mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-08-12 04:50:39 +00:00
tmp eval
This commit is contained in:
parent
54abeeebce
commit
fd68b0dc9a
3 changed files with 153 additions and 158 deletions
|
@ -73,6 +73,11 @@ class RegisteredBaseScoringFn(BaseScoringFn):
|
|||
raise ValueError(f"Scoring function def with identifier {scoring_fn.identifier} already exists.")
|
||||
self.supported_fn_defs_registry[scoring_fn.identifier] = scoring_fn
|
||||
|
||||
def unregister_scoring_fn_def(self, scoring_fn_id: str) -> None:
|
||||
if scoring_fn_id not in self.supported_fn_defs_registry:
|
||||
raise ValueError(f"Scoring function def with identifier {scoring_fn_id} does not exist.")
|
||||
del self.supported_fn_defs_registry[scoring_fn_id]
|
||||
|
||||
@abstractmethod
|
||||
async def score_row(
|
||||
self,
|
||||
|
|
|
@ -5,179 +5,169 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
|
||||
import pytest
|
||||
|
||||
from llama_stack.apis.common.content_types import URL
|
||||
from llama_stack.apis.common.type_system import ChatCompletionInputType, StringType
|
||||
from llama_stack.apis.eval.eval import (
|
||||
ModelCandidate,
|
||||
)
|
||||
from llama_stack.apis.inference import SamplingParams
|
||||
from llama_stack.apis.scoring_functions import LLMAsJudgeScoringFnParams
|
||||
from llama_stack.distribution.datatypes import Api
|
||||
|
||||
from ..datasetio.test_datasetio import register_dataset
|
||||
from .constants import JUDGE_PROMPT
|
||||
|
||||
# How to run this test:
|
||||
#
|
||||
# pytest llama_stack/providers/tests/eval/test_eval.py
|
||||
# -m "meta_reference_eval_together_inference_huggingface_datasetio"
|
||||
# -v -s --tb=short --disable-warnings
|
||||
# LLAMA_STACK_CONFIG="template-name" pytest -v tests/integration/eval
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="FIXME FIXME @yanxi0830 this needs to be migrated to use the API")
|
||||
class Testeval:
|
||||
@pytest.mark.asyncio
|
||||
async def test_benchmarks_list(self, eval_stack):
|
||||
# NOTE: this needs you to ensure that you are starting from a clean state
|
||||
# but so far we don't have an unregister API unfortunately, so be careful
|
||||
benchmarks_impl = eval_stack[Api.benchmarks]
|
||||
response = await benchmarks_impl.list_benchmarks()
|
||||
def test_benchmarks_list(llama_stack_client):
|
||||
response = llama_stack_client.benchmarks.list()
|
||||
assert isinstance(response, list)
|
||||
assert len(response) == 0
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_eval_evaluate_rows(self, eval_stack, inference_model, judge_model):
|
||||
eval_impl, benchmarks_impl, datasetio_impl, datasets_impl = (
|
||||
eval_stack[Api.eval],
|
||||
eval_stack[Api.benchmarks],
|
||||
eval_stack[Api.datasetio],
|
||||
eval_stack[Api.datasets],
|
||||
)
|
||||
|
||||
await register_dataset(datasets_impl, for_generation=True, dataset_id="test_dataset_for_eval")
|
||||
response = await datasets_impl.list_datasets()
|
||||
# @pytest.mark.skip(reason="FIXME FIXME @yanxi0830 this needs to be migrated to use the API")
|
||||
# class Testeval:
|
||||
# @pytest.mark.asyncio
|
||||
# async def test_benchmarks_list(self, eval_stack):
|
||||
# # NOTE: this needs you to ensure that you are starting from a clean state
|
||||
# # but so far we don't have an unregister API unfortunately, so be careful
|
||||
# benchmarks_impl = eval_stack[Api.benchmarks]
|
||||
# response = await benchmarks_impl.list_benchmarks()
|
||||
# assert isinstance(response, list)
|
||||
|
||||
rows = await datasetio_impl.get_rows_paginated(
|
||||
dataset_id="test_dataset_for_eval",
|
||||
rows_in_page=3,
|
||||
)
|
||||
assert len(rows.rows) == 3
|
||||
# @pytest.mark.asyncio
|
||||
# async def test_eval_evaluate_rows(self, eval_stack, inference_model, judge_model):
|
||||
# eval_impl, benchmarks_impl, datasetio_impl, datasets_impl = (
|
||||
# eval_stack[Api.eval],
|
||||
# eval_stack[Api.benchmarks],
|
||||
# eval_stack[Api.datasetio],
|
||||
# eval_stack[Api.datasets],
|
||||
# )
|
||||
|
||||
scoring_functions = [
|
||||
"basic::equality",
|
||||
]
|
||||
benchmark_id = "meta-reference::app_eval"
|
||||
await benchmarks_impl.register_benchmark(
|
||||
benchmark_id=benchmark_id,
|
||||
dataset_id="test_dataset_for_eval",
|
||||
scoring_functions=scoring_functions,
|
||||
)
|
||||
response = await eval_impl.evaluate_rows(
|
||||
benchmark_id=benchmark_id,
|
||||
input_rows=rows.rows,
|
||||
scoring_functions=scoring_functions,
|
||||
benchmark_config=dict(
|
||||
eval_candidate=ModelCandidate(
|
||||
model=inference_model,
|
||||
sampling_params=SamplingParams(),
|
||||
),
|
||||
scoring_params={
|
||||
"meta-reference::llm_as_judge_base": LLMAsJudgeScoringFnParams(
|
||||
judge_model=judge_model,
|
||||
prompt_template=JUDGE_PROMPT,
|
||||
judge_score_regexes=[
|
||||
r"Total rating: (\d+)",
|
||||
r"rating: (\d+)",
|
||||
r"Rating: (\d+)",
|
||||
],
|
||||
)
|
||||
},
|
||||
),
|
||||
)
|
||||
assert len(response.generations) == 3
|
||||
assert "basic::equality" in response.scores
|
||||
# await register_dataset(datasets_impl, for_generation=True, dataset_id="test_dataset_for_eval")
|
||||
# response = await datasets_impl.list_datasets()
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_eval_run_eval(self, eval_stack, inference_model, judge_model):
|
||||
eval_impl, benchmarks_impl, datasets_impl = (
|
||||
eval_stack[Api.eval],
|
||||
eval_stack[Api.benchmarks],
|
||||
eval_stack[Api.datasets],
|
||||
)
|
||||
# rows = await datasetio_impl.get_rows_paginated(
|
||||
# dataset_id="test_dataset_for_eval",
|
||||
# rows_in_page=3,
|
||||
# )
|
||||
# assert len(rows.rows) == 3
|
||||
|
||||
await register_dataset(datasets_impl, for_generation=True, dataset_id="test_dataset_for_eval")
|
||||
# scoring_functions = [
|
||||
# "basic::equality",
|
||||
# ]
|
||||
# benchmark_id = "meta-reference::app_eval"
|
||||
# await benchmarks_impl.register_benchmark(
|
||||
# benchmark_id=benchmark_id,
|
||||
# dataset_id="test_dataset_for_eval",
|
||||
# scoring_functions=scoring_functions,
|
||||
# )
|
||||
# response = await eval_impl.evaluate_rows(
|
||||
# benchmark_id=benchmark_id,
|
||||
# input_rows=rows.rows,
|
||||
# scoring_functions=scoring_functions,
|
||||
# benchmark_config=dict(
|
||||
# eval_candidate=ModelCandidate(
|
||||
# model=inference_model,
|
||||
# sampling_params=SamplingParams(),
|
||||
# ),
|
||||
# scoring_params={
|
||||
# "meta-reference::llm_as_judge_base": LLMAsJudgeScoringFnParams(
|
||||
# judge_model=judge_model,
|
||||
# prompt_template=JUDGE_PROMPT,
|
||||
# judge_score_regexes=[
|
||||
# r"Total rating: (\d+)",
|
||||
# r"rating: (\d+)",
|
||||
# r"Rating: (\d+)",
|
||||
# ],
|
||||
# )
|
||||
# },
|
||||
# ),
|
||||
# )
|
||||
# assert len(response.generations) == 3
|
||||
# assert "basic::equality" in response.scores
|
||||
|
||||
scoring_functions = [
|
||||
"basic::subset_of",
|
||||
]
|
||||
# @pytest.mark.asyncio
|
||||
# async def test_eval_run_eval(self, eval_stack, inference_model, judge_model):
|
||||
# eval_impl, benchmarks_impl, datasets_impl = (
|
||||
# eval_stack[Api.eval],
|
||||
# eval_stack[Api.benchmarks],
|
||||
# eval_stack[Api.datasets],
|
||||
# )
|
||||
|
||||
benchmark_id = "meta-reference::app_eval-2"
|
||||
await benchmarks_impl.register_benchmark(
|
||||
benchmark_id=benchmark_id,
|
||||
dataset_id="test_dataset_for_eval",
|
||||
scoring_functions=scoring_functions,
|
||||
)
|
||||
response = await eval_impl.run_eval(
|
||||
benchmark_id=benchmark_id,
|
||||
benchmark_config=dict(
|
||||
eval_candidate=ModelCandidate(
|
||||
model=inference_model,
|
||||
sampling_params=SamplingParams(),
|
||||
),
|
||||
),
|
||||
)
|
||||
assert response.job_id == "0"
|
||||
job_status = await eval_impl.job_status(benchmark_id, response.job_id)
|
||||
assert job_status and job_status.value == "completed"
|
||||
eval_response = await eval_impl.job_result(benchmark_id, response.job_id)
|
||||
# await register_dataset(datasets_impl, for_generation=True, dataset_id="test_dataset_for_eval")
|
||||
|
||||
assert eval_response is not None
|
||||
assert len(eval_response.generations) == 5
|
||||
assert "basic::subset_of" in eval_response.scores
|
||||
# scoring_functions = [
|
||||
# "basic::subset_of",
|
||||
# ]
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_eval_run_benchmark_eval(self, eval_stack, inference_model):
|
||||
eval_impl, benchmarks_impl, datasets_impl = (
|
||||
eval_stack[Api.eval],
|
||||
eval_stack[Api.benchmarks],
|
||||
eval_stack[Api.datasets],
|
||||
)
|
||||
# benchmark_id = "meta-reference::app_eval-2"
|
||||
# await benchmarks_impl.register_benchmark(
|
||||
# benchmark_id=benchmark_id,
|
||||
# dataset_id="test_dataset_for_eval",
|
||||
# scoring_functions=scoring_functions,
|
||||
# )
|
||||
# response = await eval_impl.run_eval(
|
||||
# benchmark_id=benchmark_id,
|
||||
# benchmark_config=dict(
|
||||
# eval_candidate=ModelCandidate(
|
||||
# model=inference_model,
|
||||
# sampling_params=SamplingParams(),
|
||||
# ),
|
||||
# ),
|
||||
# )
|
||||
# assert response.job_id == "0"
|
||||
# job_status = await eval_impl.job_status(benchmark_id, response.job_id)
|
||||
# assert job_status and job_status.value == "completed"
|
||||
# eval_response = await eval_impl.job_result(benchmark_id, response.job_id)
|
||||
|
||||
response = await datasets_impl.list_datasets()
|
||||
assert len(response) > 0
|
||||
if response[0].provider_id != "huggingface":
|
||||
pytest.skip("Only huggingface provider supports pre-registered remote datasets")
|
||||
# assert eval_response is not None
|
||||
# assert len(eval_response.generations) == 5
|
||||
# assert "basic::subset_of" in eval_response.scores
|
||||
|
||||
await datasets_impl.register_dataset(
|
||||
dataset_id="mmlu",
|
||||
dataset_schema={
|
||||
"input_query": StringType(),
|
||||
"expected_answer": StringType(),
|
||||
"chat_completion_input": ChatCompletionInputType(),
|
||||
},
|
||||
url=URL(uri="https://huggingface.co/datasets/llamastack/evals"),
|
||||
metadata={
|
||||
"path": "llamastack/evals",
|
||||
"name": "evals__mmlu__details",
|
||||
"split": "train",
|
||||
},
|
||||
)
|
||||
# @pytest.mark.asyncio
|
||||
# async def test_eval_run_benchmark_eval(self, eval_stack, inference_model):
|
||||
# eval_impl, benchmarks_impl, datasets_impl = (
|
||||
# eval_stack[Api.eval],
|
||||
# eval_stack[Api.benchmarks],
|
||||
# eval_stack[Api.datasets],
|
||||
# )
|
||||
|
||||
# register eval task
|
||||
await benchmarks_impl.register_benchmark(
|
||||
benchmark_id="meta-reference-mmlu",
|
||||
dataset_id="mmlu",
|
||||
scoring_functions=["basic::regex_parser_multiple_choice_answer"],
|
||||
)
|
||||
# response = await datasets_impl.list_datasets()
|
||||
# assert len(response) > 0
|
||||
# if response[0].provider_id != "huggingface":
|
||||
# pytest.skip("Only huggingface provider supports pre-registered remote datasets")
|
||||
|
||||
# list benchmarks
|
||||
response = await benchmarks_impl.list_benchmarks()
|
||||
assert len(response) > 0
|
||||
# await datasets_impl.register_dataset(
|
||||
# dataset_id="mmlu",
|
||||
# dataset_schema={
|
||||
# "input_query": StringType(),
|
||||
# "expected_answer": StringType(),
|
||||
# "chat_completion_input": ChatCompletionInputType(),
|
||||
# },
|
||||
# url=URL(uri="https://huggingface.co/datasets/llamastack/evals"),
|
||||
# metadata={
|
||||
# "path": "llamastack/evals",
|
||||
# "name": "evals__mmlu__details",
|
||||
# "split": "train",
|
||||
# },
|
||||
# )
|
||||
|
||||
benchmark_id = "meta-reference-mmlu"
|
||||
response = await eval_impl.run_eval(
|
||||
benchmark_id=benchmark_id,
|
||||
benchmark_config=dict(
|
||||
eval_candidate=ModelCandidate(
|
||||
model=inference_model,
|
||||
sampling_params=SamplingParams(),
|
||||
),
|
||||
num_examples=3,
|
||||
),
|
||||
)
|
||||
job_status = await eval_impl.job_status(benchmark_id, response.job_id)
|
||||
assert job_status and job_status.value == "completed"
|
||||
eval_response = await eval_impl.job_result(benchmark_id, response.job_id)
|
||||
assert eval_response is not None
|
||||
assert len(eval_response.generations) == 3
|
||||
# # register eval task
|
||||
# await benchmarks_impl.register_benchmark(
|
||||
# benchmark_id="meta-reference-mmlu",
|
||||
# dataset_id="mmlu",
|
||||
# scoring_functions=["basic::regex_parser_multiple_choice_answer"],
|
||||
# )
|
||||
|
||||
# # list benchmarks
|
||||
# response = await benchmarks_impl.list_benchmarks()
|
||||
# assert len(response) > 0
|
||||
|
||||
# benchmark_id = "meta-reference-mmlu"
|
||||
# response = await eval_impl.run_eval(
|
||||
# benchmark_id=benchmark_id,
|
||||
# benchmark_config=dict(
|
||||
# eval_candidate=ModelCandidate(
|
||||
# model=inference_model,
|
||||
# sampling_params=SamplingParams(),
|
||||
# ),
|
||||
# num_examples=3,
|
||||
# ),
|
||||
# )
|
||||
# job_status = await eval_impl.job_status(benchmark_id, response.job_id)
|
||||
# assert job_status and job_status.value == "completed"
|
||||
# eval_response = await eval_impl.job_result(benchmark_id, response.job_id)
|
||||
# assert eval_response is not None
|
||||
# assert len(eval_response.generations) == 3
|
||||
|
|
|
@ -76,7 +76,7 @@ def test_scoring_functions_register(
|
|||
assert len(list_response) > 0
|
||||
assert any(x.identifier == sample_scoring_fn_id for x in list_response)
|
||||
|
||||
# TODO: add unregister to make clean state
|
||||
# TODO: add unregister api for scoring functions
|
||||
|
||||
|
||||
def test_scoring_score(llama_stack_client):
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue