transform_fun: An optional function that maps a property documentation string to a custom tailored string.
:returns: A dictionary mapping property names to descriptions.
"""
result: dict[str, str] = {}
# Only try to get MRO if data_type is actually a class
# Special types like Literal, Union, etc. don't have MRO
if not inspect.isclass(data_type):
return result
for base in inspect.getmro(data_type):
docstr = docstring.parse_type(base)
for param in docstr.params.values():
if param.name in result:
continue
if transform_fun:
description = transform_fun(data_type, param.name, param.description)
else:
description = param.description
result[param.name] = description
return result
def docstring_to_schema(data_type: type) -> Schema:
short_description, long_description = get_class_docstrings(data_type)
schema: Schema = {
"title": python_type_to_name(data_type, force=True),
}
description = "\n".join(filter(None, [short_description, long_description]))
if description:
schema["description"] = description
return schema
def id_from_ref(data_type: typing.ForwardRef | str | type) -> str:
"Extracts the name of a possibly forward-referenced type."
if isinstance(data_type, typing.ForwardRef):
forward_type: typing.ForwardRef = data_type
return forward_type.__forward_arg__
elif isinstance(data_type, str):
return data_type
else:
return data_type.__name__
def type_from_ref(data_type: typing.ForwardRef | str | type) -> tuple[str, type]:
"Creates a type from a forward reference."
if isinstance(data_type, typing.ForwardRef):
forward_type: typing.ForwardRef = data_type
true_type = eval(forward_type.__forward_code__)
return forward_type.__forward_arg__, true_type
elif isinstance(data_type, str):
true_type = eval(data_type)
return data_type, true_type
else:
return data_type.__name__, data_type
@dataclasses.dataclass
class TypeCatalogEntry:
schema: Schema | None
identifier: str
examples: JsonType | None = None
class TypeCatalog:
"Maintains an association of well-known Python types to their JSON schema."
_by_type: dict[TypeLike, TypeCatalogEntry]
_by_name: dict[str, TypeCatalogEntry]
def __init__(self) -> None:
self._by_type = {}
self._by_name = {}
def __contains__(self, data_type: TypeLike) -> bool:
if isinstance(data_type, typing.ForwardRef):
fwd: typing.ForwardRef = data_type
name = fwd.__forward_arg__
return name in self._by_name
else:
return data_type in self._by_type
def add(
self,
data_type: TypeLike,
schema: Schema | None,
identifier: str,
examples: list[JsonType] | None = None,
) -> None:
if isinstance(data_type, typing.ForwardRef):
raise TypeError("forward references cannot be used to register a type")
if data_type in self._by_type:
raise ValueError(f"type {data_type} is already registered in the catalog")
entry = TypeCatalogEntry(schema, identifier, examples)
self._by_type[data_type] = entry
self._by_name[identifier] = entry
def get(self, data_type: TypeLike) -> TypeCatalogEntry:
if isinstance(data_type, typing.ForwardRef):
fwd: typing.ForwardRef = data_type
name = fwd.__forward_arg__
return self._by_name[name]
else:
return self._by_type[data_type]
@dataclasses.dataclass
class SchemaOptions:
definitions_path: str = "#/definitions/"
use_descriptions: bool = True
use_examples: bool = True
property_description_fun: Callable[[type, str, str], str] | None = None
class JsonSchemaGenerator:
"Creates a JSON schema with user-defined type definitions."
type_catalog: ClassVar[TypeCatalog] = TypeCatalog()
types_used: dict[str, TypeLike]
options: SchemaOptions
def __init__(self, options: SchemaOptions | None = None):
if options is None:
self.options = SchemaOptions()
else:
self.options = options
self.types_used = {}
@functools.singledispatchmethod
def _metadata_to_schema(self, arg: object) -> Schema:
# unrecognized annotation
return {}
@_metadata_to_schema.register
def _(self, arg: IntegerRange) -> Schema:
return {"minimum": arg.minimum, "maximum": arg.maximum}
@_metadata_to_schema.register
def _(self, arg: Precision) -> Schema:
return {
"multipleOf": 10 ** (-arg.decimal_digits),
"exclusiveMinimum": -(10**arg.integer_digits),
"exclusiveMaximum": (10**arg.integer_digits),
}
@_metadata_to_schema.register
def _(self, arg: MinLength) -> Schema:
return {"minLength": arg.value}
@_metadata_to_schema.register
def _(self, arg: MaxLength) -> Schema:
return {"maxLength": arg.value}
def _with_metadata(self, type_schema: Schema, metadata: tuple[Any, ...] | None) -> Schema:
if metadata:
for m in metadata:
type_schema.update(self._metadata_to_schema(m))
return type_schema
def _simple_type_to_schema(self, typ: TypeLike, json_schema_extra: dict | None = None) -> Schema | None:
"""
Returns the JSON schema associated with a simple, unrestricted type.
:returns: The schema for a simple type, or `None`.
"""
if typ is type(None):
return {"type": "null"}
elif typ is bool:
return {"type": "boolean"}
elif typ is int:
return {"type": "integer"}
elif typ is float:
return {"type": "number"}
elif typ is str:
if json_schema_extra and "contentEncoding" in json_schema_extra:
return {
"type": "string",
"contentEncoding": json_schema_extra["contentEncoding"],
}
return {"type": "string"}
elif typ is bytes:
return {"type": "string", "contentEncoding": "base64"}
elif typ is datetime.datetime:
# 2018-11-13T20:20:39+00:00
return {
"type": "string",
"format": "date-time",
}
elif typ is datetime.date:
# 2018-11-13
return {"type": "string", "format": "date"}
elif typ is datetime.time:
# 20:20:39+00:00
return {"type": "string", "format": "time"}
elif typ is decimal.Decimal:
return {"type": "number"}
elif typ is uuid.UUID:
# f81d4fae-7dec-11d0-a765-00a0c91e6bf6
return {"type": "string", "format": "uuid"}
elif typ is Any:
return {
"oneOf": [
{"type": "null"},
{"type": "boolean"},
{"type": "number"},
{"type": "string"},
{"type": "array"},
{"type": "object"},
]
}
elif typ is JsonObject:
return {"type": "object"}
elif typ is JsonArray:
return {"type": "array"}
else:
# not a simple type
return None
def type_to_schema(
self,
data_type: TypeLike,
force_expand: bool = False,
json_schema_extra: dict | None = None,
) -> Schema:
common_info = {}
if json_schema_extra and "deprecated" in json_schema_extra:
common_info["deprecated"] = json_schema_extra["deprecated"]
return self._type_to_schema(data_type, force_expand, json_schema_extra) | common_info
def _type_to_schema(
self,
data_type: TypeLike,
force_expand: bool = False,
json_schema_extra: dict | None = None,
) -> Schema:
"""
Returns the JSON schema associated with a type.
:param data_type: The Python type whose JSON schema to return.
:param force_expand: Forces a JSON schema to be returned even if the type is registered in the catalog of known types.
:returns: The JSON schema associated with the type.
"""
# short-circuit for common simple types
schema = self._simple_type_to_schema(data_type, json_schema_extra)
if schema is not None:
return schema
# types registered in the type catalog of well-known types
type_catalog = JsonSchemaGenerator.type_catalog
if not force_expand and data_type in type_catalog:
# user-defined type
identifier = type_catalog.get(data_type).identifier
self.types_used.setdefault(identifier, data_type)
return {"$ref": f"{self.options.definitions_path}{identifier}"}
# unwrap annotated types
metadata = getattr(data_type, "__metadata__", None)
if metadata is not None:
# type is Annotated[T, ...]
typ = typing.get_args(data_type)[0]
schema = self._simple_type_to_schema(typ)
if schema is not None:
# recognize well-known auxiliary types
fmt = get_auxiliary_format(data_type)
if fmt is not None:
schema.update({"format": fmt})
return schema
else:
return self._with_metadata(schema, metadata)
else:
# type is a regular type
typ = data_type
if isinstance(typ, typing.ForwardRef) or isinstance(typ, str):
if force_expand:
identifier, true_type = type_from_ref(typ)
return self.type_to_schema(true_type, force_expand=True)
else:
try:
identifier, true_type = type_from_ref(typ)
self.types_used[identifier] = true_type
except NameError:
identifier = id_from_ref(typ)
return {"$ref": f"{self.options.definitions_path}{identifier}"}
if is_type_enum(typ):
enum_type: type[enum.Enum] = typ
value_types = enum_value_types(enum_type)
if len(value_types) != 1:
raise ValueError(
f"enumerations must have a consistent member value type but several types found: {value_types}"
)
enum_value_type = value_types.pop()
enum_schema: Schema
if enum_value_type is bool or enum_value_type is int or enum_value_type is float or enum_value_type is str:
if enum_value_type is bool:
enum_schema_type = "boolean"
elif enum_value_type is int:
enum_schema_type = "integer"
elif enum_value_type is float:
enum_schema_type = "number"
elif enum_value_type is str:
enum_schema_type = "string"
enum_schema = {
"type": enum_schema_type,
"enum": [object_to_json(e.value) for e in enum_type],
}
if self.options.use_descriptions:
enum_schema.update(docstring_to_schema(typ))
return enum_schema
else:
enum_schema = self.type_to_schema(enum_value_type)
if self.options.use_descriptions:
enum_schema.update(docstring_to_schema(typ))
return enum_schema
origin_type = typing.get_origin(typ)
if origin_type is list:
(list_type,) = typing.get_args(typ) # unpack single tuple element
return {"type": "array", "items": self.type_to_schema(list_type)}
elif origin_type is collections.abc.Sequence:
# Treat Sequence the same as list for JSON schema (both are arrays)
(sequence_type,) = typing.get_args(typ) # unpack single tuple element
return {"type": "array", "items": self.type_to_schema(sequence_type)}
elif origin_type is dict:
key_type, value_type = typing.get_args(typ)
if not (key_type is str or key_type is int or is_type_enum(key_type)):
raise ValueError("`dict` with key type not coercible to `str` is not supported")
dict_schema: Schema
value_schema = self.type_to_schema(value_type)
if is_type_enum(key_type):
enum_values = [str(e.value) for e in key_type]
if len(enum_values) > OBJECT_ENUM_EXPANSION_LIMIT:
dict_schema = {
"propertyNames": {"pattern": "^(" + "|".join(enum_values) + ")$"},
"additionalProperties": value_schema,
}
else:
dict_schema = {
"properties": dict.fromkeys(enum_values, value_schema),
"additionalProperties": False,
}
else:
dict_schema = {"additionalProperties": value_schema}
schema = {"type": "object"}
schema.update(dict_schema)
return schema
elif origin_type is set:
(set_type,) = typing.get_args(typ) # unpack single tuple element
return {
"type": "array",
"items": self.type_to_schema(set_type),
"uniqueItems": True,
}
elif origin_type is tuple:
args = typing.get_args(typ)
return {
"type": "array",
"minItems": len(args),
"maxItems": len(args),
"prefixItems": [self.type_to_schema(member_type) for member_type in args],
}
elif origin_type in (Union, types.UnionType):
discriminator = None
if typing.get_origin(data_type) is Annotated:
discriminator = typing.get_args(data_type)[1].discriminator
ret: Schema = {"oneOf": [self.type_to_schema(union_type) for union_type in typing.get_args(typ)]}
if discriminator:
# for each union type, we need to read the value of the discriminator
mapping: dict[str, JsonType] = {}
for union_type in typing.get_args(typ):
props = self.type_to_schema(union_type, force_expand=True)["properties"]
# mypy is confused here because JsonType allows multiple types, some of them
# not indexable (bool?) or not indexable by string (list?). The correctness of
# types depends on correct model definitions. Hence multiple ignore statements below.
discriminator_value = props[discriminator]["default"] # type: ignore[index,call-overload]
mapping[discriminator_value] = self.type_to_schema(union_type)["$ref"] # type: ignore[index]
ret["discriminator"] = {
"propertyName": discriminator,
"mapping": mapping,
}
return ret
elif origin_type is Literal:
literal_args = typing.get_args(typ)
if len(literal_args) == 1:
(literal_value,) = literal_args
schema = self.type_to_schema(type(literal_value))
schema["const"] = literal_value
return schema
elif len(literal_args) > 1:
first_value = literal_args[0]
schema = self.type_to_schema(type(first_value))
schema["enum"] = list(literal_args)
return schema
else:
return {"enum": []}
elif origin_type is type:
(concrete_type,) = typing.get_args(typ) # unpack single tuple element
return {"const": self.type_to_schema(concrete_type, force_expand=True)}
elif origin_type is collections.abc.AsyncIterator:
(concrete_type,) = typing.get_args(typ)
return self.type_to_schema(concrete_type)
# dictionary of class attributes
members = dict(inspect.getmembers(typ, lambda a: not inspect.isroutine(a)))
property_docstrings = get_class_property_docstrings(typ, self.options.property_description_fun)
properties: dict[str, Schema] = {}
required: list[str] = []
for property_name, property_type in get_class_properties(typ):
# rename property if an alias name is specified
alias = get_annotation(property_type, Alias)
if alias:
output_name = alias.name
else:
output_name = property_name
defaults = {}
json_schema_extra = None
if "model_fields" in members:
f = members["model_fields"]
defaults = {k: finfo.default for k, finfo in f.items()}
if output_name in f:
finfo = f[output_name]
json_schema_extra = finfo.json_schema_extra or {}
if finfo.deprecated:
json_schema_extra["deprecated"] = True
if is_type_optional(property_type):
optional_type: type = unwrap_optional_type(property_type)
property_def = self.type_to_schema(optional_type, json_schema_extra=json_schema_extra)
else:
property_def = self.type_to_schema(property_type, json_schema_extra=json_schema_extra)
required.append(output_name)
# check if attribute has a default value initializer
if defaults.get(property_name) is not None:
def_value = defaults[property_name]
# check if value can be directly represented in JSON
if isinstance(
def_value,
(
bool,
int,
float,
str,
enum.Enum,
datetime.datetime,
datetime.date,
datetime.time,
),
):
property_def["default"] = object_to_json(def_value)
# add property docstring if available
property_doc = property_docstrings.get(property_name)
if property_doc:
# print(output_name, property_doc)
property_def.pop("title", None)
property_def["description"] = property_doc
properties[output_name] = property_def
schema = {"type": "object"}
if len(properties) > 0:
schema["properties"] = typing.cast(JsonType, properties)
schema["additionalProperties"] = False
if len(required) > 0:
schema["required"] = typing.cast(JsonType, required)
if self.options.use_descriptions:
schema.update(docstring_to_schema(typ))
return schema
def _type_to_schema_with_lookup(self, data_type: TypeLike) -> Schema:
"""
Returns the JSON schema associated with a type that may be registered in the catalog of known types.
:param data_type: The type whose JSON schema we seek.
:returns: The JSON schema associated with the type.
"""
entry = JsonSchemaGenerator.type_catalog.get(data_type)
if entry.schema is None:
type_schema = self.type_to_schema(data_type, force_expand=True)
else:
type_schema = deepcopy(entry.schema)
# add descriptive text (if present)
if self.options.use_descriptions:
if isinstance(data_type, type) and not isinstance(data_type, typing.ForwardRef):
type_schema.update(docstring_to_schema(data_type))
# add example (if present)
if self.options.use_examples and entry.examples:
type_schema["examples"] = entry.examples
return type_schema
def classdef_to_schema(self, data_type: TypeLike, force_expand: bool = False) -> tuple[Schema, dict[str, Schema]]:
"""
Returns the JSON schema associated with a type and any nested types.
:param data_type: The type whose JSON schema to return.
:param force_expand: True if a full JSON schema is to be returned even for well-known types; false if a schema
reference is to be used for well-known types.
:returns: A tuple of the JSON schema, and a mapping between nested type names and their corresponding schema.
"""
if not is_type_like(data_type):
raise TypeError(f"expected a type-like object but got: {data_type}")
self.types_used = {}
try:
type_schema = self.type_to_schema(data_type, force_expand=force_expand)
types_defined: dict[str, Schema] = {}
while len(self.types_used) > len(types_defined):
# make a snapshot copy; original collection is going to be modified
types_undefined = {
sub_name: sub_type
for sub_name, sub_type in self.types_used.items()
if sub_name not in types_defined
}
# expand undefined types, which may lead to additional types to be defined
for sub_name, sub_type in types_undefined.items():
types_defined[sub_name] = self._type_to_schema_with_lookup(sub_type)
type_definitions = dict(sorted(types_defined.items()))
finally:
self.types_used = {}
return type_schema, type_definitions
class Validator(enum.Enum):
"Defines constants for JSON schema standards."
Draft7 = jsonschema.Draft7Validator
Draft201909 = jsonschema.Draft201909Validator
Draft202012 = jsonschema.Draft202012Validator
Latest = jsonschema.Draft202012Validator
def classdef_to_schema(
data_type: TypeLike,
options: SchemaOptions | None = None,
validator: Validator = Validator.Latest,
) -> Schema:
"""
Returns the JSON schema corresponding to the given type.
:param data_type: The Python type used to generate the JSON schema
:returns: A JSON object that you can serialize to a JSON string with json.dump or json.dumps
:raises TypeError: Indicates that the generated JSON schema does not validate against the desired meta-schema.
"""
# short-circuit with an error message when passing invalid data
if not is_type_like(data_type):
raise TypeError(f"expected a type-like object but got: {data_type}")
generator = JsonSchemaGenerator(options)
type_schema, type_definitions = generator.classdef_to_schema(data_type)
class_schema: Schema = {}
if type_definitions:
class_schema["definitions"] = typing.cast(JsonType, type_definitions)
class_schema.update(type_schema)
validator_id = validator.value.META_SCHEMA["$id"]
try:
validator.value.check_schema(class_schema)
except jsonschema.exceptions.SchemaError:
raise TypeError(f"schema does not validate against meta-schema <{validator_id}>")
schema = {"$schema": validator_id}
schema.update(class_schema)
return schema
def validate_object(data_type: TypeLike, json_dict: JsonType) -> None:
"""
Validates if the JSON dictionary object conforms to the expected type.
:param data_type: The type to match against.
:param json_dict: A JSON object obtained with `json.load` or `json.loads`.
:raises jsonschema.exceptions.ValidationError: Indicates that the JSON object cannot represent the type.
"""
schema_dict = classdef_to_schema(data_type)
jsonschema.validate(json_dict, schema_dict, format_checker=jsonschema.FormatChecker())
def print_schema(data_type: type) -> None:
"""Pretty-prints the JSON schema corresponding to the type."""
s = classdef_to_schema(data_type)
print(json.dumps(s, indent=4))
def get_schema_identifier(data_type: type) -> str | None:
if data_type in JsonSchemaGenerator.type_catalog:
return JsonSchemaGenerator.type_catalog.get(data_type).identifier
else:
return None
def register_schema(
data_type: T,
schema: Schema | None = None,
name: str | None = None,
examples: list[JsonType] | None = None,
) -> T:
"""
Associates a type with a JSON schema definition.
:param data_type: The type to associate with a JSON schema.
:param schema: The schema to associate the type with. Derived automatically if omitted.
:param name: The name used for looking uo the type. Determined automatically if omitted.
:returns: The input type.
"""
JsonSchemaGenerator.type_catalog.add(
data_type,
schema,
name if name is not None else python_type_to_name(data_type),
examples,
)
return data_type
@overload
def json_schema_type(cls: type[T], /) -> type[T]: ...
@overload
def json_schema_type(cls: None, *, schema: Schema | None = None) -> Callable[[type[T]], type[T]]: ...
def json_schema_type(
cls: type[T] | None = None,
*,
schema: Schema | None = None,
examples: list[JsonType] | None = None,
) -> type[T] | Callable[[type[T]], type[T]]:
"""Decorator to add user-defined schema definition to a class."""
def wrap(cls: type[T]) -> type[T]:
return register_schema(cls, schema, examples=examples)
# see if decorator is used as @json_schema_type or @json_schema_type()
if cls is None:
# called with parentheses
return wrap
else:
# called as @json_schema_type without parentheses
return wrap(cls)
register_schema(JsonObject, name="JsonObject")
register_schema(JsonArray, name="JsonArray")
register_schema(
JsonType,
name="JsonType",
examples=[
{
"property1": None,
"property2": True,
"property3": 64,
"property4": "string",
"property5": ["item"],
"property6": {"key": "value"},
}
],
)
register_schema(
StrictJsonType,
name="StrictJsonType",
examples=[
{
"property1": True,
"property2": 64,
"property3": "string",
"property4": ["item"],
"property5": {"key": "value"},
}
],
)

View file

@ -1,97 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
"""
Type-safe data interchange for Python data classes.
:see: https://github.com/hunyadi/strong_typing
"""
import inspect
import json
import sys
from types import ModuleType
from typing import Any, TextIO, TypeVar
from .core import JsonType
from .deserializer import create_deserializer
from .inspection import TypeLike
from .serializer import create_serializer
T = TypeVar("T")
def object_to_json(obj: Any) -> JsonType:
"""
Converts a Python object to a representation that can be exported to JSON.
* Fundamental types (e.g. numeric types) are written as is.
* Date and time types are serialized in the ISO 8601 format with time zone.
* A byte array is written as a string with Base64 encoding.
* UUIDs are written as a UUID string.
* Enumerations are written as their value.
* Containers (e.g. `list`, `dict`, `set`, `tuple`) are exported recursively.
* Objects with properties (including data class types) are converted to a dictionaries of key-value pairs.
"""
typ: type = type(obj)
generator = create_serializer(typ)
return generator.generate(obj)
def json_to_object(typ: TypeLike, data: JsonType, *, context: ModuleType | None = None) -> object:
"""
Creates an object from a representation that has been de-serialized from JSON.
When de-serializing a JSON object into a Python object, the following transformations are applied:
* Fundamental types are parsed as `bool`, `int`, `float` or `str`.
* Date and time types are parsed from the ISO 8601 format with time zone into the corresponding Python type
`datetime`, `date` or `time`
* A byte array is read from a string with Base64 encoding into a `bytes` instance.
* UUIDs are extracted from a UUID string into a `uuid.UUID` instance.
* Enumerations are instantiated with a lookup on enumeration value.
* Containers (e.g. `list`, `dict`, `set`, `tuple`) are parsed recursively.
* Complex objects with properties (including data class types) are populated from dictionaries of key-value pairs
using reflection (enumerating type annotations).
:raises TypeError: A de-serializing engine cannot be constructed for the input type.
:raises JsonKeyError: Deserialization for a class or union type has failed because a matching member was not found.
:raises JsonTypeError: Deserialization for data has failed due to a type mismatch.
"""
# use caller context for evaluating types if no context is supplied
if context is None:
this_frame = inspect.currentframe()
if this_frame is not None:
caller_frame = this_frame.f_back
del this_frame
if caller_frame is not None:
try:
context = sys.modules[caller_frame.f_globals["__name__"]]
finally:
del caller_frame
parser = create_deserializer(typ, context)
return parser.parse(data)
def json_dump_string(json_object: JsonType) -> str:
"Dump an object as a JSON string with a compact representation."
return json.dumps(json_object, ensure_ascii=False, check_circular=False, separators=(",", ":"))
def json_dump(json_object: JsonType, file: TextIO) -> None:
json.dump(
json_object,
file,
ensure_ascii=False,
check_circular=False,
separators=(",", ":"),
)
file.write("\n")

View file

@ -1,494 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
"""
Type-safe data interchange for Python data classes.
:see: https://github.com/hunyadi/strong_typing
"""
import abc
import base64
import datetime
import enum
import functools
import inspect
import ipaddress
import sys
import typing
import uuid
from collections.abc import Callable
from types import FunctionType, MethodType, ModuleType
from typing import (
Any,
Generic,
Literal,
NamedTuple,
TypeVar,
Union,
)
from .core import JsonType
from .exception import JsonTypeError, JsonValueError
from .inspection import (
TypeLike,
enum_value_types,
evaluate_type,
get_class_properties,
get_resolved_hints,
is_dataclass_type,
is_named_tuple_type,
is_reserved_property,
is_type_annotated,
is_type_enum,
unwrap_annotated_type,
)
from .mapping import python_field_to_json_property
T = TypeVar("T")
class Serializer(abc.ABC, Generic[T]):
@abc.abstractmethod
def generate(self, data: T) -> JsonType: ...
class NoneSerializer(Serializer[None]):
def generate(self, data: None) -> None:
# can be directly represented in JSON
return None
class BoolSerializer(Serializer[bool]):
def generate(self, data: bool) -> bool:
# can be directly represented in JSON
return data
class IntSerializer(Serializer[int]):
def generate(self, data: int) -> int:
# can be directly represented in JSON
return data
class FloatSerializer(Serializer[float]):
def generate(self, data: float) -> float:
# can be directly represented in JSON
return data
class StringSerializer(Serializer[str]):
def generate(self, data: str) -> str:
# can be directly represented in JSON
return data
class BytesSerializer(Serializer[bytes]):
def generate(self, data: bytes) -> str:
return base64.b64encode(data).decode("ascii")
class DateTimeSerializer(Serializer[datetime.datetime]):
def generate(self, obj: datetime.datetime) -> str:
if obj.tzinfo is None:
raise JsonValueError(f"timestamp lacks explicit time zone designator: {obj}")
fmt = obj.isoformat()
if fmt.endswith("+00:00"):
fmt = f"{fmt[:-6]}Z" # Python's isoformat() does not support military time zones like "Zulu" for UTC
return fmt
class DateSerializer(Serializer[datetime.date]):
def generate(self, obj: datetime.date) -> str:
return obj.isoformat()
class TimeSerializer(Serializer[datetime.time]):
def generate(self, obj: datetime.time) -> str:
return obj.isoformat()
class UUIDSerializer(Serializer[uuid.UUID]):
def generate(self, obj: uuid.UUID) -> str:
return str(obj)
class IPv4Serializer(Serializer[ipaddress.IPv4Address]):
def generate(self, obj: ipaddress.IPv4Address) -> str:
return str(obj)
class IPv6Serializer(Serializer[ipaddress.IPv6Address]):
def generate(self, obj: ipaddress.IPv6Address) -> str:
return str(obj)
class EnumSerializer(Serializer[enum.Enum]):
def generate(self, obj: enum.Enum) -> int | str:
value = obj.value
if isinstance(value, int):
return value
return str(value)
class UntypedListSerializer(Serializer[list]):
def generate(self, obj: list) -> list[JsonType]:
return [object_to_json(item) for item in obj]
class UntypedDictSerializer(Serializer[dict]):
def generate(self, obj: dict) -> dict[str, JsonType]:
if obj and isinstance(next(iter(obj.keys())), enum.Enum):
iterator = ((key.value, object_to_json(value)) for key, value in obj.items())
else:
iterator = ((str(key), object_to_json(value)) for key, value in obj.items())
return dict(iterator)
class UntypedSetSerializer(Serializer[set]):
def generate(self, obj: set) -> list[JsonType]:
return [object_to_json(item) for item in obj]
class UntypedTupleSerializer(Serializer[tuple]):
def generate(self, obj: tuple) -> list[JsonType]:
return [object_to_json(item) for item in obj]
class TypedCollectionSerializer(Serializer, Generic[T]):
generator: Serializer[T]
def __init__(self, item_type: type[T], context: ModuleType | None) -> None:
self.generator = _get_serializer(item_type, context)
class TypedListSerializer(TypedCollectionSerializer[T]):
def generate(self, obj: list[T]) -> list[JsonType]:
return [self.generator.generate(item) for item in obj]
class TypedStringDictSerializer(TypedCollectionSerializer[T]):
def __init__(self, value_type: type[T], context: ModuleType | None) -> None:
super().__init__(value_type, context)
def generate(self, obj: dict[str, T]) -> dict[str, JsonType]:
return {key: self.generator.generate(value) for key, value in obj.items()}
class TypedEnumDictSerializer(TypedCollectionSerializer[T]):
def __init__(
self,
key_type: type[enum.Enum],
value_type: type[T],
context: ModuleType | None,
) -> None:
super().__init__(value_type, context)
value_types = enum_value_types(key_type)
if len(value_types) != 1:
raise JsonTypeError(
f"invalid key type, enumerations must have a consistent member value type but several types found: {value_types}"
)
value_type = value_types.pop()
if value_type is not str:
raise JsonTypeError("invalid enumeration key type, expected `enum.Enum` with string values")
def generate(self, obj: dict[enum.Enum, T]) -> dict[str, JsonType]:
return {key.value: self.generator.generate(value) for key, value in obj.items()}
class TypedSetSerializer(TypedCollectionSerializer[T]):
def generate(self, obj: set[T]) -> JsonType:
return [self.generator.generate(item) for item in obj]
class TypedTupleSerializer(Serializer[tuple]):
item_generators: tuple[Serializer, ...]
def __init__(self, item_types: tuple[type, ...], context: ModuleType | None) -> None:
self.item_generators = tuple(_get_serializer(item_type, context) for item_type in item_types)
def generate(self, obj: tuple) -> list[JsonType]:
return [item_generator.generate(item) for item_generator, item in zip(self.item_generators, obj, strict=False)]
class CustomSerializer(Serializer):
converter: Callable[[object], JsonType]
def __init__(self, converter: Callable[[object], JsonType]) -> None:
self.converter = converter
def generate(self, obj: object) -> JsonType:
return self.converter(obj)
class FieldSerializer(Generic[T]):
"""
Serializes a Python object field into a JSON property.
:param field_name: The name of the field in a Python class to read data from.
:param property_name: The name of the JSON property to write to a JSON `object`.
:param generator: A compatible serializer that can handle the field's type.
"""
field_name: str
property_name: str
generator: Serializer
def __init__(self, field_name: str, property_name: str, generator: Serializer[T]) -> None:
self.field_name = field_name
self.property_name = property_name
self.generator = generator
def generate_field(self, obj: object, object_dict: dict[str, JsonType]) -> None:
value = getattr(obj, self.field_name)
if value is not None:
object_dict[self.property_name] = self.generator.generate(value)
class TypedClassSerializer(Serializer[T]):
property_generators: list[FieldSerializer]
def __init__(self, class_type: type[T], context: ModuleType | None) -> None:
self.property_generators = [
FieldSerializer(
field_name,
python_field_to_json_property(field_name, field_type),
_get_serializer(field_type, context),
)
for field_name, field_type in get_class_properties(class_type)
]
def generate(self, obj: T) -> dict[str, JsonType]:
object_dict: dict[str, JsonType] = {}
for property_generator in self.property_generators:
property_generator.generate_field(obj, object_dict)
return object_dict
class TypedNamedTupleSerializer(TypedClassSerializer[NamedTuple]):
def __init__(self, class_type: type[NamedTuple], context: ModuleType | None) -> None:
super().__init__(class_type, context)
class DataclassSerializer(TypedClassSerializer[T]):
def __init__(self, class_type: type[T], context: ModuleType | None) -> None:
super().__init__(class_type, context)
class UnionSerializer(Serializer):
def generate(self, obj: Any) -> JsonType:
return object_to_json(obj)
class LiteralSerializer(Serializer):
generator: Serializer
def __init__(self, values: tuple[Any, ...], context: ModuleType | None) -> None:
literal_type_tuple = tuple(type(value) for value in values)
literal_type_set = set(literal_type_tuple)
if len(literal_type_set) != 1:
value_names = ", ".join(repr(value) for value in values)
raise TypeError(
f"type `Literal[{value_names}]` expects consistent literal value types but got: {literal_type_tuple}"
)
literal_type = literal_type_set.pop()
self.generator = _get_serializer(literal_type, context)
def generate(self, obj: Any) -> JsonType:
return self.generator.generate(obj)
class UntypedNamedTupleSerializer(Serializer):
fields: dict[str, str]
def __init__(self, class_type: type[NamedTuple]) -> None:
# named tuples are also instances of tuple
self.fields = {}
field_names: tuple[str, ...] = class_type._fields
for field_name in field_names:
self.fields[field_name] = python_field_to_json_property(field_name)
def generate(self, obj: NamedTuple) -> JsonType:
object_dict = {}
for field_name, property_name in self.fields.items():
value = getattr(obj, field_name)
object_dict[property_name] = object_to_json(value)
return object_dict
class UntypedClassSerializer(Serializer):
def generate(self, obj: object) -> JsonType:
# iterate over object attributes to get a standard representation
object_dict = {}
for name in dir(obj):
if is_reserved_property(name):
continue
value = getattr(obj, name)
if value is None:
continue
# filter instance methods
if inspect.ismethod(value):
continue
object_dict[python_field_to_json_property(name)] = object_to_json(value)
return object_dict
def create_serializer(typ: TypeLike, context: ModuleType | None = None) -> Serializer:
"""
Creates a serializer engine to produce an object that can be directly converted into a JSON string.
When serializing a Python object into a JSON object, the following transformations are applied:
* Fundamental types (`bool`, `int`, `float` or `str`) are returned as-is.
* Date and time types (`datetime`, `date` or `time`) produce an ISO 8601 format string with time zone
(ending with `Z` for UTC).
* Byte arrays (`bytes`) are written as a string with Base64 encoding.
* UUIDs (`uuid.UUID`) are written as a UUID string as per RFC 4122.
* Enumerations yield their enumeration value.
* Containers (e.g. `list`, `dict`, `set`, `tuple`) are processed recursively.
* Complex objects with properties (including data class types) generate dictionaries of key-value pairs.
:raises TypeError: A serializer engine cannot be constructed for the input type.
"""
if context is None:
if isinstance(typ, type):
context = sys.modules[typ.__module__]
return _get_serializer(typ, context)
def _get_serializer(typ: TypeLike, context: ModuleType | None) -> Serializer:
if isinstance(typ, (str, typing.ForwardRef)):
if context is None:
raise TypeError(f"missing context for evaluating type: {typ}")
typ = evaluate_type(typ, context)
if isinstance(typ, type):
return _fetch_serializer(typ)
else:
# special forms are not always hashable
return _create_serializer(typ, context)
@functools.cache
def _fetch_serializer(typ: type) -> Serializer:
context = sys.modules[typ.__module__]
return _create_serializer(typ, context)
def _create_serializer(typ: TypeLike, context: ModuleType | None) -> Serializer:
# check for well-known types
if typ is type(None):
return NoneSerializer()
elif typ is bool:
return BoolSerializer()
elif typ is int:
return IntSerializer()
elif typ is float:
return FloatSerializer()
elif typ is str:
return StringSerializer()
elif typ is bytes:
return BytesSerializer()
elif typ is datetime.datetime:
return DateTimeSerializer()
elif typ is datetime.date:
return DateSerializer()
elif typ is datetime.time:
return TimeSerializer()
elif typ is uuid.UUID:
return UUIDSerializer()
elif typ is ipaddress.IPv4Address:
return IPv4Serializer()
elif typ is ipaddress.IPv6Address:
return IPv6Serializer()
# dynamically-typed collection types
if typ is list:
return UntypedListSerializer()
elif typ is dict:
return UntypedDictSerializer()
elif typ is set:
return UntypedSetSerializer()
elif typ is tuple:
return UntypedTupleSerializer()
# generic types (e.g. list, dict, set, etc.)
origin_type = typing.get_origin(typ)
if origin_type is list:
(list_item_type,) = typing.get_args(typ) # unpack single tuple element
return TypedListSerializer(list_item_type, context)
elif origin_type is dict:
key_type, value_type = typing.get_args(typ)
if key_type is str:
return TypedStringDictSerializer(value_type, context)
elif issubclass(key_type, enum.Enum):
return TypedEnumDictSerializer(key_type, value_type, context)
elif origin_type is set:
(set_member_type,) = typing.get_args(typ) # unpack single tuple element
return TypedSetSerializer(set_member_type, context)
elif origin_type is tuple:
return TypedTupleSerializer(typing.get_args(typ), context)
elif origin_type is Union:
return UnionSerializer()
elif origin_type is Literal:
return LiteralSerializer(typing.get_args(typ), context)
if is_type_annotated(typ):
return create_serializer(unwrap_annotated_type(typ))
# check if object has custom serialization method
convert_func = getattr(typ, "to_json", None)
if callable(convert_func):
return CustomSerializer(convert_func)
if is_type_enum(typ):
return EnumSerializer()
if is_dataclass_type(typ):
return DataclassSerializer(typ, context)
if is_named_tuple_type(typ):
if getattr(typ, "__annotations__", None):
return TypedNamedTupleSerializer(typ, context)
else:
return UntypedNamedTupleSerializer(typ)
# fail early if caller passes an object with an exotic type
if not isinstance(typ, type) or typ is FunctionType or typ is MethodType or typ is type or typ is ModuleType:
raise TypeError(f"object of type {typ} cannot be represented in JSON")
if get_resolved_hints(typ):
return TypedClassSerializer(typ, context)
else:
return UntypedClassSerializer()
def object_to_json(obj: Any) -> JsonType:
"""
Converts a Python object to a representation that can be exported to JSON.
* Fundamental types (e.g. numeric types) are written as is.
* Date and time types are serialized in the ISO 8601 format with time zone.
* A byte array is written as a string with Base64 encoding.
* UUIDs are written as a UUID string.
* Enumerations are written as their value.
* Containers (e.g. `list`, `dict`, `set`, `tuple`) are exported recursively.
* Objects with properties (including data class types) are converted to a dictionaries of key-value pairs.
"""
typ: type = type(obj)
generator = create_serializer(typ)
return generator.generate(obj)

View file

@ -1,27 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, TypeVar
T = TypeVar("T")
class SlotsMeta(type):
def __new__(cls: type[T], name: str, bases: tuple[type, ...], ns: dict[str, Any]) -> T:
# caller may have already provided slots, in which case just retain them and keep going
slots: tuple[str, ...] = ns.get("__slots__", ())
# add fields with type annotations to slots
annotations: dict[str, Any] = ns.get("__annotations__", {})
members = tuple(member for member in annotations.keys() if member not in slots)
# assign slots
ns["__slots__"] = slots + tuple(members)
return super().__new__(cls, name, bases, ns) # type: ignore
class Slots(metaclass=SlotsMeta):
pass

View file

@ -1,90 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
"""
Type-safe data interchange for Python data classes.
:see: https://github.com/hunyadi/strong_typing
"""
from collections.abc import Callable, Iterable
from typing import TypeVar
from .inspection import TypeCollector
T = TypeVar("T")
def topological_sort(graph: dict[T, set[T]]) -> list[T]:
"""
Performs a topological sort of a graph.
Nodes with no outgoing edges are first. Nodes with no incoming edges are last.
The topological ordering is not unique.
:param graph: A dictionary of mappings from nodes to adjacent nodes. Keys and set members must be hashable.
:returns: The list of nodes in topological order.
"""
# empty list that will contain the sorted nodes (in reverse order)
ordered: list[T] = []
seen: dict[T, bool] = {}
def _visit(n: T) -> None:
status = seen.get(n)
if status is not None:
if status: # node has a permanent mark
return
else: # node has a temporary mark
raise RuntimeError(f"cycle detected in graph for node {n}")
seen[n] = False # apply temporary mark
for m in graph[n]: # visit all adjacent nodes
if m != n: # ignore self-referencing nodes
_visit(m)
seen[n] = True # apply permanent mark
ordered.append(n)
for n in graph.keys():
_visit(n)
return ordered
def type_topological_sort(
types: Iterable[type],
dependency_fn: Callable[[type], Iterable[type]] | None = None,
) -> list[type]:
"""
Performs a topological sort of a list of types.
Types that don't depend on other types (i.e. fundamental types) are first. Types on which no other types depend
are last. The topological ordering is not unique.
:param types: A list of types (simple or composite).
:param dependency_fn: Returns a list of additional dependencies for a class (e.g. classes referenced by a foreign key).
:returns: The list of types in topological order.
"""
if not all(isinstance(typ, type) for typ in types):
raise TypeError("expected a list of types")
collector = TypeCollector()
collector.traverse_all(types)
graph = collector.graph
if dependency_fn:
new_types: set[type] = set()
for source_type, references in graph.items():
dependent_types = dependency_fn(source_type)
references.update(dependent_types)
new_types.update(dependent_types)
for new_type in new_types:
graph[new_type] = set()
return topological_sort(graph)

View file

@ -88,6 +88,7 @@ class ToolStore(Protocol):
async def get_tool_group(self, toolgroup_id: str) -> ToolGroup: ... async def get_tool_group(self, toolgroup_id: str) -> ToolGroup: ...
@json_schema_type
class ListToolGroupsResponse(BaseModel): class ListToolGroupsResponse(BaseModel):
"""Response containing a list of tool groups. """Response containing a list of tool groups.
@ -97,6 +98,7 @@ class ListToolGroupsResponse(BaseModel):
data: list[ToolGroup] data: list[ToolGroup]
@json_schema_type
class ListToolDefsResponse(BaseModel): class ListToolDefsResponse(BaseModel):
"""Response containing a list of tool definitions. """Response containing a list of tool definitions.

View file

@ -15,8 +15,7 @@ from pydantic import BaseModel, Field
from llama_stack_api.common.tracing import telemetry_traceable from llama_stack_api.common.tracing import telemetry_traceable
from llama_stack_api.inference import InterleavedContent from llama_stack_api.inference import InterleavedContent
from llama_stack_api.schema_utils import json_schema_type, webmethod from llama_stack_api.schema_utils import json_schema_type, register_schema, webmethod
from llama_stack_api.strong_typing.schema import register_schema
from llama_stack_api.vector_stores import VectorStore from llama_stack_api.vector_stores import VectorStore
from llama_stack_api.version import LLAMA_STACK_API_V1 from llama_stack_api.version import LLAMA_STACK_API_V1
@ -738,8 +737,8 @@ class VectorIO(Protocol):
self, self,
vector_store_id: str, vector_store_id: str,
file_id: str, file_id: str,
include_embeddings: Annotated[bool | None, Query(default=False)] = False, include_embeddings: Annotated[bool | None, Query()] = False,
include_metadata: Annotated[bool | None, Query(default=False)] = False, include_metadata: Annotated[bool | None, Query()] = False,
) -> VectorStoreFileContentResponse: ) -> VectorStoreFileContentResponse:
"""Retrieves the contents of a vector store file. """Retrieves the contents of a vector store file.

View file

@ -0,0 +1,48 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from pydantic import BaseModel
from llama_stack_api import Conversation, SamplingStrategy
from llama_stack_api.schema_utils import (
clear_dynamic_schema_types,
get_registered_schema_info,
iter_dynamic_schema_types,
iter_json_schema_types,
iter_registered_schema_types,
register_dynamic_schema_type,
)
def test_json_schema_registry_contains_known_model() -> None:
assert Conversation in iter_json_schema_types()
def test_registered_schema_registry_contains_sampling_strategy() -> None:
registered_names = {info.name for info in iter_registered_schema_types()}
assert "SamplingStrategy" in registered_names
schema_info = get_registered_schema_info(SamplingStrategy)
assert schema_info is not None
assert schema_info.name == "SamplingStrategy"
def test_dynamic_schema_registration_round_trip() -> None:
existing_models = tuple(iter_dynamic_schema_types())
clear_dynamic_schema_types()
try:
class TemporaryModel(BaseModel):
foo: str
register_dynamic_schema_type(TemporaryModel)
assert TemporaryModel in iter_dynamic_schema_types()
clear_dynamic_schema_types()
assert TemporaryModel not in iter_dynamic_schema_types()
finally:
for model in existing_models:
register_dynamic_schema_type(model)

152
uv.lock generated
View file

@ -1834,6 +1834,21 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/fe/54/c86cd8e011fe98803d7e382fd67c0df5ceab8d2b7ad8c5a81524f791551c/jsonschema-4.25.0-py3-none-any.whl", hash = "sha256:24c2e8da302de79c8b9382fee3e76b355e44d2a4364bb207159ce10b517bd716", size = 89184, upload-time = "2025-07-18T15:39:42.956Z" }, { url = "https://files.pythonhosted.org/packages/fe/54/c86cd8e011fe98803d7e382fd67c0df5ceab8d2b7ad8c5a81524f791551c/jsonschema-4.25.0-py3-none-any.whl", hash = "sha256:24c2e8da302de79c8b9382fee3e76b355e44d2a4364bb207159ce10b517bd716", size = 89184, upload-time = "2025-07-18T15:39:42.956Z" },
] ]
[[package]]
name = "jsonschema-path"
version = "0.3.4"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "pathable" },
{ name = "pyyaml" },
{ name = "referencing" },
{ name = "requests" },
]
sdist = { url = "https://files.pythonhosted.org/packages/6e/45/41ebc679c2a4fced6a722f624c18d658dee42612b83ea24c1caf7c0eb3a8/jsonschema_path-0.3.4.tar.gz", hash = "sha256:8365356039f16cc65fddffafda5f58766e34bebab7d6d105616ab52bc4297001", size = 11159, upload-time = "2025-01-24T14:33:16.547Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/cb/58/3485da8cb93d2f393bce453adeef16896751f14ba3e2024bc21dc9597646/jsonschema_path-0.3.4-py3-none-any.whl", hash = "sha256:f502191fdc2b22050f9a81c9237be9d27145b9001c55842bece5e94e382e52f8", size = 14810, upload-time = "2025-01-24T14:33:14.652Z" },
]
[[package]] [[package]]
name = "jsonschema-specifications" name = "jsonschema-specifications"
version = "2025.4.1" version = "2025.4.1"
@ -1913,6 +1928,38 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/89/43/d9bebfc3db7dea6ec80df5cb2aad8d274dd18ec2edd6c4f21f32c237cbbb/kubernetes-33.1.0-py2.py3-none-any.whl", hash = "sha256:544de42b24b64287f7e0aa9513c93cb503f7f40eea39b20f66810011a86eabc5", size = 1941335, upload-time = "2025-06-09T21:57:56.327Z" }, { url = "https://files.pythonhosted.org/packages/89/43/d9bebfc3db7dea6ec80df5cb2aad8d274dd18ec2edd6c4f21f32c237cbbb/kubernetes-33.1.0-py2.py3-none-any.whl", hash = "sha256:544de42b24b64287f7e0aa9513c93cb503f7f40eea39b20f66810011a86eabc5", size = 1941335, upload-time = "2025-06-09T21:57:56.327Z" },
] ]
[[package]]
name = "lazy-object-proxy"
version = "1.12.0"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/08/a2/69df9c6ba6d316cfd81fe2381e464db3e6de5db45f8c43c6a23504abf8cb/lazy_object_proxy-1.12.0.tar.gz", hash = "sha256:1f5a462d92fd0cfb82f1fab28b51bfb209fabbe6aabf7f0d51472c0c124c0c61", size = 43681, upload-time = "2025-08-22T13:50:06.783Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/0d/1b/b5f5bd6bda26f1e15cd3232b223892e4498e34ec70a7f4f11c401ac969f1/lazy_object_proxy-1.12.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:8ee0d6027b760a11cc18281e702c0309dd92da458a74b4c15025d7fc490deede", size = 26746, upload-time = "2025-08-22T13:42:37.572Z" },
{ url = "https://files.pythonhosted.org/packages/55/64/314889b618075c2bfc19293ffa9153ce880ac6153aacfd0a52fcabf21a66/lazy_object_proxy-1.12.0-cp312-cp312-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:4ab2c584e3cc8be0dfca422e05ad30a9abe3555ce63e9ab7a559f62f8dbc6ff9", size = 71457, upload-time = "2025-08-22T13:42:38.743Z" },
{ url = "https://files.pythonhosted.org/packages/11/53/857fc2827fc1e13fbdfc0ba2629a7d2579645a06192d5461809540b78913/lazy_object_proxy-1.12.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:14e348185adbd03ec17d051e169ec45686dcd840a3779c9d4c10aabe2ca6e1c0", size = 71036, upload-time = "2025-08-22T13:42:40.184Z" },
{ url = "https://files.pythonhosted.org/packages/2b/24/e581ffed864cd33c1b445b5763d617448ebb880f48675fc9de0471a95cbc/lazy_object_proxy-1.12.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:c4fcbe74fb85df8ba7825fa05eddca764138da752904b378f0ae5ab33a36c308", size = 69329, upload-time = "2025-08-22T13:42:41.311Z" },
{ url = "https://files.pythonhosted.org/packages/78/be/15f8f5a0b0b2e668e756a152257d26370132c97f2f1943329b08f057eff0/lazy_object_proxy-1.12.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:563d2ec8e4d4b68ee7848c5ab4d6057a6d703cb7963b342968bb8758dda33a23", size = 70690, upload-time = "2025-08-22T13:42:42.51Z" },
{ url = "https://files.pythonhosted.org/packages/5d/aa/f02be9bbfb270e13ee608c2b28b8771f20a5f64356c6d9317b20043c6129/lazy_object_proxy-1.12.0-cp312-cp312-win_amd64.whl", hash = "sha256:53c7fd99eb156bbb82cbc5d5188891d8fdd805ba6c1e3b92b90092da2a837073", size = 26563, upload-time = "2025-08-22T13:42:43.685Z" },
{ url = "https://files.pythonhosted.org/packages/f4/26/b74c791008841f8ad896c7f293415136c66cc27e7c7577de4ee68040c110/lazy_object_proxy-1.12.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:86fd61cb2ba249b9f436d789d1356deae69ad3231dc3c0f17293ac535162672e", size = 26745, upload-time = "2025-08-22T13:42:44.982Z" },
{ url = "https://files.pythonhosted.org/packages/9b/52/641870d309e5d1fb1ea7d462a818ca727e43bfa431d8c34b173eb090348c/lazy_object_proxy-1.12.0-cp313-cp313-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:81d1852fb30fab81696f93db1b1e55a5d1ff7940838191062f5f56987d5fcc3e", size = 71537, upload-time = "2025-08-22T13:42:46.141Z" },
{ url = "https://files.pythonhosted.org/packages/47/b6/919118e99d51c5e76e8bf5a27df406884921c0acf2c7b8a3b38d847ab3e9/lazy_object_proxy-1.12.0-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:be9045646d83f6c2664c1330904b245ae2371b5c57a3195e4028aedc9f999655", size = 71141, upload-time = "2025-08-22T13:42:47.375Z" },
{ url = "https://files.pythonhosted.org/packages/e5/47/1d20e626567b41de085cf4d4fb3661a56c159feaa73c825917b3b4d4f806/lazy_object_proxy-1.12.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:67f07ab742f1adfb3966c40f630baaa7902be4222a17941f3d85fd1dae5565ff", size = 69449, upload-time = "2025-08-22T13:42:48.49Z" },
{ url = "https://files.pythonhosted.org/packages/58/8d/25c20ff1a1a8426d9af2d0b6f29f6388005fc8cd10d6ee71f48bff86fdd0/lazy_object_proxy-1.12.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:75ba769017b944fcacbf6a80c18b2761a1795b03f8899acdad1f1c39db4409be", size = 70744, upload-time = "2025-08-22T13:42:49.608Z" },
{ url = "https://files.pythonhosted.org/packages/c0/67/8ec9abe15c4f8a4bcc6e65160a2c667240d025cbb6591b879bea55625263/lazy_object_proxy-1.12.0-cp313-cp313-win_amd64.whl", hash = "sha256:7b22c2bbfb155706b928ac4d74c1a63ac8552a55ba7fff4445155523ea4067e1", size = 26568, upload-time = "2025-08-22T13:42:57.719Z" },
{ url = "https://files.pythonhosted.org/packages/23/12/cd2235463f3469fd6c62d41d92b7f120e8134f76e52421413a0ad16d493e/lazy_object_proxy-1.12.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:4a79b909aa16bde8ae606f06e6bbc9d3219d2e57fb3e0076e17879072b742c65", size = 27391, upload-time = "2025-08-22T13:42:50.62Z" },
{ url = "https://files.pythonhosted.org/packages/60/9e/f1c53e39bbebad2e8609c67d0830cc275f694d0ea23d78e8f6db526c12d3/lazy_object_proxy-1.12.0-cp313-cp313t-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:338ab2f132276203e404951205fe80c3fd59429b3a724e7b662b2eb539bb1be9", size = 80552, upload-time = "2025-08-22T13:42:51.731Z" },
{ url = "https://files.pythonhosted.org/packages/4c/b6/6c513693448dcb317d9d8c91d91f47addc09553613379e504435b4cc8b3e/lazy_object_proxy-1.12.0-cp313-cp313t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:8c40b3c9faee2e32bfce0df4ae63f4e73529766893258eca78548bac801c8f66", size = 82857, upload-time = "2025-08-22T13:42:53.225Z" },
{ url = "https://files.pythonhosted.org/packages/12/1c/d9c4aaa4c75da11eb7c22c43d7c90a53b4fca0e27784a5ab207768debea7/lazy_object_proxy-1.12.0-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:717484c309df78cedf48396e420fa57fc8a2b1f06ea889df7248fdd156e58847", size = 80833, upload-time = "2025-08-22T13:42:54.391Z" },
{ url = "https://files.pythonhosted.org/packages/0b/ae/29117275aac7d7d78ae4f5a4787f36ff33262499d486ac0bf3e0b97889f6/lazy_object_proxy-1.12.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:a6b7ea5ea1ffe15059eb44bcbcb258f97bcb40e139b88152c40d07b1a1dfc9ac", size = 79516, upload-time = "2025-08-22T13:42:55.812Z" },
{ url = "https://files.pythonhosted.org/packages/19/40/b4e48b2c38c69392ae702ae7afa7b6551e0ca5d38263198b7c79de8b3bdf/lazy_object_proxy-1.12.0-cp313-cp313t-win_amd64.whl", hash = "sha256:08c465fb5cd23527512f9bd7b4c7ba6cec33e28aad36fbbe46bf7b858f9f3f7f", size = 27656, upload-time = "2025-08-22T13:42:56.793Z" },
{ url = "https://files.pythonhosted.org/packages/ef/3a/277857b51ae419a1574557c0b12e0d06bf327b758ba94cafc664cb1e2f66/lazy_object_proxy-1.12.0-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:c9defba70ab943f1df98a656247966d7729da2fe9c2d5d85346464bf320820a3", size = 26582, upload-time = "2025-08-22T13:49:49.366Z" },
{ url = "https://files.pythonhosted.org/packages/1a/b6/c5e0fa43535bb9c87880e0ba037cdb1c50e01850b0831e80eb4f4762f270/lazy_object_proxy-1.12.0-cp314-cp314-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:6763941dbf97eea6b90f5b06eb4da9418cc088fce0e3883f5816090f9afcde4a", size = 71059, upload-time = "2025-08-22T13:49:50.488Z" },
{ url = "https://files.pythonhosted.org/packages/06/8a/7dcad19c685963c652624702f1a968ff10220b16bfcc442257038216bf55/lazy_object_proxy-1.12.0-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:fdc70d81235fc586b9e3d1aeef7d1553259b62ecaae9db2167a5d2550dcc391a", size = 71034, upload-time = "2025-08-22T13:49:54.224Z" },
{ url = "https://files.pythonhosted.org/packages/12/ac/34cbfb433a10e28c7fd830f91c5a348462ba748413cbb950c7f259e67aa7/lazy_object_proxy-1.12.0-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:0a83c6f7a6b2bfc11ef3ed67f8cbe99f8ff500b05655d8e7df9aab993a6abc95", size = 69529, upload-time = "2025-08-22T13:49:55.29Z" },
{ url = "https://files.pythonhosted.org/packages/6f/6a/11ad7e349307c3ca4c0175db7a77d60ce42a41c60bcb11800aabd6a8acb8/lazy_object_proxy-1.12.0-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:256262384ebd2a77b023ad02fbcc9326282bcfd16484d5531154b02bc304f4c5", size = 70391, upload-time = "2025-08-22T13:49:56.35Z" },
{ url = "https://files.pythonhosted.org/packages/59/97/9b410ed8fbc6e79c1ee8b13f8777a80137d4bc189caf2c6202358e66192c/lazy_object_proxy-1.12.0-cp314-cp314-win_amd64.whl", hash = "sha256:7601ec171c7e8584f8ff3f4e440aa2eebf93e854f04639263875b8c2971f819f", size = 26988, upload-time = "2025-08-22T13:49:57.302Z" },
]
[[package]] [[package]]
name = "linkify" name = "linkify"
version = "1.4" version = "1.4"
@ -1992,6 +2039,7 @@ dev = [
{ name = "black" }, { name = "black" },
{ name = "mypy" }, { name = "mypy" },
{ name = "nbval" }, { name = "nbval" },
{ name = "openapi-spec-validator" },
{ name = "pre-commit" }, { name = "pre-commit" },
{ name = "pytest" }, { name = "pytest" },
{ name = "pytest-asyncio" }, { name = "pytest-asyncio" },
@ -2117,6 +2165,7 @@ requires-dist = [
{ name = "python-dotenv" }, { name = "python-dotenv" },
{ name = "python-multipart", specifier = ">=0.0.20" }, { name = "python-multipart", specifier = ">=0.0.20" },
{ name = "pyyaml", specifier = ">=6.0" }, { name = "pyyaml", specifier = ">=6.0" },
{ name = "pyyaml", specifier = ">=6.0.2" },
{ name = "rich" }, { name = "rich" },
{ name = "sqlalchemy", extras = ["asyncio"], specifier = ">=2.0.41" }, { name = "sqlalchemy", extras = ["asyncio"], specifier = ">=2.0.41" },
{ name = "starlette" }, { name = "starlette" },
@ -2138,6 +2187,7 @@ dev = [
{ name = "black" }, { name = "black" },
{ name = "mypy" }, { name = "mypy" },
{ name = "nbval" }, { name = "nbval" },
{ name = "openapi-spec-validator", specifier = ">=0.7.2" },
{ name = "pre-commit", specifier = ">=4.4.0" }, { name = "pre-commit", specifier = ">=4.4.0" },
{ name = "pytest", specifier = ">=8.4" }, { name = "pytest", specifier = ">=8.4" },
{ name = "pytest-asyncio", specifier = ">=1.0" }, { name = "pytest-asyncio", specifier = ">=1.0" },
@ -3011,6 +3061,35 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/14/f3/ebbd700d8dc1e6380a7a382969d96bc0cbea8717b52fb38ff0ca2a7653e8/openai-2.5.0-py3-none-any.whl", hash = "sha256:21380e5f52a71666dbadbf322dd518bdf2b9d11ed0bb3f96bea17310302d6280", size = 999851, upload-time = "2025-10-17T18:14:45.528Z" }, { url = "https://files.pythonhosted.org/packages/14/f3/ebbd700d8dc1e6380a7a382969d96bc0cbea8717b52fb38ff0ca2a7653e8/openai-2.5.0-py3-none-any.whl", hash = "sha256:21380e5f52a71666dbadbf322dd518bdf2b9d11ed0bb3f96bea17310302d6280", size = 999851, upload-time = "2025-10-17T18:14:45.528Z" },
] ]
[[package]]
name = "openapi-schema-validator"
version = "0.6.3"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "jsonschema" },
{ name = "jsonschema-specifications" },
{ name = "rfc3339-validator" },
]
sdist = { url = "https://files.pythonhosted.org/packages/8b/f3/5507ad3325169347cd8ced61c232ff3df70e2b250c49f0fe140edb4973c6/openapi_schema_validator-0.6.3.tar.gz", hash = "sha256:f37bace4fc2a5d96692f4f8b31dc0f8d7400fd04f3a937798eaf880d425de6ee", size = 11550, upload-time = "2025-01-10T18:08:22.268Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/21/c6/ad0fba32775ae749016829dace42ed80f4407b171da41313d1a3a5f102e4/openapi_schema_validator-0.6.3-py3-none-any.whl", hash = "sha256:f3b9870f4e556b5a62a1c39da72a6b4b16f3ad9c73dc80084b1b11e74ba148a3", size = 8755, upload-time = "2025-01-10T18:08:19.758Z" },
]
[[package]]
name = "openapi-spec-validator"
version = "0.7.2"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "jsonschema" },
{ name = "jsonschema-path" },
{ name = "lazy-object-proxy" },
{ name = "openapi-schema-validator" },
]
sdist = { url = "https://files.pythonhosted.org/packages/82/af/fe2d7618d6eae6fb3a82766a44ed87cd8d6d82b4564ed1c7cfb0f6378e91/openapi_spec_validator-0.7.2.tar.gz", hash = "sha256:cc029309b5c5dbc7859df0372d55e9d1ff43e96d678b9ba087f7c56fc586f734", size = 36855, upload-time = "2025-06-07T14:48:56.299Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/27/dd/b3fd642260cb17532f66cc1e8250f3507d1e580483e209dc1e9d13bd980d/openapi_spec_validator-0.7.2-py3-none-any.whl", hash = "sha256:4bbdc0894ec85f1d1bea1d6d9c8b2c3c8d7ccaa13577ef40da9c006c9fd0eb60", size = 39713, upload-time = "2025-06-07T14:48:54.077Z" },
]
[[package]] [[package]]
name = "opentelemetry-api" name = "opentelemetry-api"
version = "1.36.0" version = "1.36.0"
@ -3247,6 +3326,15 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/c6/ac/dac4a63f978e4dcb3c6d3a78c4d8e0192a113d288502a1216950c41b1027/parso-0.8.4-py2.py3-none-any.whl", hash = "sha256:a418670a20291dacd2dddc80c377c5c3791378ee1e8d12bffc35420643d43f18", size = 103650, upload-time = "2024-04-05T09:43:53.299Z" }, { url = "https://files.pythonhosted.org/packages/c6/ac/dac4a63f978e4dcb3c6d3a78c4d8e0192a113d288502a1216950c41b1027/parso-0.8.4-py2.py3-none-any.whl", hash = "sha256:a418670a20291dacd2dddc80c377c5c3791378ee1e8d12bffc35420643d43f18", size = 103650, upload-time = "2024-04-05T09:43:53.299Z" },
] ]
[[package]]
name = "pathable"
version = "0.4.4"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/67/93/8f2c2075b180c12c1e9f6a09d1a985bc2036906b13dff1d8917e395f2048/pathable-0.4.4.tar.gz", hash = "sha256:6905a3cd17804edfac7875b5f6c9142a218c7caef78693c2dbbbfbac186d88b2", size = 8124, upload-time = "2025-01-10T18:43:13.247Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/7d/eb/b6260b31b1a96386c0a880edebe26f89669098acea8e0318bff6adb378fd/pathable-0.4.4-py3-none-any.whl", hash = "sha256:5ae9e94793b6ef5a4cbe0a7ce9dbbefc1eec38df253763fd0aeeacf2762dbbc2", size = 9592, upload-time = "2025-01-10T18:43:11.88Z" },
]
[[package]] [[package]]
name = "pathspec" name = "pathspec"
version = "0.12.1" version = "0.12.1"
@ -4404,6 +4492,18 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/1c/4c/cc276ce57e572c102d9542d383b2cfd551276581dc60004cb94fe8774c11/responses-0.25.8-py3-none-any.whl", hash = "sha256:0c710af92def29c8352ceadff0c3fe340ace27cf5af1bbe46fb71275bcd2831c", size = 34769, upload-time = "2025-08-08T19:01:45.018Z" }, { url = "https://files.pythonhosted.org/packages/1c/4c/cc276ce57e572c102d9542d383b2cfd551276581dc60004cb94fe8774c11/responses-0.25.8-py3-none-any.whl", hash = "sha256:0c710af92def29c8352ceadff0c3fe340ace27cf5af1bbe46fb71275bcd2831c", size = 34769, upload-time = "2025-08-08T19:01:45.018Z" },
] ]
[[package]]
name = "rfc3339-validator"
version = "0.1.4"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "six" },
]
sdist = { url = "https://files.pythonhosted.org/packages/28/ea/a9387748e2d111c3c2b275ba970b735e04e15cdb1eb30693b6b5708c4dbd/rfc3339_validator-0.1.4.tar.gz", hash = "sha256:138a2abdf93304ad60530167e51d2dfb9549521a836871b88d7f4695d0022f6b", size = 5513, upload-time = "2021-05-12T16:37:54.178Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/7b/44/4e421b96b67b2daff264473f7465db72fbdf36a07e05494f50300cc7b0c6/rfc3339_validator-0.1.4-py2.py3-none-any.whl", hash = "sha256:24f6ec1eda14ef823da9e36ec7113124b39c04d50a4d3d3a3c2859577e7791fa", size = 3490, upload-time = "2021-05-12T16:37:52.536Z" },
]
[[package]] [[package]]
name = "rich" name = "rich"
version = "14.1.0" version = "14.1.0"
@ -4516,40 +4616,46 @@ wheels = [
[[package]] [[package]]
name = "ruamel-yaml" name = "ruamel-yaml"
version = "0.18.14" version = "0.18.16"
source = { registry = "https://pypi.org/simple" } source = { registry = "https://pypi.org/simple" }
dependencies = [ dependencies = [
{ name = "ruamel-yaml-clib", marker = "python_full_version < '3.14' and platform_python_implementation == 'CPython'" }, { name = "ruamel-yaml-clib", marker = "python_full_version < '3.14' and platform_python_implementation == 'CPython'" },
] ]
sdist = { url = "https://files.pythonhosted.org/packages/39/87/6da0df742a4684263261c253f00edd5829e6aca970fff69e75028cccc547/ruamel.yaml-0.18.14.tar.gz", hash = "sha256:7227b76aaec364df15936730efbf7d72b30c0b79b1d578bbb8e3dcb2d81f52b7", size = 145511, upload-time = "2025-06-09T08:51:09.828Z" } sdist = { url = "https://files.pythonhosted.org/packages/9f/c7/ee630b29e04a672ecfc9b63227c87fd7a37eb67c1bf30fe95376437f897c/ruamel.yaml-0.18.16.tar.gz", hash = "sha256:a6e587512f3c998b2225d68aa1f35111c29fad14aed561a26e73fab729ec5e5a", size = 147269, upload-time = "2025-10-22T17:54:02.346Z" }
wheels = [ wheels = [
{ url = "https://files.pythonhosted.org/packages/af/6d/6fe4805235e193aad4aaf979160dd1f3c487c57d48b810c816e6e842171b/ruamel.yaml-0.18.14-py3-none-any.whl", hash = "sha256:710ff198bb53da66718c7db27eec4fbcc9aa6ca7204e4c1df2f282b6fe5eb6b2", size = 118570, upload-time = "2025-06-09T08:51:06.348Z" }, { url = "https://files.pythonhosted.org/packages/0f/73/bb1bc2529f852e7bf64a2dec885e89ff9f5cc7bbf6c9340eed30ff2c69c5/ruamel.yaml-0.18.16-py3-none-any.whl", hash = "sha256:048f26d64245bae57a4f9ef6feb5b552a386830ef7a826f235ffb804c59efbba", size = 119858, upload-time = "2025-10-22T17:53:59.012Z" },
] ]
[[package]] [[package]]
name = "ruamel-yaml-clib" name = "ruamel-yaml-clib"
version = "0.2.12" version = "0.2.14"
source = { registry = "https://pypi.org/simple" } source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/20/84/80203abff8ea4993a87d823a5f632e4d92831ef75d404c9fc78d0176d2b5/ruamel.yaml.clib-0.2.12.tar.gz", hash = "sha256:6c8fbb13ec503f99a91901ab46e0b07ae7941cd527393187039aec586fdfd36f", size = 225315, upload-time = "2024-10-20T10:10:56.22Z" } sdist = { url = "https://files.pythonhosted.org/packages/d8/e9/39ec4d4b3f91188fad1842748f67d4e749c77c37e353c4e545052ee8e893/ruamel.yaml.clib-0.2.14.tar.gz", hash = "sha256:803f5044b13602d58ea378576dd75aa759f52116a0232608e8fdada4da33752e", size = 225394, upload-time = "2025-09-22T19:51:23.753Z" }
wheels = [ wheels = [
{ url = "https://files.pythonhosted.org/packages/48/41/e7a405afbdc26af961678474a55373e1b323605a4f5e2ddd4a80ea80f628/ruamel.yaml.clib-0.2.12-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:20b0f8dc160ba83b6dcc0e256846e1a02d044e13f7ea74a3d1d56ede4e48c632", size = 133433, upload-time = "2024-10-20T10:12:55.657Z" }, { url = "https://files.pythonhosted.org/packages/b4/42/ccfb34a25289afbbc42017e4d3d4288e61d35b2e00cfc6b92974a6a1f94b/ruamel.yaml.clib-0.2.14-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:6aeadc170090ff1889f0d2c3057557f9cd71f975f17535c26a5d37af98f19c27", size = 271775, upload-time = "2025-09-23T14:24:12.771Z" },
{ url = "https://files.pythonhosted.org/packages/ec/b0/b850385604334c2ce90e3ee1013bd911aedf058a934905863a6ea95e9eb4/ruamel.yaml.clib-0.2.12-cp312-cp312-manylinux2014_aarch64.whl", hash = "sha256:943f32bc9dedb3abff9879edc134901df92cfce2c3d5c9348f172f62eb2d771d", size = 647362, upload-time = "2024-10-20T10:12:57.155Z" }, { url = "https://files.pythonhosted.org/packages/82/73/e628a92e80197ff6a79ab81ec3fa00d4cc082d58ab78d3337b7ba7043301/ruamel.yaml.clib-0.2.14-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:5e56ac47260c0eed992789fa0b8efe43404a9adb608608631a948cee4fc2b052", size = 138842, upload-time = "2025-09-22T19:50:49.156Z" },
{ url = "https://files.pythonhosted.org/packages/44/d0/3f68a86e006448fb6c005aee66565b9eb89014a70c491d70c08de597f8e4/ruamel.yaml.clib-0.2.12-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95c3829bb364fdb8e0332c9931ecf57d9be3519241323c5274bd82f709cebc0c", size = 754118, upload-time = "2024-10-20T10:12:58.501Z" }, { url = "https://files.pythonhosted.org/packages/2b/c5/346c7094344a60419764b4b1334d9e0285031c961176ff88ffb652405b0c/ruamel.yaml.clib-0.2.14-cp312-cp312-manylinux2014_aarch64.whl", hash = "sha256:a911aa73588d9a8b08d662b9484bc0567949529824a55d3885b77e8dd62a127a", size = 647404, upload-time = "2025-09-22T19:50:52.921Z" },
{ url = "https://files.pythonhosted.org/packages/52/a9/d39f3c5ada0a3bb2870d7db41901125dbe2434fa4f12ca8c5b83a42d7c53/ruamel.yaml.clib-0.2.12-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:749c16fcc4a2b09f28843cda5a193e0283e47454b63ec4b81eaa2242f50e4ccd", size = 706497, upload-time = "2024-10-20T10:13:00.211Z" }, { url = "https://files.pythonhosted.org/packages/df/99/65080c863eb06d4498de3d6c86f3e90595e02e159fd8529f1565f56cfe2c/ruamel.yaml.clib-0.2.14-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a05ba88adf3d7189a974b2de7a9d56731548d35dc0a822ec3dc669caa7019b29", size = 753141, upload-time = "2025-09-22T19:50:50.294Z" },
{ url = "https://files.pythonhosted.org/packages/b0/fa/097e38135dadd9ac25aecf2a54be17ddf6e4c23e43d538492a90ab3d71c6/ruamel.yaml.clib-0.2.12-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:bf165fef1f223beae7333275156ab2022cffe255dcc51c27f066b4370da81e31", size = 698042, upload-time = "2024-10-21T11:26:46.038Z" }, { url = "https://files.pythonhosted.org/packages/3d/e3/0de85f3e3333f8e29e4b10244374a202a87665d1131798946ee22cf05c7c/ruamel.yaml.clib-0.2.14-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fb04c5650de6668b853623eceadcdb1a9f2fee381f5d7b6bc842ee7c239eeec4", size = 703477, upload-time = "2025-09-22T19:50:51.508Z" },
{ url = "https://files.pythonhosted.org/packages/ec/d5/a659ca6f503b9379b930f13bc6b130c9f176469b73b9834296822a83a132/ruamel.yaml.clib-0.2.12-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:32621c177bbf782ca5a18ba4d7af0f1082a3f6e517ac2a18b3974d4edf349680", size = 745831, upload-time = "2024-10-21T11:26:47.487Z" }, { url = "https://files.pythonhosted.org/packages/d9/25/0d2f09d8833c7fd77ab8efeff213093c16856479a9d293180a0d89f6bed9/ruamel.yaml.clib-0.2.14-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:df3ec9959241d07bc261f4983d25a1205ff37703faf42b474f15d54d88b4f8c9", size = 741157, upload-time = "2025-09-23T18:42:50.408Z" },
{ url = "https://files.pythonhosted.org/packages/db/5d/36619b61ffa2429eeaefaab4f3374666adf36ad8ac6330d855848d7d36fd/ruamel.yaml.clib-0.2.12-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:b82a7c94a498853aa0b272fd5bc67f29008da798d4f93a2f9f289feb8426a58d", size = 715692, upload-time = "2024-12-11T19:58:17.252Z" }, { url = "https://files.pythonhosted.org/packages/d3/8c/959f10c2e2153cbdab834c46e6954b6dd9e3b109c8f8c0a3cf1618310985/ruamel.yaml.clib-0.2.14-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:fbc08c02e9b147a11dfcaa1ac8a83168b699863493e183f7c0c8b12850b7d259", size = 745859, upload-time = "2025-09-22T19:50:54.497Z" },
{ url = "https://files.pythonhosted.org/packages/b1/82/85cb92f15a4231c89b95dfe08b09eb6adca929ef7df7e17ab59902b6f589/ruamel.yaml.clib-0.2.12-cp312-cp312-win32.whl", hash = "sha256:e8c4ebfcfd57177b572e2040777b8abc537cdef58a2120e830124946aa9b42c5", size = 98777, upload-time = "2024-10-20T10:13:01.395Z" }, { url = "https://files.pythonhosted.org/packages/ed/6b/e580a7c18b485e1a5f30a32cda96b20364b0ba649d9d2baaf72f8bd21f83/ruamel.yaml.clib-0.2.14-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:c099cafc1834d3c5dac305865d04235f7c21c167c8dd31ebc3d6bbc357e2f023", size = 770200, upload-time = "2025-09-22T19:50:55.718Z" },
{ url = "https://files.pythonhosted.org/packages/d7/8f/c3654f6f1ddb75daf3922c3d8fc6005b1ab56671ad56ffb874d908bfa668/ruamel.yaml.clib-0.2.12-cp312-cp312-win_amd64.whl", hash = "sha256:0467c5965282c62203273b838ae77c0d29d7638c8a4e3a1c8bdd3602c10904e4", size = 115523, upload-time = "2024-10-20T10:13:02.768Z" }, { url = "https://files.pythonhosted.org/packages/ef/44/3455eebc761dc8e8fdced90f2b0a3fa61e32ba38b50de4130e2d57db0f21/ruamel.yaml.clib-0.2.14-cp312-cp312-win32.whl", hash = "sha256:b5b0f7e294700b615a3bcf6d28b26e6da94e8eba63b079f4ec92e9ba6c0d6b54", size = 98829, upload-time = "2025-09-22T19:50:58.895Z" },
{ url = "https://files.pythonhosted.org/packages/29/00/4864119668d71a5fa45678f380b5923ff410701565821925c69780356ffa/ruamel.yaml.clib-0.2.12-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:4c8c5d82f50bb53986a5e02d1b3092b03622c02c2eb78e29bec33fd9593bae1a", size = 132011, upload-time = "2024-10-20T10:13:04.377Z" }, { url = "https://files.pythonhosted.org/packages/76/ab/5121f7f3b651db93de546f8c982c241397aad0a4765d793aca1dac5eadee/ruamel.yaml.clib-0.2.14-cp312-cp312-win_amd64.whl", hash = "sha256:a37f40a859b503304dd740686359fcf541d6fb3ff7fc10f539af7f7150917c68", size = 115570, upload-time = "2025-09-22T19:50:57.981Z" },
{ url = "https://files.pythonhosted.org/packages/7f/5e/212f473a93ae78c669ffa0cb051e3fee1139cb2d385d2ae1653d64281507/ruamel.yaml.clib-0.2.12-cp313-cp313-manylinux2014_aarch64.whl", hash = "sha256:e7e3736715fbf53e9be2a79eb4db68e4ed857017344d697e8b9749444ae57475", size = 642488, upload-time = "2024-10-20T10:13:05.906Z" }, { url = "https://files.pythonhosted.org/packages/d7/ae/e3811f05415594025e96000349d3400978adaed88d8f98d494352d9761ee/ruamel.yaml.clib-0.2.14-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:7e4f9da7e7549946e02a6122dcad00b7c1168513acb1f8a726b1aaf504a99d32", size = 269205, upload-time = "2025-09-23T14:24:15.06Z" },
{ url = "https://files.pythonhosted.org/packages/1f/8f/ecfbe2123ade605c49ef769788f79c38ddb1c8fa81e01f4dbf5cf1a44b16/ruamel.yaml.clib-0.2.12-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0b7e75b4965e1d4690e93021adfcecccbca7d61c7bddd8e22406ef2ff20d74ef", size = 745066, upload-time = "2024-10-20T10:13:07.26Z" }, { url = "https://files.pythonhosted.org/packages/72/06/7d51f4688d6d72bb72fa74254e1593c4f5ebd0036be5b41fe39315b275e9/ruamel.yaml.clib-0.2.14-cp313-cp313-macosx_15_0_arm64.whl", hash = "sha256:dd7546c851e59c06197a7c651335755e74aa383a835878ca86d2c650c07a2f85", size = 137417, upload-time = "2025-09-22T19:50:59.82Z" },
{ url = "https://files.pythonhosted.org/packages/e2/a9/28f60726d29dfc01b8decdb385de4ced2ced9faeb37a847bd5cf26836815/ruamel.yaml.clib-0.2.12-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:96777d473c05ee3e5e3c3e999f5d23c6f4ec5b0c38c098b3a5229085f74236c6", size = 701785, upload-time = "2024-10-20T10:13:08.504Z" }, { url = "https://files.pythonhosted.org/packages/5a/08/b4499234a420ef42960eeb05585df5cc7eb25ccb8c980490b079e6367050/ruamel.yaml.clib-0.2.14-cp313-cp313-manylinux2014_aarch64.whl", hash = "sha256:1c1acc3a0209ea9042cc3cfc0790edd2eddd431a2ec3f8283d081e4d5018571e", size = 642558, upload-time = "2025-09-22T19:51:03.388Z" },
{ url = "https://files.pythonhosted.org/packages/84/7e/8e7ec45920daa7f76046578e4f677a3215fe8f18ee30a9cb7627a19d9b4c/ruamel.yaml.clib-0.2.12-cp313-cp313-musllinux_1_1_i686.whl", hash = "sha256:3bc2a80e6420ca8b7d3590791e2dfc709c88ab9152c00eeb511c9875ce5778bf", size = 693017, upload-time = "2024-10-21T11:26:48.866Z" }, { url = "https://files.pythonhosted.org/packages/b6/ba/1975a27dedf1c4c33306ee67c948121be8710b19387aada29e2f139c43ee/ruamel.yaml.clib-0.2.14-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2070bf0ad1540d5c77a664de07ebcc45eebd1ddcab71a7a06f26936920692beb", size = 744087, upload-time = "2025-09-22T19:51:00.897Z" },
{ url = "https://files.pythonhosted.org/packages/c5/b3/d650eaade4ca225f02a648321e1ab835b9d361c60d51150bac49063b83fa/ruamel.yaml.clib-0.2.12-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:e188d2699864c11c36cdfdada94d781fd5d6b0071cd9c427bceb08ad3d7c70e1", size = 741270, upload-time = "2024-10-21T11:26:50.213Z" }, { url = "https://files.pythonhosted.org/packages/20/15/8a19a13d27f3bd09fa18813add8380a29115a47b553845f08802959acbce/ruamel.yaml.clib-0.2.14-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9bd8fe07f49c170e09d76773fb86ad9135e0beee44f36e1576a201b0676d3d1d", size = 699709, upload-time = "2025-09-22T19:51:02.075Z" },
{ url = "https://files.pythonhosted.org/packages/87/b8/01c29b924dcbbed75cc45b30c30d565d763b9c4d540545a0eeecffb8f09c/ruamel.yaml.clib-0.2.12-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:4f6f3eac23941b32afccc23081e1f50612bdbe4e982012ef4f5797986828cd01", size = 709059, upload-time = "2024-12-11T19:58:18.846Z" }, { url = "https://files.pythonhosted.org/packages/19/ee/8d6146a079ad21e534b5083c9ee4a4c8bec42f79cf87594b60978286b39a/ruamel.yaml.clib-0.2.14-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:ff86876889ea478b1381089e55cf9e345707b312beda4986f823e1d95e8c0f59", size = 708926, upload-time = "2025-09-23T18:42:51.707Z" },
{ url = "https://files.pythonhosted.org/packages/30/8c/ed73f047a73638257aa9377ad356bea4d96125b305c34a28766f4445cc0f/ruamel.yaml.clib-0.2.12-cp313-cp313-win32.whl", hash = "sha256:6442cb36270b3afb1b4951f060eccca1ce49f3d087ca1ca4563a6eb479cb3de6", size = 98583, upload-time = "2024-10-20T10:13:09.658Z" }, { url = "https://files.pythonhosted.org/packages/a9/f5/426b714abdc222392e68f3b8ad323930d05a214a27c7e7a0f06c69126401/ruamel.yaml.clib-0.2.14-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:1f118b707eece8cf84ecbc3e3ec94d9db879d85ed608f95870d39b2d2efa5dca", size = 740202, upload-time = "2025-09-22T19:51:04.673Z" },
{ url = "https://files.pythonhosted.org/packages/b0/85/e8e751d8791564dd333d5d9a4eab0a7a115f7e349595417fd50ecae3395c/ruamel.yaml.clib-0.2.12-cp313-cp313-win_amd64.whl", hash = "sha256:e5b8daf27af0b90da7bb903a876477a9e6d7270be6146906b276605997c7e9a3", size = 115190, upload-time = "2024-10-20T10:13:10.66Z" }, { url = "https://files.pythonhosted.org/packages/3d/ac/3c5c2b27a183f4fda8a57c82211721c016bcb689a4a175865f7646db9f94/ruamel.yaml.clib-0.2.14-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:b30110b29484adc597df6bd92a37b90e63a8c152ca8136aad100a02f8ba6d1b6", size = 765196, upload-time = "2025-09-22T19:51:05.916Z" },
{ url = "https://files.pythonhosted.org/packages/92/2e/06f56a71fd55021c993ed6e848c9b2e5e9cfce180a42179f0ddd28253f7c/ruamel.yaml.clib-0.2.14-cp313-cp313-win32.whl", hash = "sha256:f4e97a1cf0b7a30af9e1d9dad10a5671157b9acee790d9e26996391f49b965a2", size = 98635, upload-time = "2025-09-22T19:51:08.183Z" },
{ url = "https://files.pythonhosted.org/packages/51/79/76aba16a1689b50528224b182f71097ece338e7a4ab55e84c2e73443b78a/ruamel.yaml.clib-0.2.14-cp313-cp313-win_amd64.whl", hash = "sha256:090782b5fb9d98df96509eecdbcaffd037d47389a89492320280d52f91330d78", size = 115238, upload-time = "2025-09-22T19:51:07.081Z" },
{ url = "https://files.pythonhosted.org/packages/21/e2/a59ff65c26aaf21a24eb38df777cb9af5d87ba8fc8107c163c2da9d1e85e/ruamel.yaml.clib-0.2.14-cp314-cp314-macosx_10_15_universal2.whl", hash = "sha256:7df6f6e9d0e33c7b1d435defb185095386c469109de723d514142632a7b9d07f", size = 271441, upload-time = "2025-09-23T14:24:16.498Z" },
{ url = "https://files.pythonhosted.org/packages/6b/fa/3234f913fe9a6525a7b97c6dad1f51e72b917e6872e051a5e2ffd8b16fbb/ruamel.yaml.clib-0.2.14-cp314-cp314-macosx_15_0_arm64.whl", hash = "sha256:70eda7703b8126f5e52fcf276e6c0f40b0d314674f896fc58c47b0aef2b9ae83", size = 137970, upload-time = "2025-09-22T19:51:09.472Z" },
{ url = "https://files.pythonhosted.org/packages/ef/ec/4edbf17ac2c87fa0845dd366ef8d5852b96eb58fcd65fc1ecf5fe27b4641/ruamel.yaml.clib-0.2.14-cp314-cp314-musllinux_1_2_i686.whl", hash = "sha256:a0cb71ccc6ef9ce36eecb6272c81afdc2f565950cdcec33ae8e6cd8f7fc86f27", size = 739639, upload-time = "2025-09-22T19:51:10.566Z" },
{ url = "https://files.pythonhosted.org/packages/15/18/b0e1fafe59051de9e79cdd431863b03593ecfa8341c110affad7c8121efc/ruamel.yaml.clib-0.2.14-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:e7cb9ad1d525d40f7d87b6df7c0ff916a66bc52cb61b66ac1b2a16d0c1b07640", size = 764456, upload-time = "2025-09-22T19:51:11.736Z" },
] ]
[[package]] [[package]]