diff --git a/.github/actions/run-and-record-tests/action.yml b/.github/actions/run-and-record-tests/action.yml index 7f028b104..a3eb31d9f 100644 --- a/.github/actions/run-and-record-tests/action.yml +++ b/.github/actions/run-and-record-tests/action.yml @@ -5,21 +5,22 @@ inputs: stack-config: description: 'Stack configuration to use' required: true - provider: - description: 'Provider to use for tests' - required: true + setup: + description: 'Setup to use for tests (e.g., ollama, gpt, vllm)' + required: false + default: '' inference-mode: description: 'Inference mode (record or replay)' required: true - test-suite: + suite: description: 'Test suite to use: base, responses, vision, etc.' required: false default: '' - test-subdirs: - description: 'Comma-separated list of test subdirectories to run; overrides test-suite' + subdirs: + description: 'Comma-separated list of test subdirectories to run; overrides suite' required: false default: '' - test-pattern: + pattern: description: 'Regex pattern to pass to pytest -k' required: false default: '' @@ -37,14 +38,23 @@ runs: - name: Run Integration Tests shell: bash run: | - uv run --no-sync ./scripts/integration-tests.sh \ - --stack-config '${{ inputs.stack-config }}' \ - --provider '${{ inputs.provider }}' \ - --test-subdirs '${{ inputs.test-subdirs }}' \ - --test-pattern '${{ inputs.test-pattern }}' \ - --inference-mode '${{ inputs.inference-mode }}' \ - --test-suite '${{ inputs.test-suite }}' \ - | tee pytest-${{ inputs.inference-mode }}.log + SCRIPT_ARGS="--stack-config ${{ inputs.stack-config }} --inference-mode ${{ inputs.inference-mode }}" + + # Add optional arguments only if they are provided + if [ -n '${{ inputs.setup }}' ]; then + SCRIPT_ARGS="$SCRIPT_ARGS --setup ${{ inputs.setup }}" + fi + if [ -n '${{ inputs.suite }}' ]; then + SCRIPT_ARGS="$SCRIPT_ARGS --suite ${{ inputs.suite }}" + fi + if [ -n '${{ inputs.subdirs }}' ]; then + SCRIPT_ARGS="$SCRIPT_ARGS --subdirs ${{ inputs.subdirs }}" + fi + if [ -n '${{ inputs.pattern }}' ]; then + SCRIPT_ARGS="$SCRIPT_ARGS --pattern ${{ inputs.pattern }}" + fi + + uv run --no-sync ./scripts/integration-tests.sh $SCRIPT_ARGS | tee pytest-${{ inputs.inference-mode }}.log - name: Commit and push recordings @@ -58,7 +68,7 @@ runs: echo "New recordings detected, committing and pushing" git add tests/integration/recordings/ - git commit -m "Recordings update from CI (test-suite: ${{ inputs.test-suite }})" + git commit -m "Recordings update from CI (suite: ${{ inputs.suite }})" git fetch origin ${{ github.ref_name }} git rebase origin/${{ github.ref_name }} echo "Rebased successfully" diff --git a/.github/actions/setup-ollama/action.yml b/.github/actions/setup-ollama/action.yml index dc2f87e8c..5c95d131d 100644 --- a/.github/actions/setup-ollama/action.yml +++ b/.github/actions/setup-ollama/action.yml @@ -1,7 +1,7 @@ name: Setup Ollama description: Start Ollama inputs: - test-suite: + suite: description: 'Test suite to use: base, responses, vision, etc.' required: false default: '' @@ -11,7 +11,7 @@ runs: - name: Start Ollama shell: bash run: | - if [ "${{ inputs.test-suite }}" == "vision" ]; then + if [ "${{ inputs.suite }}" == "vision" ]; then image="ollama-with-vision-model" else image="ollama-with-models" diff --git a/.github/actions/setup-test-environment/action.yml b/.github/actions/setup-test-environment/action.yml index 3be76f009..478e8f598 100644 --- a/.github/actions/setup-test-environment/action.yml +++ b/.github/actions/setup-test-environment/action.yml @@ -8,11 +8,11 @@ inputs: client-version: description: 'Client version (latest or published)' required: true - provider: - description: 'Provider to setup (ollama or vllm)' - required: true + setup: + description: 'Setup to configure (ollama, vllm, gpt, etc.)' + required: false default: 'ollama' - test-suite: + suite: description: 'Test suite to use: base, responses, vision, etc.' required: false default: '' @@ -30,13 +30,13 @@ runs: client-version: ${{ inputs.client-version }} - name: Setup ollama - if: ${{ inputs.provider == 'ollama' && inputs.inference-mode == 'record' }} + if: ${{ (inputs.setup == 'ollama' || inputs.setup == 'ollama-vision') && inputs.inference-mode == 'record' }} uses: ./.github/actions/setup-ollama with: - test-suite: ${{ inputs.test-suite }} + suite: ${{ inputs.suite }} - name: Setup vllm - if: ${{ inputs.provider == 'vllm' && inputs.inference-mode == 'record' }} + if: ${{ inputs.setup == 'vllm' && inputs.inference-mode == 'record' }} uses: ./.github/actions/setup-vllm - name: Build Llama Stack diff --git a/.github/workflows/integration-tests.yml b/.github/workflows/integration-tests.yml index bb53eea2f..711eccd9e 100644 --- a/.github/workflows/integration-tests.yml +++ b/.github/workflows/integration-tests.yml @@ -28,8 +28,8 @@ on: description: 'Test against both the latest and published versions' type: boolean default: false - test-provider: - description: 'Test against a specific provider' + test-setup: + description: 'Test against a specific setup' type: string default: 'ollama' @@ -42,18 +42,18 @@ jobs: run-replay-mode-tests: runs-on: ubuntu-latest - name: ${{ format('Integration Tests ({0}, {1}, {2}, client={3}, {4})', matrix.client-type, matrix.provider, matrix.python-version, matrix.client-version, matrix.test-suite) }} + name: ${{ format('Integration Tests ({0}, {1}, {2}, client={3}, {4})', matrix.client-type, matrix.setup, matrix.python-version, matrix.client-version, matrix.suite) }} strategy: fail-fast: false matrix: client-type: [library, server] - # Use vllm on weekly schedule, otherwise use test-provider input (defaults to ollama) - provider: ${{ (github.event.schedule == '1 0 * * 0') && fromJSON('["vllm"]') || fromJSON(format('["{0}"]', github.event.inputs.test-provider || 'ollama')) }} + # Use vllm on weekly schedule, otherwise use test-setup input (defaults to ollama) + setup: ${{ (github.event.schedule == '1 0 * * 0') && fromJSON('["vllm"]') || fromJSON(format('["{0}"]', github.event.inputs.test-setup || 'ollama')) }} # Use Python 3.13 only on nightly schedule (daily latest client test), otherwise use 3.12 python-version: ${{ github.event.schedule == '0 0 * * *' && fromJSON('["3.12", "3.13"]') || fromJSON('["3.12"]') }} client-version: ${{ (github.event.schedule == '0 0 * * *' || github.event.inputs.test-all-client-versions == 'true') && fromJSON('["published", "latest"]') || fromJSON('["latest"]') }} - test-suite: [base, vision] + suite: [base, vision] steps: - name: Checkout repository @@ -64,14 +64,14 @@ jobs: with: python-version: ${{ matrix.python-version }} client-version: ${{ matrix.client-version }} - provider: ${{ matrix.provider }} - test-suite: ${{ matrix.test-suite }} + setup: ${{ matrix.setup }} + suite: ${{ matrix.suite }} inference-mode: 'replay' - name: Run tests uses: ./.github/actions/run-and-record-tests with: stack-config: ${{ matrix.client-type == 'library' && 'ci-tests' || 'server:ci-tests' }} - provider: ${{ matrix.provider }} + setup: ${{ matrix.setup }} inference-mode: 'replay' - test-suite: ${{ matrix.test-suite }} + suite: ${{ matrix.suite }} diff --git a/.github/workflows/pre-commit.yml b/.github/workflows/pre-commit.yml index 792162262..000208043 100644 --- a/.github/workflows/pre-commit.yml +++ b/.github/workflows/pre-commit.yml @@ -48,7 +48,6 @@ jobs: working-directory: llama_stack/ui - uses: pre-commit/action@2c7b3805fd2a0fd8c1884dcaebf91fc102a13ecd # v3.0.1 - continue-on-error: true env: SKIP: no-commit-to-branch RUFF_OUTPUT_FORMAT: github diff --git a/.github/workflows/record-integration-tests.yml b/.github/workflows/record-integration-tests.yml index 01797a54b..65a04f125 100644 --- a/.github/workflows/record-integration-tests.yml +++ b/.github/workflows/record-integration-tests.yml @@ -10,19 +10,19 @@ run-name: Run the integration test suite from tests/integration on: workflow_dispatch: inputs: - test-provider: - description: 'Test against a specific provider' + test-setup: + description: 'Test against a specific setup' type: string default: 'ollama' - test-suite: + suite: description: 'Test suite to use: base, responses, vision, etc.' type: string default: '' - test-subdirs: - description: 'Comma-separated list of test subdirectories to run; overrides test-suite' + subdirs: + description: 'Comma-separated list of test subdirectories to run; overrides suite' type: string default: '' - test-pattern: + pattern: description: 'Regex pattern to pass to pytest -k' type: string default: '' @@ -39,10 +39,10 @@ jobs: run: | echo "::group::Workflow Inputs" echo "branch: ${{ github.ref_name }}" - echo "test-provider: ${{ inputs.test-provider }}" - echo "test-suite: ${{ inputs.test-suite }}" - echo "test-subdirs: ${{ inputs.test-subdirs }}" - echo "test-pattern: ${{ inputs.test-pattern }}" + echo "test-setup: ${{ inputs.test-setup }}" + echo "suite: ${{ inputs.suite }}" + echo "subdirs: ${{ inputs.subdirs }}" + echo "pattern: ${{ inputs.pattern }}" echo "::endgroup::" - name: Checkout repository @@ -55,16 +55,16 @@ jobs: with: python-version: "3.12" # Use single Python version for recording client-version: "latest" - provider: ${{ inputs.test-provider || 'ollama' }} - test-suite: ${{ inputs.test-suite }} + setup: ${{ inputs.test-setup || 'ollama' }} + suite: ${{ inputs.suite }} inference-mode: 'record' - name: Run and record tests uses: ./.github/actions/run-and-record-tests with: stack-config: 'server:ci-tests' # recording must be done with server since more tests are run - provider: ${{ inputs.test-provider || 'ollama' }} + setup: ${{ inputs.test-setup || 'ollama' }} inference-mode: 'record' - test-suite: ${{ inputs.test-suite }} - test-subdirs: ${{ inputs.test-subdirs }} - test-pattern: ${{ inputs.test-pattern }} + suite: ${{ inputs.suite }} + subdirs: ${{ inputs.subdirs }} + pattern: ${{ inputs.pattern }} diff --git a/docs/source/building_applications/rag.md b/docs/source/building_applications/rag.md index 289c38991..802859e87 100644 --- a/docs/source/building_applications/rag.md +++ b/docs/source/building_applications/rag.md @@ -93,10 +93,31 @@ chunks_response = client.vector_io.query( ### Using the RAG Tool +> **⚠️ DEPRECATION NOTICE**: The RAG Tool is being deprecated in favor of directly using the OpenAI-compatible Search +> API. We recommend migrating to the OpenAI APIs for better compatibility and future support. + A better way to ingest documents is to use the RAG Tool. This tool allows you to ingest documents from URLs, files, etc. and automatically chunks them into smaller pieces. More examples for how to format a RAGDocument can be found in the [appendix](#more-ragdocument-examples). +#### OpenAI API Integration & Migration + +The RAG tool has been updated to use OpenAI-compatible APIs. This provides several benefits: + +- **Files API Integration**: Documents are now uploaded using OpenAI's file upload endpoints +- **Vector Stores API**: Vector storage operations use OpenAI's vector store format with configurable chunking strategies +- **Error Resilience:** When processing multiple documents, individual failures are logged but don't crash the operation. Failed documents are skipped while successful ones continue processing. + +**Migration Path:** +We recommend migrating to the OpenAI-compatible Search API for: +1. **Better OpenAI Ecosystem Integration**: Direct compatibility with OpenAI tools and workflows including the Responses API +2**Future-Proof**: Continued support and feature development +3**Full OpenAI Compatibility**: Vector Stores, Files, and Search APIs are fully compatible with OpenAI's Responses API + +The OpenAI APIs are used under the hood, so you can continue to use your existing RAG Tool code with minimal changes. +However, we recommend updating your code to use the new OpenAI-compatible APIs for better long-term support. If any +documents fail to process, they will be logged in the response but will not cause the entire operation to fail. + ```python from llama_stack_client import RAGDocument diff --git a/docs/source/distributions/k8s-benchmark/stack-configmap.yaml b/docs/source/distributions/k8s-benchmark/stack-configmap.yaml index edf4ebd75..bf6109b68 100644 --- a/docs/source/distributions/k8s-benchmark/stack-configmap.yaml +++ b/docs/source/distributions/k8s-benchmark/stack-configmap.yaml @@ -6,6 +6,7 @@ data: apis: - agents - inference + - files - safety - telemetry - tool_runtime @@ -19,13 +20,6 @@ data: max_tokens: ${env.VLLM_MAX_TOKENS:=4096} api_token: ${env.VLLM_API_TOKEN:=fake} tls_verify: ${env.VLLM_TLS_VERIFY:=true} - - provider_id: vllm-safety - provider_type: remote::vllm - config: - url: ${env.VLLM_SAFETY_URL:=http://localhost:8000/v1} - max_tokens: ${env.VLLM_MAX_TOKENS:=4096} - api_token: ${env.VLLM_API_TOKEN:=fake} - tls_verify: ${env.VLLM_TLS_VERIFY:=true} - provider_id: sentence-transformers provider_type: inline::sentence-transformers config: {} @@ -41,6 +35,14 @@ data: db: ${env.POSTGRES_DB:=llamastack} user: ${env.POSTGRES_USER:=llamastack} password: ${env.POSTGRES_PASSWORD:=llamastack} + files: + - provider_id: meta-reference-files + provider_type: inline::localfs + config: + storage_dir: ${env.FILES_STORAGE_DIR:=~/.llama/distributions/starter/files} + metadata_store: + type: sqlite + db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/files_metadata.db safety: - provider_id: llama-guard provider_type: inline::llama-guard @@ -111,9 +113,6 @@ data: - model_id: ${env.INFERENCE_MODEL} provider_id: vllm-inference model_type: llm - - model_id: ${env.SAFETY_MODEL} - provider_id: vllm-safety - model_type: llm shields: - shield_id: ${env.SAFETY_MODEL:=meta-llama/Llama-Guard-3-1B} vector_dbs: [] diff --git a/docs/source/distributions/k8s-benchmark/stack_run_config.yaml b/docs/source/distributions/k8s-benchmark/stack_run_config.yaml index 5a810639e..f8ff7811b 100644 --- a/docs/source/distributions/k8s-benchmark/stack_run_config.yaml +++ b/docs/source/distributions/k8s-benchmark/stack_run_config.yaml @@ -3,6 +3,7 @@ image_name: kubernetes-benchmark-demo apis: - agents - inference +- files - safety - telemetry - tool_runtime @@ -31,6 +32,14 @@ providers: db: ${env.POSTGRES_DB:=llamastack} user: ${env.POSTGRES_USER:=llamastack} password: ${env.POSTGRES_PASSWORD:=llamastack} + files: + - provider_id: meta-reference-files + provider_type: inline::localfs + config: + storage_dir: ${env.FILES_STORAGE_DIR:=~/.llama/distributions/starter/files} + metadata_store: + type: sqlite + db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/files_metadata.db safety: - provider_id: llama-guard provider_type: inline::llama-guard diff --git a/docs/source/distributions/k8s/stack-configmap.yaml b/docs/source/distributions/k8s/stack-configmap.yaml index 4f95554e3..3dbb0da97 100644 --- a/docs/source/distributions/k8s/stack-configmap.yaml +++ b/docs/source/distributions/k8s/stack-configmap.yaml @@ -1,137 +1,55 @@ apiVersion: v1 data: - stack_run_config.yaml: | - version: '2' - image_name: kubernetes-demo - apis: - - agents - - inference - - safety - - telemetry - - tool_runtime - - vector_io - providers: - inference: - - provider_id: vllm-inference - provider_type: remote::vllm - config: - url: ${env.VLLM_URL:=http://localhost:8000/v1} - max_tokens: ${env.VLLM_MAX_TOKENS:=4096} - api_token: ${env.VLLM_API_TOKEN:=fake} - tls_verify: ${env.VLLM_TLS_VERIFY:=true} - - provider_id: vllm-safety - provider_type: remote::vllm - config: - url: ${env.VLLM_SAFETY_URL:=http://localhost:8000/v1} - max_tokens: ${env.VLLM_MAX_TOKENS:=4096} - api_token: ${env.VLLM_API_TOKEN:=fake} - tls_verify: ${env.VLLM_TLS_VERIFY:=true} - - provider_id: sentence-transformers - provider_type: inline::sentence-transformers - config: {} - vector_io: - - provider_id: ${env.ENABLE_CHROMADB:+chromadb} - provider_type: remote::chromadb - config: - url: ${env.CHROMADB_URL:=} - kvstore: - type: postgres - host: ${env.POSTGRES_HOST:=localhost} - port: ${env.POSTGRES_PORT:=5432} - db: ${env.POSTGRES_DB:=llamastack} - user: ${env.POSTGRES_USER:=llamastack} - password: ${env.POSTGRES_PASSWORD:=llamastack} - safety: - - provider_id: llama-guard - provider_type: inline::llama-guard - config: - excluded_categories: [] - agents: - - provider_id: meta-reference - provider_type: inline::meta-reference - config: - persistence_store: - type: postgres - host: ${env.POSTGRES_HOST:=localhost} - port: ${env.POSTGRES_PORT:=5432} - db: ${env.POSTGRES_DB:=llamastack} - user: ${env.POSTGRES_USER:=llamastack} - password: ${env.POSTGRES_PASSWORD:=llamastack} - responses_store: - type: postgres - host: ${env.POSTGRES_HOST:=localhost} - port: ${env.POSTGRES_PORT:=5432} - db: ${env.POSTGRES_DB:=llamastack} - user: ${env.POSTGRES_USER:=llamastack} - password: ${env.POSTGRES_PASSWORD:=llamastack} - telemetry: - - provider_id: meta-reference - provider_type: inline::meta-reference - config: - service_name: "${env.OTEL_SERVICE_NAME:=\u200B}" - sinks: ${env.TELEMETRY_SINKS:=console} - tool_runtime: - - provider_id: brave-search - provider_type: remote::brave-search - config: - api_key: ${env.BRAVE_SEARCH_API_KEY:+} - max_results: 3 - - provider_id: tavily-search - provider_type: remote::tavily-search - config: - api_key: ${env.TAVILY_SEARCH_API_KEY:+} - max_results: 3 - - provider_id: rag-runtime - provider_type: inline::rag-runtime - config: {} - - provider_id: model-context-protocol - provider_type: remote::model-context-protocol - config: {} - metadata_store: - type: postgres - host: ${env.POSTGRES_HOST:=localhost} - port: ${env.POSTGRES_PORT:=5432} - db: ${env.POSTGRES_DB:=llamastack} - user: ${env.POSTGRES_USER:=llamastack} - password: ${env.POSTGRES_PASSWORD:=llamastack} - table_name: llamastack_kvstore - inference_store: - type: postgres - host: ${env.POSTGRES_HOST:=localhost} - port: ${env.POSTGRES_PORT:=5432} - db: ${env.POSTGRES_DB:=llamastack} - user: ${env.POSTGRES_USER:=llamastack} - password: ${env.POSTGRES_PASSWORD:=llamastack} - models: - - metadata: - embedding_dimension: 384 - model_id: all-MiniLM-L6-v2 - provider_id: sentence-transformers - model_type: embedding - - metadata: {} - model_id: ${env.INFERENCE_MODEL} - provider_id: vllm-inference - model_type: llm - - metadata: {} - model_id: ${env.SAFETY_MODEL:=meta-llama/Llama-Guard-3-1B} - provider_id: vllm-safety - model_type: llm - shields: - - shield_id: ${env.SAFETY_MODEL:=meta-llama/Llama-Guard-3-1B} - vector_dbs: [] - datasets: [] - scoring_fns: [] - benchmarks: [] - tool_groups: - - toolgroup_id: builtin::websearch - provider_id: tavily-search - - toolgroup_id: builtin::rag - provider_id: rag-runtime - server: - port: 8321 - auth: - provider_config: - type: github_token + stack_run_config.yaml: "version: '2'\nimage_name: kubernetes-demo\napis:\n- agents\n- + inference\n- files\n- safety\n- telemetry\n- tool_runtime\n- vector_io\nproviders:\n + \ inference:\n - provider_id: vllm-inference\n provider_type: remote::vllm\n + \ config:\n url: ${env.VLLM_URL:=http://localhost:8000/v1}\n max_tokens: + ${env.VLLM_MAX_TOKENS:=4096}\n api_token: ${env.VLLM_API_TOKEN:=fake}\n tls_verify: + ${env.VLLM_TLS_VERIFY:=true}\n - provider_id: vllm-safety\n provider_type: + remote::vllm\n config:\n url: ${env.VLLM_SAFETY_URL:=http://localhost:8000/v1}\n + \ max_tokens: ${env.VLLM_MAX_TOKENS:=4096}\n api_token: ${env.VLLM_API_TOKEN:=fake}\n + \ tls_verify: ${env.VLLM_TLS_VERIFY:=true}\n - provider_id: sentence-transformers\n + \ provider_type: inline::sentence-transformers\n config: {}\n vector_io:\n + \ - provider_id: ${env.ENABLE_CHROMADB:+chromadb}\n provider_type: remote::chromadb\n + \ config:\n url: ${env.CHROMADB_URL:=}\n kvstore:\n type: postgres\n + \ host: ${env.POSTGRES_HOST:=localhost}\n port: ${env.POSTGRES_PORT:=5432}\n + \ db: ${env.POSTGRES_DB:=llamastack}\n user: ${env.POSTGRES_USER:=llamastack}\n + \ password: ${env.POSTGRES_PASSWORD:=llamastack}\n files:\n - provider_id: + meta-reference-files\n provider_type: inline::localfs\n config:\n storage_dir: + ${env.FILES_STORAGE_DIR:=~/.llama/distributions/starter/files}\n metadata_store:\n + \ type: sqlite\n db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/files_metadata.db + \ \n safety:\n - provider_id: llama-guard\n provider_type: inline::llama-guard\n + \ config:\n excluded_categories: []\n agents:\n - provider_id: meta-reference\n + \ provider_type: inline::meta-reference\n config:\n persistence_store:\n + \ type: postgres\n host: ${env.POSTGRES_HOST:=localhost}\n port: + ${env.POSTGRES_PORT:=5432}\n db: ${env.POSTGRES_DB:=llamastack}\n user: + ${env.POSTGRES_USER:=llamastack}\n password: ${env.POSTGRES_PASSWORD:=llamastack}\n + \ responses_store:\n type: postgres\n host: ${env.POSTGRES_HOST:=localhost}\n + \ port: ${env.POSTGRES_PORT:=5432}\n db: ${env.POSTGRES_DB:=llamastack}\n + \ user: ${env.POSTGRES_USER:=llamastack}\n password: ${env.POSTGRES_PASSWORD:=llamastack}\n + \ telemetry:\n - provider_id: meta-reference\n provider_type: inline::meta-reference\n + \ config:\n service_name: \"${env.OTEL_SERVICE_NAME:=\\u200B}\"\n sinks: + ${env.TELEMETRY_SINKS:=console}\n tool_runtime:\n - provider_id: brave-search\n + \ provider_type: remote::brave-search\n config:\n api_key: ${env.BRAVE_SEARCH_API_KEY:+}\n + \ max_results: 3\n - provider_id: tavily-search\n provider_type: remote::tavily-search\n + \ config:\n api_key: ${env.TAVILY_SEARCH_API_KEY:+}\n max_results: + 3\n - provider_id: rag-runtime\n provider_type: inline::rag-runtime\n config: + {}\n - provider_id: model-context-protocol\n provider_type: remote::model-context-protocol\n + \ config: {}\nmetadata_store:\n type: postgres\n host: ${env.POSTGRES_HOST:=localhost}\n + \ port: ${env.POSTGRES_PORT:=5432}\n db: ${env.POSTGRES_DB:=llamastack}\n user: + ${env.POSTGRES_USER:=llamastack}\n password: ${env.POSTGRES_PASSWORD:=llamastack}\n + \ table_name: llamastack_kvstore\ninference_store:\n type: postgres\n host: + ${env.POSTGRES_HOST:=localhost}\n port: ${env.POSTGRES_PORT:=5432}\n db: ${env.POSTGRES_DB:=llamastack}\n + \ user: ${env.POSTGRES_USER:=llamastack}\n password: ${env.POSTGRES_PASSWORD:=llamastack}\nmodels:\n- + metadata:\n embedding_dimension: 384\n model_id: all-MiniLM-L6-v2\n provider_id: + sentence-transformers\n model_type: embedding\n- metadata: {}\n model_id: ${env.INFERENCE_MODEL}\n + \ provider_id: vllm-inference\n model_type: llm\n- metadata: {}\n model_id: + ${env.SAFETY_MODEL:=meta-llama/Llama-Guard-3-1B}\n provider_id: vllm-safety\n + \ model_type: llm\nshields:\n- shield_id: ${env.SAFETY_MODEL:=meta-llama/Llama-Guard-3-1B}\nvector_dbs: + []\ndatasets: []\nscoring_fns: []\nbenchmarks: []\ntool_groups:\n- toolgroup_id: + builtin::websearch\n provider_id: tavily-search\n- toolgroup_id: builtin::rag\n + \ provider_id: rag-runtime\nserver:\n port: 8321\n auth:\n provider_config:\n + \ type: github_token\n" kind: ConfigMap metadata: creationTimestamp: null diff --git a/docs/source/distributions/k8s/stack_run_config.yaml b/docs/source/distributions/k8s/stack_run_config.yaml index a2d65e1a9..b841ab977 100644 --- a/docs/source/distributions/k8s/stack_run_config.yaml +++ b/docs/source/distributions/k8s/stack_run_config.yaml @@ -3,6 +3,7 @@ image_name: kubernetes-demo apis: - agents - inference +- files - safety - telemetry - tool_runtime @@ -38,6 +39,14 @@ providers: db: ${env.POSTGRES_DB:=llamastack} user: ${env.POSTGRES_USER:=llamastack} password: ${env.POSTGRES_PASSWORD:=llamastack} + files: + - provider_id: meta-reference-files + provider_type: inline::localfs + config: + storage_dir: ${env.FILES_STORAGE_DIR:=~/.llama/distributions/starter/files} + metadata_store: + type: sqlite + db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/files_metadata.db safety: - provider_id: llama-guard provider_type: inline::llama-guard diff --git a/llama_stack/cli/stack/_build.py b/llama_stack/cli/stack/_build.py index c6e204773..b14e6fe55 100644 --- a/llama_stack/cli/stack/_build.py +++ b/llama_stack/cli/stack/_build.py @@ -45,6 +45,7 @@ from llama_stack.core.utils.dynamic import instantiate_class_type from llama_stack.core.utils.exec import formulate_run_args, run_command from llama_stack.core.utils.image_types import LlamaStackImageType from llama_stack.providers.datatypes import Api +from llama_stack.providers.utils.sqlstore.sqlstore import SqliteSqlStoreConfig DISTRIBS_PATH = Path(__file__).parent.parent.parent / "distributions" @@ -294,6 +295,12 @@ def _generate_run_config( if build_config.external_providers_dir else EXTERNAL_PROVIDERS_DIR, ) + if not run_config.inference_store: + run_config.inference_store = SqliteSqlStoreConfig( + **SqliteSqlStoreConfig.sample_run_config( + __distro_dir__=(DISTRIBS_BASE_DIR / image_name).as_posix(), db_name="inference_store.db" + ) + ) # build providers dict provider_registry = get_provider_registry(build_config) for api in apis: diff --git a/llama_stack/core/library_client.py b/llama_stack/core/library_client.py index 9e7a8006c..ea5a2ac8e 100644 --- a/llama_stack/core/library_client.py +++ b/llama_stack/core/library_client.py @@ -10,7 +10,6 @@ import json import logging # allow-direct-logging import os import sys -from concurrent.futures import ThreadPoolExecutor from enum import Enum from io import BytesIO from pathlib import Path @@ -148,7 +147,6 @@ class LlamaStackAsLibraryClient(LlamaStackClient): self.async_client = AsyncLlamaStackAsLibraryClient( config_path_or_distro_name, custom_provider_registry, provider_data, skip_logger_removal ) - self.pool_executor = ThreadPoolExecutor(max_workers=4) self.provider_data = provider_data self.loop = asyncio.new_event_loop() diff --git a/llama_stack/providers/inline/tool_runtime/rag/context_retriever.py b/llama_stack/providers/inline/tool_runtime/rag/context_retriever.py index be18430e4..9bc22f979 100644 --- a/llama_stack/providers/inline/tool_runtime/rag/context_retriever.py +++ b/llama_stack/providers/inline/tool_runtime/rag/context_retriever.py @@ -8,7 +8,7 @@ from jinja2 import Template from llama_stack.apis.common.content_types import InterleavedContent -from llama_stack.apis.inference import UserMessage +from llama_stack.apis.inference import OpenAIUserMessageParam from llama_stack.apis.tools.rag_tool import ( DefaultRAGQueryGeneratorConfig, LLMRAGQueryGeneratorConfig, @@ -61,16 +61,16 @@ async def llm_rag_query_generator( messages = [interleaved_content_as_str(content)] template = Template(config.template) - content = template.render({"messages": messages}) + rendered_content: str = template.render({"messages": messages}) model = config.model - message = UserMessage(content=content) - response = await inference_api.chat_completion( - model_id=model, + message = OpenAIUserMessageParam(content=rendered_content) + response = await inference_api.openai_chat_completion( + model=model, messages=[message], stream=False, ) - query = response.completion_message.content + query = response.choices[0].message.content return query diff --git a/llama_stack/providers/inline/tool_runtime/rag/memory.py b/llama_stack/providers/inline/tool_runtime/rag/memory.py index cb526e8ee..bc68f198d 100644 --- a/llama_stack/providers/inline/tool_runtime/rag/memory.py +++ b/llama_stack/providers/inline/tool_runtime/rag/memory.py @@ -45,10 +45,7 @@ from llama_stack.apis.vector_io import ( from llama_stack.log import get_logger from llama_stack.providers.datatypes import ToolGroupsProtocolPrivate from llama_stack.providers.utils.inference.prompt_adapter import interleaved_content_as_str -from llama_stack.providers.utils.memory.vector_store import ( - content_from_doc, - parse_data_url, -) +from llama_stack.providers.utils.memory.vector_store import parse_data_url from .config import RagToolRuntimeConfig from .context_retriever import generate_rag_query @@ -60,6 +57,47 @@ def make_random_string(length: int = 8): return "".join(secrets.choice(string.ascii_letters + string.digits) for _ in range(length)) +async def raw_data_from_doc(doc: RAGDocument) -> tuple[bytes, str]: + """Get raw binary data and mime type from a RAGDocument for file upload.""" + if isinstance(doc.content, URL): + if doc.content.uri.startswith("data:"): + parts = parse_data_url(doc.content.uri) + mime_type = parts["mimetype"] + data = parts["data"] + + if parts["is_base64"]: + file_data = base64.b64decode(data) + else: + file_data = data.encode("utf-8") + + return file_data, mime_type + else: + async with httpx.AsyncClient() as client: + r = await client.get(doc.content.uri) + r.raise_for_status() + mime_type = r.headers.get("content-type", "application/octet-stream") + return r.content, mime_type + else: + if isinstance(doc.content, str): + content_str = doc.content + else: + content_str = interleaved_content_as_str(doc.content) + + if content_str.startswith("data:"): + parts = parse_data_url(content_str) + mime_type = parts["mimetype"] + data = parts["data"] + + if parts["is_base64"]: + file_data = base64.b64decode(data) + else: + file_data = data.encode("utf-8") + + return file_data, mime_type + else: + return content_str.encode("utf-8"), "text/plain" + + class MemoryToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime, RAGToolRuntime): def __init__( self, @@ -95,46 +133,52 @@ class MemoryToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime, RAGToolRunti return for doc in documents: - if isinstance(doc.content, URL): - if doc.content.uri.startswith("data:"): - parts = parse_data_url(doc.content.uri) - file_data = base64.b64decode(parts["data"]) if parts["is_base64"] else parts["data"].encode() - mime_type = parts["mimetype"] - else: - async with httpx.AsyncClient() as client: - response = await client.get(doc.content.uri) - file_data = response.content - mime_type = doc.mime_type or response.headers.get("content-type", "application/octet-stream") - else: - content_str = await content_from_doc(doc) - file_data = content_str.encode("utf-8") - mime_type = doc.mime_type or "text/plain" + try: + try: + file_data, mime_type = await raw_data_from_doc(doc) + except Exception as e: + log.error(f"Failed to extract content from document {doc.document_id}: {e}") + continue - file_extension = mimetypes.guess_extension(mime_type) or ".txt" - filename = doc.metadata.get("filename", f"{doc.document_id}{file_extension}") + file_extension = mimetypes.guess_extension(mime_type) or ".txt" + filename = doc.metadata.get("filename", f"{doc.document_id}{file_extension}") - file_obj = io.BytesIO(file_data) - file_obj.name = filename + file_obj = io.BytesIO(file_data) + file_obj.name = filename - upload_file = UploadFile(file=file_obj, filename=filename) + upload_file = UploadFile(file=file_obj, filename=filename) - created_file = await self.files_api.openai_upload_file( - file=upload_file, purpose=OpenAIFilePurpose.ASSISTANTS - ) + try: + created_file = await self.files_api.openai_upload_file( + file=upload_file, purpose=OpenAIFilePurpose.ASSISTANTS + ) + except Exception as e: + log.error(f"Failed to upload file for document {doc.document_id}: {e}") + continue - chunking_strategy = VectorStoreChunkingStrategyStatic( - static=VectorStoreChunkingStrategyStaticConfig( - max_chunk_size_tokens=chunk_size_in_tokens, - chunk_overlap_tokens=chunk_size_in_tokens // 4, + chunking_strategy = VectorStoreChunkingStrategyStatic( + static=VectorStoreChunkingStrategyStaticConfig( + max_chunk_size_tokens=chunk_size_in_tokens, + chunk_overlap_tokens=chunk_size_in_tokens // 4, + ) ) - ) - await self.vector_io_api.openai_attach_file_to_vector_store( - vector_store_id=vector_db_id, - file_id=created_file.id, - attributes=doc.metadata, - chunking_strategy=chunking_strategy, - ) + try: + await self.vector_io_api.openai_attach_file_to_vector_store( + vector_store_id=vector_db_id, + file_id=created_file.id, + attributes=doc.metadata, + chunking_strategy=chunking_strategy, + ) + except Exception as e: + log.error( + f"Failed to attach file {created_file.id} to vector store {vector_db_id} for document {doc.document_id}: {e}" + ) + continue + + except Exception as e: + log.error(f"Unexpected error processing document {doc.document_id}: {e}") + continue async def query( self, @@ -167,8 +211,18 @@ class MemoryToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime, RAGToolRunti for vector_db_id in vector_db_ids ] results: list[QueryChunksResponse] = await asyncio.gather(*tasks) - chunks = [c for r in results for c in r.chunks] - scores = [s for r in results for s in r.scores] + + chunks = [] + scores = [] + + for vector_db_id, result in zip(vector_db_ids, results, strict=False): + for chunk, score in zip(result.chunks, result.scores, strict=False): + if not hasattr(chunk, "metadata") or chunk.metadata is None: + chunk.metadata = {} + chunk.metadata["vector_db_id"] = vector_db_id + + chunks.append(chunk) + scores.append(score) if not chunks: return RAGQueryResult(content=None) @@ -203,6 +257,7 @@ class MemoryToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime, RAGToolRunti metadata_keys_to_exclude_from_context = [ "token_count", "metadata_token_count", + "vector_db_id", ] metadata_for_context = {} for k in chunk_metadata_keys_to_include_from_context: @@ -227,6 +282,7 @@ class MemoryToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime, RAGToolRunti "document_ids": [c.metadata["document_id"] for c in chunks[: len(picked)]], "chunks": [c.content for c in chunks[: len(picked)]], "scores": scores[: len(picked)], + "vector_db_ids": [c.metadata["vector_db_id"] for c in chunks[: len(picked)]], }, ) @@ -262,7 +318,6 @@ class MemoryToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime, RAGToolRunti if query_config: query_config = TypeAdapter(RAGQueryConfig).validate_python(query_config) else: - # handle someone passing an empty dict query_config = RAGQueryConfig() query = kwargs["query"] @@ -273,6 +328,6 @@ class MemoryToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime, RAGToolRunti ) return ToolInvocationResult( - content=result.content, + content=result.content or [], metadata=result.metadata, ) diff --git a/llama_stack/providers/registry/inference.py b/llama_stack/providers/registry/inference.py index 4176f85a6..541fbb432 100644 --- a/llama_stack/providers/registry/inference.py +++ b/llama_stack/providers/registry/inference.py @@ -218,7 +218,7 @@ def available_providers() -> list[ProviderSpec]: api=Api.inference, adapter=AdapterSpec( adapter_type="vertexai", - pip_packages=["litellm", "google-cloud-aiplatform"], + pip_packages=["litellm", "google-cloud-aiplatform", "openai"], module="llama_stack.providers.remote.inference.vertexai", config_class="llama_stack.providers.remote.inference.vertexai.VertexAIConfig", provider_data_validator="llama_stack.providers.remote.inference.vertexai.config.VertexAIProviderDataValidator", diff --git a/llama_stack/providers/remote/inference/vertexai/vertexai.py b/llama_stack/providers/remote/inference/vertexai/vertexai.py index 8807fd0e6..8996543e7 100644 --- a/llama_stack/providers/remote/inference/vertexai/vertexai.py +++ b/llama_stack/providers/remote/inference/vertexai/vertexai.py @@ -6,16 +6,20 @@ from typing import Any +import google.auth.transport.requests +from google.auth import default + from llama_stack.apis.inference import ChatCompletionRequest from llama_stack.providers.utils.inference.litellm_openai_mixin import ( LiteLLMOpenAIMixin, ) +from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin from .config import VertexAIConfig from .models import MODEL_ENTRIES -class VertexAIInferenceAdapter(LiteLLMOpenAIMixin): +class VertexAIInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin): def __init__(self, config: VertexAIConfig) -> None: LiteLLMOpenAIMixin.__init__( self, @@ -27,9 +31,30 @@ class VertexAIInferenceAdapter(LiteLLMOpenAIMixin): self.config = config def get_api_key(self) -> str: - # Vertex AI doesn't use API keys, it uses Application Default Credentials - # Return empty string to let litellm handle authentication via ADC - return "" + """ + Get an access token for Vertex AI using Application Default Credentials. + + Vertex AI uses ADC instead of API keys. This method obtains an access token + from the default credentials and returns it for use with the OpenAI-compatible client. + """ + try: + # Get default credentials - will read from GOOGLE_APPLICATION_CREDENTIALS + credentials, _ = default(scopes=["https://www.googleapis.com/auth/cloud-platform"]) + credentials.refresh(google.auth.transport.requests.Request()) + return str(credentials.token) + except Exception: + # If we can't get credentials, return empty string to let LiteLLM handle it + # This allows the LiteLLM mixin to work with ADC directly + return "" + + def get_base_url(self) -> str: + """ + Get the Vertex AI OpenAI-compatible API base URL. + + Returns the Vertex AI OpenAI-compatible endpoint URL. + Source: https://cloud.google.com/vertex-ai/generative-ai/docs/start/openai + """ + return f"https://{self.config.location}-aiplatform.googleapis.com/v1/projects/{self.config.project}/locations/{self.config.location}/endpoints/openapi" async def _get_params(self, request: ChatCompletionRequest) -> dict[str, Any]: # Get base parameters from parent diff --git a/scripts/get_setup_env.py b/scripts/get_setup_env.py new file mode 100755 index 000000000..fad601e76 --- /dev/null +++ b/scripts/get_setup_env.py @@ -0,0 +1,71 @@ +#!/usr/bin/env python3 +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# +# This source code is licensed under the terms described in the LICENSE file in +# the root directory of this source tree. + +""" +Small helper script to extract environment variables from a test setup. +Used by integration-tests.sh to set environment variables before starting the server. +""" + +import argparse +import sys + +from tests.integration.suites import SETUP_DEFINITIONS, SUITE_DEFINITIONS + + +def get_setup_env_vars(setup_name, suite_name=None): + """ + Get environment variables for a setup, with optional suite default fallback. + + Args: + setup_name: Name of the setup (e.g., 'ollama', 'gpt') + suite_name: Optional suite name to get default setup if setup_name is None + + Returns: + Dictionary of environment variables + """ + # If no setup specified, try to get default from suite + if not setup_name and suite_name: + suite = SUITE_DEFINITIONS.get(suite_name) + if suite and suite.default_setup: + setup_name = suite.default_setup + + if not setup_name: + return {} + + setup = SETUP_DEFINITIONS.get(setup_name) + if not setup: + print( + f"Error: Unknown setup '{setup_name}'. Available: {', '.join(sorted(SETUP_DEFINITIONS.keys()))}", + file=sys.stderr, + ) + sys.exit(1) + + return setup.env + + +def main(): + parser = argparse.ArgumentParser(description="Extract environment variables from a test setup") + parser.add_argument("--setup", help="Setup name (e.g., ollama, gpt)") + parser.add_argument("--suite", help="Suite name to get default setup from if --setup not provided") + parser.add_argument("--format", choices=["bash", "json"], default="bash", help="Output format (default: bash)") + + args = parser.parse_args() + + env_vars = get_setup_env_vars(args.setup, args.suite) + + if args.format == "bash": + # Output as bash export statements + for key, value in env_vars.items(): + print(f"export {key}='{value}'") + elif args.format == "json": + import json + + print(json.dumps(env_vars)) + + +if __name__ == "__main__": + main() diff --git a/scripts/github/schedule-record-workflow.sh b/scripts/github/schedule-record-workflow.sh index 09e055611..c292e53e6 100755 --- a/scripts/github/schedule-record-workflow.sh +++ b/scripts/github/schedule-record-workflow.sh @@ -14,7 +14,7 @@ set -euo pipefail # Default values BRANCH="" TEST_SUBDIRS="" -TEST_PROVIDER="ollama" +TEST_SETUP="ollama" TEST_SUITE="base" TEST_PATTERN="" @@ -27,24 +27,24 @@ Trigger the integration test recording workflow remotely. This way you do not ne OPTIONS: -b, --branch BRANCH Branch to run the workflow on (defaults to current branch) - -p, --test-provider PROVIDER Test provider to use: vllm or ollama (default: ollama) - -t, --test-suite SUITE Test suite to use: base, responses, vision, etc. (default: base) - -s, --test-subdirs DIRS Comma-separated list of test subdirectories to run (overrides suite) - -k, --test-pattern PATTERN Regex pattern to pass to pytest -k + -t, --suite SUITE Test suite to use: base, responses, vision, etc. (default: base) + -p, --setup SETUP Test setup to use: vllm, ollama, gpt, etc. (default: ollama) + -s, --subdirs DIRS Comma-separated list of test subdirectories to run (overrides suite) + -k, --pattern PATTERN Regex pattern to pass to pytest -k -h, --help Show this help message EXAMPLES: # Record tests for current branch with agents subdirectory - $0 --test-subdirs "agents" + $0 --subdirs "agents" # Record tests for specific branch with vision tests - $0 -b my-feature-branch --test-suite vision + $0 -b my-feature-branch --suite vision - # Record multiple test subdirectories with specific provider - $0 --test-subdirs "agents,inference" --test-provider vllm + # Record multiple test subdirectories with specific setup + $0 --subdirs "agents,inference" --setup vllm # Record tests matching a specific pattern - $0 --test-subdirs "inference" --test-pattern "test_streaming" + $0 --subdirs "inference" --pattern "test_streaming" EOF } @@ -63,19 +63,19 @@ while [[ $# -gt 0 ]]; do BRANCH="$2" shift 2 ;; - -s|--test-subdirs) + -s|--subdirs) TEST_SUBDIRS="$2" shift 2 ;; - -p|--test-provider) - TEST_PROVIDER="$2" + -p|--setup) + TEST_SETUP="$2" shift 2 ;; - -t|--test-suite) + -t|--suite) TEST_SUITE="$2" shift 2 ;; - -k|--test-pattern) + -k|--pattern) TEST_PATTERN="$2" shift 2 ;; @@ -93,21 +93,16 @@ done # Validate required parameters if [[ -z "$TEST_SUBDIRS" && -z "$TEST_SUITE" ]]; then - echo "Error: --test-subdirs or --test-suite is required" + echo "Error: --subdirs or --suite is required" echo "Please specify which test subdirectories to run or test suite to use, e.g.:" - echo " $0 --test-subdirs \"agents,inference\"" - echo " $0 --test-suite vision" + echo " $0 --subdirs \"agents,inference\"" + echo " $0 --suite vision" echo "" exit 1 fi -# Validate test provider -if [[ "$TEST_PROVIDER" != "vllm" && "$TEST_PROVIDER" != "ollama" ]]; then - echo "❌ Error: Invalid test provider '$TEST_PROVIDER'" - echo " Supported providers: vllm, ollama" - echo " Example: $0 --test-subdirs \"agents\" --test-provider vllm" - exit 1 -fi +# Validate test setup (optional - setups are validated by the workflow itself) +# Common setups: ollama, vllm, gpt, etc. # Check if required tools are installed if ! command -v gh &> /dev/null; then @@ -237,7 +232,7 @@ fi # Build the workflow dispatch command echo "Triggering integration test recording workflow..." echo "Branch: $BRANCH" -echo "Test provider: $TEST_PROVIDER" +echo "Test setup: $TEST_SETUP" echo "Test subdirs: $TEST_SUBDIRS" echo "Test suite: $TEST_SUITE" echo "Test pattern: ${TEST_PATTERN:-"(none)"}" @@ -245,16 +240,16 @@ echo "" # Prepare inputs for gh workflow run if [[ -n "$TEST_SUBDIRS" ]]; then - INPUTS="-f test-subdirs='$TEST_SUBDIRS'" + INPUTS="-f subdirs='$TEST_SUBDIRS'" fi -if [[ -n "$TEST_PROVIDER" ]]; then - INPUTS="$INPUTS -f test-provider='$TEST_PROVIDER'" +if [[ -n "$TEST_SETUP" ]]; then + INPUTS="$INPUTS -f test-setup='$TEST_SETUP'" fi if [[ -n "$TEST_SUITE" ]]; then - INPUTS="$INPUTS -f test-suite='$TEST_SUITE'" + INPUTS="$INPUTS -f suite='$TEST_SUITE'" fi if [[ -n "$TEST_PATTERN" ]]; then - INPUTS="$INPUTS -f test-pattern='$TEST_PATTERN'" + INPUTS="$INPUTS -f pattern='$TEST_PATTERN'" fi # Run the workflow diff --git a/scripts/integration-tests.sh b/scripts/integration-tests.sh index ab7e37579..eee60951d 100755 --- a/scripts/integration-tests.sh +++ b/scripts/integration-tests.sh @@ -13,10 +13,10 @@ set -euo pipefail # Default values STACK_CONFIG="" -PROVIDER="" +TEST_SUITE="base" +TEST_SETUP="" TEST_SUBDIRS="" TEST_PATTERN="" -TEST_SUITE="base" INFERENCE_MODE="replay" EXTRA_PARAMS="" @@ -27,29 +27,30 @@ Usage: $0 [OPTIONS] Options: --stack-config STRING Stack configuration to use (required) - --provider STRING Provider to use (ollama, vllm, etc.) (required) - --test-suite STRING Comma-separated list of test suites to run (default: 'base') + --suite STRING Test suite to run (default: 'base') + --setup STRING Test setup (models, env) to use (e.g., 'ollama', 'ollama-vision', 'gpt', 'vllm') --inference-mode STRING Inference mode: record or replay (default: replay) - --test-subdirs STRING Comma-separated list of test subdirectories to run (overrides suite) - --test-pattern STRING Regex pattern to pass to pytest -k + --subdirs STRING Comma-separated list of test subdirectories to run (overrides suite) + --pattern STRING Regex pattern to pass to pytest -k --help Show this help message -Suites are defined in tests/integration/suites.py. They are used to narrow the collection of tests and provide default model options. +Suites are defined in tests/integration/suites.py and define which tests to run. +Setups are defined in tests/integration/setups.py and provide global configuration (models, env). You can also specify subdirectories (of tests/integration) to select tests from, which will override the suite. Examples: # Basic inference tests with ollama - $0 --stack-config server:ci-tests --provider ollama + $0 --stack-config server:ci-tests --suite base --setup ollama # Multiple test directories with vllm - $0 --stack-config server:ci-tests --provider vllm --test-subdirs 'inference,agents' + $0 --stack-config server:ci-tests --subdirs 'inference,agents' --setup vllm # Vision tests with ollama - $0 --stack-config server:ci-tests --provider ollama --test-suite vision + $0 --stack-config server:ci-tests --suite vision # default setup for this suite is ollama-vision # Record mode for updating test recordings - $0 --stack-config server:ci-tests --provider ollama --inference-mode record + $0 --stack-config server:ci-tests --suite base --inference-mode record EOF } @@ -60,15 +61,15 @@ while [[ $# -gt 0 ]]; do STACK_CONFIG="$2" shift 2 ;; - --provider) - PROVIDER="$2" + --setup) + TEST_SETUP="$2" shift 2 ;; - --test-subdirs) + --subdirs) TEST_SUBDIRS="$2" shift 2 ;; - --test-suite) + --suite) TEST_SUITE="$2" shift 2 ;; @@ -76,7 +77,7 @@ while [[ $# -gt 0 ]]; do INFERENCE_MODE="$2" shift 2 ;; - --test-pattern) + --pattern) TEST_PATTERN="$2" shift 2 ;; @@ -96,11 +97,13 @@ done # Validate required parameters if [[ -z "$STACK_CONFIG" ]]; then echo "Error: --stack-config is required" + usage exit 1 fi -if [[ -z "$PROVIDER" ]]; then - echo "Error: --provider is required" +if [[ -z "$TEST_SETUP" && -n "$TEST_SUBDIRS" ]]; then + echo "Error: --test-setup is required when --test-subdirs is provided" + usage exit 1 fi @@ -111,7 +114,7 @@ fi echo "=== Llama Stack Integration Test Runner ===" echo "Stack Config: $STACK_CONFIG" -echo "Provider: $PROVIDER" +echo "Setup: $TEST_SETUP" echo "Inference Mode: $INFERENCE_MODE" echo "Test Suite: $TEST_SUITE" echo "Test Subdirs: $TEST_SUBDIRS" @@ -129,21 +132,25 @@ echo "" # Set environment variables export LLAMA_STACK_CLIENT_TIMEOUT=300 -export LLAMA_STACK_TEST_INFERENCE_MODE="$INFERENCE_MODE" - -# Configure provider-specific settings -if [[ "$PROVIDER" == "ollama" ]]; then - export OLLAMA_URL="http://0.0.0.0:11434" - export TEXT_MODEL="ollama/llama3.2:3b-instruct-fp16" - export SAFETY_MODEL="ollama/llama-guard3:1b" - EXTRA_PARAMS="--safety-shield=llama-guard" -else - export VLLM_URL="http://localhost:8000/v1" - export TEXT_MODEL="vllm/meta-llama/Llama-3.2-1B-Instruct" - EXTRA_PARAMS="" -fi THIS_DIR=$(dirname "$0") + +if [[ -n "$TEST_SETUP" ]]; then + EXTRA_PARAMS="--setup=$TEST_SETUP" +fi + +# Apply setup-specific environment variables (needed for server startup and tests) +echo "=== Applying Setup Environment Variables ===" + +# the server needs this +export LLAMA_STACK_TEST_INFERENCE_MODE="$INFERENCE_MODE" + +SETUP_ENV=$(PYTHONPATH=$THIS_DIR/.. python "$THIS_DIR/get_setup_env.py" --suite "$TEST_SUITE" --setup "$TEST_SETUP" --format bash) +echo "Setting up environment variables:" +echo "$SETUP_ENV" +eval "$SETUP_ENV" +echo "" + ROOT_DIR="$THIS_DIR/.." cd $ROOT_DIR @@ -162,6 +169,18 @@ fi # Start Llama Stack Server if needed if [[ "$STACK_CONFIG" == *"server:"* ]]; then + stop_server() { + echo "Stopping Llama Stack Server..." + pids=$(lsof -i :8321 | awk 'NR>1 {print $2}') + if [[ -n "$pids" ]]; then + echo "Killing Llama Stack Server processes: $pids" + kill -9 $pids + else + echo "No Llama Stack Server processes found ?!" + fi + echo "Llama Stack Server stopped" + } + # check if server is already running if curl -s http://localhost:8321/v1/health 2>/dev/null | grep -q "OK"; then echo "Llama Stack Server is already running, skipping start" @@ -185,14 +204,16 @@ if [[ "$STACK_CONFIG" == *"server:"* ]]; then done echo "" fi + + trap stop_server EXIT ERR INT TERM fi # Run tests echo "=== Running Integration Tests ===" EXCLUDE_TESTS="builtin_tool or safety_with_image or code_interpreter or test_rag" -# Additional exclusions for vllm provider -if [[ "$PROVIDER" == "vllm" ]]; then +# Additional exclusions for vllm setup +if [[ "$TEST_SETUP" == "vllm" ]]; then EXCLUDE_TESTS="${EXCLUDE_TESTS} or test_inference_store_tool_calls" fi @@ -229,20 +250,22 @@ if [[ -n "$TEST_SUBDIRS" ]]; then echo "Total test files: $(echo $TEST_FILES | wc -w)" PYTEST_TARGET="$TEST_FILES" - EXTRA_PARAMS="$EXTRA_PARAMS --text-model=$TEXT_MODEL --embedding-model=sentence-transformers/all-MiniLM-L6-v2" else PYTEST_TARGET="tests/integration/" EXTRA_PARAMS="$EXTRA_PARAMS --suite=$TEST_SUITE" fi set +e +set -x pytest -s -v $PYTEST_TARGET \ --stack-config="$STACK_CONFIG" \ + --inference-mode="$INFERENCE_MODE" \ -k "$PYTEST_PATTERN" \ $EXTRA_PARAMS \ --color=yes \ --capture=tee-sys exit_code=$? +set +x set -e if [ $exit_code -eq 0 ]; then @@ -260,18 +283,5 @@ echo "=== System Resources After Tests ===" free -h 2>/dev/null || echo "free command not available" df -h -# stop server -if [[ "$STACK_CONFIG" == *"server:"* ]]; then - echo "Stopping Llama Stack Server..." - pids=$(lsof -i :8321 | awk 'NR>1 {print $2}') - if [[ -n "$pids" ]]; then - echo "Killing Llama Stack Server processes: $pids" - kill -9 $pids - else - echo "No Llama Stack Server processes found ?!" - fi - echo "Llama Stack Server stopped" -fi - echo "" echo "=== Integration Tests Complete ===" diff --git a/tests/integration/README.md b/tests/integration/README.md index b05beeb98..467f97e02 100644 --- a/tests/integration/README.md +++ b/tests/integration/README.md @@ -6,9 +6,7 @@ Integration tests verify complete workflows across different providers using Lla ```bash # Run all integration tests with existing recordings -LLAMA_STACK_TEST_INFERENCE_MODE=replay \ - LLAMA_STACK_TEST_RECORDING_DIR=tests/integration/recordings \ - uv run --group test \ +uv run --group test \ pytest -sv tests/integration/ --stack-config=starter ``` @@ -42,25 +40,35 @@ Model parameters can be influenced by the following options: Each of these are comma-separated lists and can be used to generate multiple parameter combinations. Note that tests will be skipped if no model is specified. -### Suites (fast selection + sane defaults) +### Suites and Setups -- `--suite`: comma-separated list of named suites that both narrow which tests are collected and prefill common model options (unless you pass them explicitly). +- `--suite`: single named suite that narrows which tests are collected. - Available suites: - - `responses`: collects tests under `tests/integration/responses`; this is a separate suite because it needs a strong tool-calling model. - - `vision`: collects only `tests/integration/inference/test_vision_inference.py`; defaults `--vision-model=ollama/llama3.2-vision:11b`, `--embedding-model=sentence-transformers/all-MiniLM-L6-v2`. -- Explicit flags always win. For example, `--suite=responses --text-model=` overrides the suite’s text model. + - `base`: collects most tests (excludes responses and post_training) + - `responses`: collects tests under `tests/integration/responses` (needs strong tool-calling models) + - `vision`: collects only `tests/integration/inference/test_vision_inference.py` +- `--setup`: global configuration that can be used with any suite. Setups prefill model/env defaults; explicit CLI flags always win. + - Available setups: + - `ollama`: Local Ollama provider with lightweight models (sets OLLAMA_URL, uses llama3.2:3b-instruct-fp16) + - `vllm`: VLLM provider for efficient local inference (sets VLLM_URL, uses Llama-3.2-1B-Instruct) + - `gpt`: OpenAI GPT models for high-quality responses (uses gpt-4o) + - `claude`: Anthropic Claude models for high-quality responses (uses claude-3-5-sonnet) -Examples: +Examples ```bash -# Fast responses run with defaults -pytest -s -v tests/integration --stack-config=server:starter --suite=responses +# Fast responses run with a strong tool-calling model +pytest -s -v tests/integration --stack-config=server:starter --suite=responses --setup=gpt -# Fast single-file vision run with defaults -pytest -s -v tests/integration --stack-config=server:starter --suite=vision +# Fast single-file vision run with Ollama defaults +pytest -s -v tests/integration --stack-config=server:starter --suite=vision --setup=ollama -# Combine suites and override a default -pytest -s -v tests/integration --stack-config=server:starter --suite=responses,vision --embedding-model=text-embedding-3-small +# Base suite with VLLM for performance +pytest -s -v tests/integration --stack-config=server:starter --suite=base --setup=vllm + +# Override a default from setup +pytest -s -v tests/integration --stack-config=server:starter \ + --suite=responses --setup=gpt --embedding-model=text-embedding-3-small ``` ## Examples @@ -127,14 +135,13 @@ pytest tests/integration/ ### RECORD Mode Captures API interactions for later replay: ```bash -LLAMA_STACK_TEST_INFERENCE_MODE=record \ -pytest tests/integration/inference/test_new_feature.py +pytest tests/integration/inference/test_new_feature.py --inference-mode=record ``` ### LIVE Mode Tests make real API calls (but not recorded): ```bash -LLAMA_STACK_TEST_INFERENCE_MODE=live pytest tests/integration/ +pytest tests/integration/ --inference-mode=live ``` By default, the recording directory is `tests/integration/recordings`. You can override this by setting the `LLAMA_STACK_TEST_RECORDING_DIR` environment variable. @@ -155,15 +162,14 @@ cat recordings/responses/abc123.json | jq '.' #### Remote Re-recording (Recommended) Use the automated workflow script for easier re-recording: ```bash -./scripts/github/schedule-record-workflow.sh --test-subdirs "inference,agents" +./scripts/github/schedule-record-workflow.sh --subdirs "inference,agents" ``` See the [main testing guide](../README.md#remote-re-recording-recommended) for full details. #### Local Re-recording ```bash # Re-record specific tests -LLAMA_STACK_TEST_INFERENCE_MODE=record \ -pytest -s -v --stack-config=server:starter tests/integration/inference/test_modified.py +pytest -s -v --stack-config=server:starter tests/integration/inference/test_modified.py --inference-mode=record ``` Note that when re-recording tests, you must use a Stack pointing to a server (i.e., `server:starter`). This subtlety exists because the set of tests run in server are a superset of the set of tests run in the library client. diff --git a/tests/integration/conftest.py b/tests/integration/conftest.py index 96260fdb7..4735264c3 100644 --- a/tests/integration/conftest.py +++ b/tests/integration/conftest.py @@ -15,7 +15,7 @@ from dotenv import load_dotenv from llama_stack.log import get_logger -from .suites import SUITE_DEFINITIONS +from .suites import SETUP_DEFINITIONS, SUITE_DEFINITIONS logger = get_logger(__name__, category="tests") @@ -63,19 +63,33 @@ def pytest_configure(config): key, value = env_var.split("=", 1) os.environ[key] = value - suites_raw = config.getoption("--suite") - suites: list[str] = [] - if suites_raw: - suites = [p.strip() for p in str(suites_raw).split(",") if p.strip()] - unknown = [p for p in suites if p not in SUITE_DEFINITIONS] - if unknown: + inference_mode = config.getoption("--inference-mode") + os.environ["LLAMA_STACK_TEST_INFERENCE_MODE"] = inference_mode + + suite = config.getoption("--suite") + if suite: + if suite not in SUITE_DEFINITIONS: + raise pytest.UsageError(f"Unknown suite: {suite}. Available: {', '.join(sorted(SUITE_DEFINITIONS.keys()))}") + + # Apply setups (global parameterizations): env + defaults + setup = config.getoption("--setup") + if suite and not setup: + setup = SUITE_DEFINITIONS[suite].default_setup + + if setup: + if setup not in SETUP_DEFINITIONS: raise pytest.UsageError( - f"Unknown suite(s): {', '.join(unknown)}. Available: {', '.join(sorted(SUITE_DEFINITIONS.keys()))}" + f"Unknown setup '{setup}'. Available: {', '.join(sorted(SETUP_DEFINITIONS.keys()))}" ) - for suite in suites: - suite_def = SUITE_DEFINITIONS.get(suite, {}) - defaults: dict = suite_def.get("defaults", {}) - for dest, value in defaults.items(): + + setup_obj = SETUP_DEFINITIONS[setup] + logger.info(f"Applying setup '{setup}'{' for suite ' + suite if suite else ''}") + # Apply env first + for k, v in setup_obj.env.items(): + if k not in os.environ: + os.environ[k] = str(v) + # Apply defaults if not provided explicitly + for dest, value in setup_obj.defaults.items(): current = getattr(config.option, dest, None) if not current: setattr(config.option, dest, value) @@ -120,6 +134,13 @@ def pytest_addoption(parser): default=384, help="Output dimensionality of the embedding model to use for testing. Default: 384", ) + + parser.addoption( + "--inference-mode", + help="Inference mode: { record, replay, live } (default: replay)", + choices=["record", "replay", "live"], + default="replay", + ) parser.addoption( "--report", help="Path where the test report should be written, e.g. --report=/path/to/report.md", @@ -127,14 +148,18 @@ def pytest_addoption(parser): available_suites = ", ".join(sorted(SUITE_DEFINITIONS.keys())) suite_help = ( - "Comma-separated integration test suites to narrow collection and prefill defaults. " - "Available: " - f"{available_suites}. " - "Explicit CLI flags (e.g., --text-model) override suite defaults. " - "Examples: --suite=responses or --suite=responses,vision." + f"Single test suite to run (narrows collection). Available: {available_suites}. Example: --suite=responses" ) parser.addoption("--suite", help=suite_help) + # Global setups for any suite + available_setups = ", ".join(sorted(SETUP_DEFINITIONS.keys())) + setup_help = ( + f"Global test setup configuration. Available: {available_setups}. " + "Can be used with any suite. Example: --setup=ollama" + ) + parser.addoption("--setup", help=setup_help) + MODEL_SHORT_IDS = { "meta-llama/Llama-3.2-3B-Instruct": "3B", @@ -221,16 +246,12 @@ pytest_plugins = ["tests.integration.fixtures.common"] def pytest_ignore_collect(path: str, config: pytest.Config) -> bool: """Skip collecting paths outside the selected suite roots for speed.""" - suites_raw = config.getoption("--suite") - if not suites_raw: + suite = config.getoption("--suite") + if not suite: return False - names = [p.strip() for p in str(suites_raw).split(",") if p.strip()] - roots: list[str] = [] - for name in names: - suite_def = SUITE_DEFINITIONS.get(name) - if suite_def: - roots.extend(suite_def.get("roots", [])) + sobj = SUITE_DEFINITIONS.get(suite) + roots: list[str] = sobj.get("roots", []) if isinstance(sobj, dict) else getattr(sobj, "roots", []) if not roots: return False diff --git a/tests/integration/inference/test_openai_completion.py b/tests/integration/inference/test_openai_completion.py index df1184f1c..f9c837ebd 100644 --- a/tests/integration/inference/test_openai_completion.py +++ b/tests/integration/inference/test_openai_completion.py @@ -76,6 +76,9 @@ def skip_if_doesnt_support_n(client_with_models, model_id): "remote::gemini", # https://docs.anthropic.com/en/api/openai-sdk#simple-fields "remote::anthropic", + "remote::vertexai", + # Error code: 400 - [{'error': {'code': 400, 'message': 'Unable to submit request because candidateCount must be 1 but + # the entered value was 2. Update the candidateCount value and try again.', 'status': 'INVALID_ARGUMENT'} ): pytest.skip(f"Model {model_id} hosted by {provider.provider_type} doesn't support n param.") diff --git a/tests/integration/suites.py b/tests/integration/suites.py index 602855055..bacd7ef52 100644 --- a/tests/integration/suites.py +++ b/tests/integration/suites.py @@ -8,46 +8,112 @@ # For example: # # ```bash -# pytest tests/integration/ --suite=vision +# pytest tests/integration/ --suite=vision --setup=ollama # ``` # -# Each suite can: -# - restrict collection to specific roots (dirs or files) -# - provide default CLI option values (e.g. text_model, embedding_model, etc.) +""" +Each suite defines what to run (roots). Suites can be run with different global setups defined in setups.py. +Setups provide environment variables and model defaults that can be reused across multiple suites. + +CLI examples: + pytest tests/integration --suite=responses --setup=gpt + pytest tests/integration --suite=vision --setup=ollama + pytest tests/integration --suite=base --setup=vllm +""" from pathlib import Path +from pydantic import BaseModel, Field + this_dir = Path(__file__).parent -default_roots = [ + + +class Suite(BaseModel): + name: str + roots: list[str] + default_setup: str | None = None + + +class Setup(BaseModel): + """A reusable test configuration with environment and CLI defaults.""" + + name: str + description: str + defaults: dict[str, str] = Field(default_factory=dict) + env: dict[str, str] = Field(default_factory=dict) + + +# Global setups - can be used with any suite "technically" but in reality, some setups might work +# only for specific test suites. +SETUP_DEFINITIONS: dict[str, Setup] = { + "ollama": Setup( + name="ollama", + description="Local Ollama provider with text + safety models", + env={ + "OLLAMA_URL": "http://0.0.0.0:11434", + "SAFETY_MODEL": "ollama/llama-guard3:1b", + }, + defaults={ + "text_model": "ollama/llama3.2:3b-instruct-fp16", + "embedding_model": "sentence-transformers/all-MiniLM-L6-v2", + "safety_model": "ollama/llama-guard3:1b", + "safety_shield": "llama-guard", + }, + ), + "ollama-vision": Setup( + name="ollama", + description="Local Ollama provider with a vision model", + env={ + "OLLAMA_URL": "http://0.0.0.0:11434", + }, + defaults={ + "vision_model": "ollama/llama3.2-vision:11b", + "embedding_model": "sentence-transformers/all-MiniLM-L6-v2", + }, + ), + "vllm": Setup( + name="vllm", + description="vLLM provider with a text model", + env={ + "VLLM_URL": "http://localhost:8000/v1", + }, + defaults={ + "text_model": "vllm/meta-llama/Llama-3.2-1B-Instruct", + "embedding_model": "sentence-transformers/all-MiniLM-L6-v2", + }, + ), + "gpt": Setup( + name="gpt", + description="OpenAI GPT models for high-quality responses and tool calling", + defaults={ + "text_model": "openai/gpt-4o", + "embedding_model": "sentence-transformers/all-MiniLM-L6-v2", + }, + ), +} + + +base_roots = [ str(p) for p in this_dir.glob("*") if p.is_dir() and p.name not in ("__pycache__", "fixtures", "test_cases", "recordings", "responses", "post_training") ] -SUITE_DEFINITIONS: dict[str, dict] = { - "base": { - "description": "Base suite that includes most tests but runs them with a text Ollama model", - "roots": default_roots, - "defaults": { - "text_model": "ollama/llama3.2:3b-instruct-fp16", - "embedding_model": "sentence-transformers/all-MiniLM-L6-v2", - }, - }, - "responses": { - "description": "Suite that includes only the OpenAI Responses tests; needs a strong tool-calling model", - "roots": ["tests/integration/responses"], - "defaults": { - "text_model": "openai/gpt-4o", - "embedding_model": "sentence-transformers/all-MiniLM-L6-v2", - }, - }, - "vision": { - "description": "Suite that includes only the vision tests", - "roots": ["tests/integration/inference/test_vision_inference.py"], - "defaults": { - "vision_model": "ollama/llama3.2-vision:11b", - "embedding_model": "sentence-transformers/all-MiniLM-L6-v2", - }, - }, +SUITE_DEFINITIONS: dict[str, Suite] = { + "base": Suite( + name="base", + roots=base_roots, + default_setup="ollama", + ), + "responses": Suite( + name="responses", + roots=["tests/integration/responses"], + default_setup="gpt", + ), + "vision": Suite( + name="vision", + roots=["tests/integration/inference/test_vision_inference.py"], + default_setup="ollama-vision", + ), } diff --git a/tests/integration/tool_runtime/test_rag_tool.py b/tests/integration/tool_runtime/test_rag_tool.py index b208500d8..b78c39af8 100644 --- a/tests/integration/tool_runtime/test_rag_tool.py +++ b/tests/integration/tool_runtime/test_rag_tool.py @@ -183,6 +183,110 @@ def test_vector_db_insert_from_url_and_query( assert any("llama2" in chunk.content.lower() for chunk in response2.chunks) +def test_rag_tool_openai_apis(client_with_empty_registry, embedding_model_id, embedding_dimension): + vector_db_id = "test_openai_vector_db" + + client_with_empty_registry.vector_dbs.register( + vector_db_id=vector_db_id, + embedding_model=embedding_model_id, + embedding_dimension=embedding_dimension, + ) + + available_vector_dbs = [vector_db.identifier for vector_db in client_with_empty_registry.vector_dbs.list()] + actual_vector_db_id = available_vector_dbs[0] + + # different document formats that should work with OpenAI APIs + documents = [ + Document( + document_id="text-doc", + content="This is a plain text document about machine learning algorithms.", + metadata={"type": "text", "category": "AI"}, + ), + Document( + document_id="url-doc", + content="https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/chat.rst", + mime_type="text/plain", + metadata={"type": "url", "source": "pytorch"}, + ), + Document( + document_id="data-url-doc", + content="data:text/plain;base64,VGhpcyBpcyBhIGRhdGEgVVJMIGRvY3VtZW50IGFib3V0IGRlZXAgbGVhcm5pbmcu", # "This is a data URL document about deep learning." + metadata={"type": "data_url", "encoding": "base64"}, + ), + ] + + client_with_empty_registry.tool_runtime.rag_tool.insert( + documents=documents, + vector_db_id=actual_vector_db_id, + chunk_size_in_tokens=256, + ) + + files_list = client_with_empty_registry.files.list() + assert len(files_list.data) >= len(documents), ( + f"Expected at least {len(documents)} files, got {len(files_list.data)}" + ) + + vector_store_files = client_with_empty_registry.vector_io.openai_list_files_in_vector_store( + vector_store_id=actual_vector_db_id + ) + assert len(vector_store_files.data) >= len(documents), f"Expected at least {len(documents)} files in vector store" + + response = client_with_empty_registry.tool_runtime.rag_tool.query( + vector_db_ids=[actual_vector_db_id], + content="Tell me about machine learning and deep learning", + ) + + assert_valid_text_response(response) + content_text = " ".join([chunk.text for chunk in response.content]).lower() + assert "machine learning" in content_text or "deep learning" in content_text + + +def test_rag_tool_exception_handling(client_with_empty_registry, embedding_model_id, embedding_dimension): + vector_db_id = "test_exception_handling" + + client_with_empty_registry.vector_dbs.register( + vector_db_id=vector_db_id, + embedding_model=embedding_model_id, + embedding_dimension=embedding_dimension, + ) + + available_vector_dbs = [vector_db.identifier for vector_db in client_with_empty_registry.vector_dbs.list()] + actual_vector_db_id = available_vector_dbs[0] + + documents = [ + Document( + document_id="valid-doc", + content="This is a valid document that should be processed successfully.", + metadata={"status": "valid"}, + ), + Document( + document_id="invalid-url-doc", + content="https://nonexistent-domain-12345.com/invalid.txt", + metadata={"status": "invalid_url"}, + ), + Document( + document_id="another-valid-doc", + content="This is another valid document for testing resilience.", + metadata={"status": "valid"}, + ), + ] + + client_with_empty_registry.tool_runtime.rag_tool.insert( + documents=documents, + vector_db_id=actual_vector_db_id, + chunk_size_in_tokens=256, + ) + + response = client_with_empty_registry.tool_runtime.rag_tool.query( + vector_db_ids=[actual_vector_db_id], + content="valid document", + ) + + assert_valid_text_response(response) + content_text = " ".join([chunk.text for chunk in response.content]).lower() + assert "valid document" in content_text + + def test_rag_tool_insert_and_query(client_with_empty_registry, embedding_model_id, embedding_dimension): providers = [p for p in client_with_empty_registry.providers.list() if p.api == "vector_io"] assert len(providers) > 0 @@ -249,3 +353,107 @@ def test_rag_tool_insert_and_query(client_with_empty_registry, embedding_model_i "chunk_template": "This should raise a ValueError because it is missing the proper template variables", }, ) + + +def test_rag_tool_query_generation(client_with_empty_registry, embedding_model_id, embedding_dimension): + vector_db_id = "test_query_generation_db" + + client_with_empty_registry.vector_dbs.register( + vector_db_id=vector_db_id, + embedding_model=embedding_model_id, + embedding_dimension=embedding_dimension, + ) + + available_vector_dbs = [vector_db.identifier for vector_db in client_with_empty_registry.vector_dbs.list()] + actual_vector_db_id = available_vector_dbs[0] + + documents = [ + Document( + document_id="ai-doc", + content="Artificial intelligence and machine learning are transforming technology.", + metadata={"category": "AI"}, + ), + Document( + document_id="banana-doc", + content="Don't bring a banana to a knife fight.", + metadata={"category": "wisdom"}, + ), + ] + + client_with_empty_registry.tool_runtime.rag_tool.insert( + documents=documents, + vector_db_id=actual_vector_db_id, + chunk_size_in_tokens=256, + ) + + response = client_with_empty_registry.tool_runtime.rag_tool.query( + vector_db_ids=[actual_vector_db_id], + content="Tell me about AI", + ) + + assert_valid_text_response(response) + content_text = " ".join([chunk.text for chunk in response.content]).lower() + assert "artificial intelligence" in content_text or "machine learning" in content_text + + +def test_rag_tool_pdf_data_url_handling(client_with_empty_registry, embedding_model_id, embedding_dimension): + vector_db_id = "test_pdf_data_url_db" + + client_with_empty_registry.vector_dbs.register( + vector_db_id=vector_db_id, + embedding_model=embedding_model_id, + embedding_dimension=embedding_dimension, + ) + + available_vector_dbs = [vector_db.identifier for vector_db in client_with_empty_registry.vector_dbs.list()] + actual_vector_db_id = available_vector_dbs[0] + + sample_pdf = b"%PDF-1.3\n3 0 obj\n<>\nendobj\n4 0 obj\n<>\nstream\nx\x9c\x15\xcc1\x0e\x820\x18@\xe1\x9dS\xbcM]jk$\xd5\xd5(\x83!\x86\xa1\x17\xf8\xa3\xa5`LIh+\xd7W\xc6\xf7\r\xef\xc0\xbd\xd2\xaa\xb6,\xd5\xc5\xb1o\x0c\xa6VZ\xe3znn%\xf3o\xab\xb1\xe7\xa3:Y\xdc\x8bm\xeb\xf3&1\xc8\xd7\xd3\x97\xc82\xe6\x81\x87\xe42\xcb\x87Vb(\x12<\xdd<=}Jc\x0cL\x91\xee\xda$\xb5\xc3\xbd\xd7\xe9\x0f\x8d\x97 $\nendstream\nendobj\n1 0 obj\n<>\nendobj\n5 0 obj\n<>\nendobj\n2 0 obj\n<<\n/ProcSet [/PDF /Text /ImageB /ImageC /ImageI]\n/Font <<\n/F1 5 0 R\n>>\n/XObject <<\n>>\n>>\nendobj\n6 0 obj\n<<\n/Producer (PyFPDF 1.7.2 http://pyfpdf.googlecode.com/)\n/Title (This is a sample title.)\n/Author (Llama Stack Developers)\n/CreationDate (D:20250312165548)\n>>\nendobj\n7 0 obj\n<<\n/Type /Catalog\n/Pages 1 0 R\n/OpenAction [3 0 R /FitH null]\n/PageLayout /OneColumn\n>>\nendobj\nxref\n0 8\n0000000000 65535 f \n0000000272 00000 n \n0000000455 00000 n \n0000000009 00000 n \n0000000087 00000 n \n0000000359 00000 n \n0000000559 00000 n \n0000000734 00000 n \ntrailer\n<<\n/Size 8\n/Root 7 0 R\n/Info 6 0 R\n>>\nstartxref\n837\n%%EOF\n" + + import base64 + + pdf_base64 = base64.b64encode(sample_pdf).decode("utf-8") + pdf_data_url = f"data:application/pdf;base64,{pdf_base64}" + + documents = [ + Document( + document_id="test-pdf-data-url", + content=pdf_data_url, + metadata={"type": "pdf", "source": "data_url"}, + ), + ] + + client_with_empty_registry.tool_runtime.rag_tool.insert( + documents=documents, + vector_db_id=actual_vector_db_id, + chunk_size_in_tokens=256, + ) + + files_list = client_with_empty_registry.files.list() + assert len(files_list.data) >= 1, "PDF should have been uploaded to Files API" + + pdf_file = None + for file in files_list.data: + if file.filename and "test-pdf-data-url" in file.filename: + pdf_file = file + break + + assert pdf_file is not None, "PDF file should be found in Files API" + assert pdf_file.bytes == len(sample_pdf), f"File size should match original PDF ({len(sample_pdf)} bytes)" + + file_content = client_with_empty_registry.files.retrieve_content(pdf_file.id) + assert file_content.startswith(b"%PDF-"), "Retrieved file should be a valid PDF" + + vector_store_files = client_with_empty_registry.vector_io.openai_list_files_in_vector_store( + vector_store_id=actual_vector_db_id + ) + assert len(vector_store_files.data) >= 1, "PDF should be attached to vector store" + + response = client_with_empty_registry.tool_runtime.rag_tool.query( + vector_db_ids=[actual_vector_db_id], + content="sample title", + ) + + assert_valid_text_response(response) + content_text = " ".join([chunk.text for chunk in response.content]).lower() + assert "sample title" in content_text or "title" in content_text diff --git a/tests/unit/providers/utils/memory/test_vector_store.py b/tests/unit/providers/utils/memory/test_vector_store.py index 90b229262..590bdd1d2 100644 --- a/tests/unit/providers/utils/memory/test_vector_store.py +++ b/tests/unit/providers/utils/memory/test_vector_store.py @@ -178,3 +178,41 @@ def test_content_from_data_and_mime_type_both_encodings_fail(): # Should raise an exception instead of returning empty string with pytest.raises(UnicodeDecodeError): content_from_data_and_mime_type(data, mime_type) + + +async def test_memory_tool_error_handling(): + """Test that memory tool handles various failures gracefully without crashing.""" + from llama_stack.providers.inline.tool_runtime.rag.config import RagToolRuntimeConfig + from llama_stack.providers.inline.tool_runtime.rag.memory import MemoryToolRuntimeImpl + + config = RagToolRuntimeConfig() + memory_tool = MemoryToolRuntimeImpl( + config=config, + vector_io_api=AsyncMock(), + inference_api=AsyncMock(), + files_api=AsyncMock(), + ) + + docs = [ + RAGDocument(document_id="good_doc", content="Good content", metadata={}), + RAGDocument(document_id="bad_url_doc", content=URL(uri="https://bad.url"), metadata={}), + RAGDocument(document_id="another_good_doc", content="Another good content", metadata={}), + ] + + mock_file1 = MagicMock() + mock_file1.id = "file_good1" + mock_file2 = MagicMock() + mock_file2.id = "file_good2" + memory_tool.files_api.openai_upload_file.side_effect = [mock_file1, mock_file2] + + with patch("httpx.AsyncClient") as mock_client: + mock_instance = AsyncMock() + mock_instance.get.side_effect = Exception("Bad URL") + mock_client.return_value.__aenter__.return_value = mock_instance + + # won't raise exception despite one document failing + await memory_tool.insert(docs, "vector_store_123") + + # processed 2 documents successfully, skipped 1 + assert memory_tool.files_api.openai_upload_file.call_count == 2 + assert memory_tool.vector_io_api.openai_attach_file_to_vector_store.call_count == 2 diff --git a/tests/unit/rag/test_rag_query.py b/tests/unit/rag/test_rag_query.py index d18d90716..a45b66f02 100644 --- a/tests/unit/rag/test_rag_query.py +++ b/tests/unit/rag/test_rag_query.py @@ -81,3 +81,58 @@ class TestRagQuery: # Test that invalid mode raises an error with pytest.raises(ValueError): RAGQueryConfig(mode="wrong_mode") + + async def test_query_adds_vector_db_id_to_chunk_metadata(self): + rag_tool = MemoryToolRuntimeImpl( + config=MagicMock(), + vector_io_api=MagicMock(), + inference_api=MagicMock(), + files_api=MagicMock(), + ) + + vector_db_ids = ["db1", "db2"] + + # Fake chunks from each DB + chunk_metadata1 = ChunkMetadata( + document_id="doc1", + chunk_id="chunk1", + source="test_source1", + metadata_token_count=5, + ) + chunk1 = Chunk( + content="chunk from db1", + metadata={"vector_db_id": "db1", "document_id": "doc1"}, + stored_chunk_id="c1", + chunk_metadata=chunk_metadata1, + ) + + chunk_metadata2 = ChunkMetadata( + document_id="doc2", + chunk_id="chunk2", + source="test_source2", + metadata_token_count=5, + ) + chunk2 = Chunk( + content="chunk from db2", + metadata={"vector_db_id": "db2", "document_id": "doc2"}, + stored_chunk_id="c2", + chunk_metadata=chunk_metadata2, + ) + + rag_tool.vector_io_api.query_chunks = AsyncMock( + side_effect=[ + QueryChunksResponse(chunks=[chunk1], scores=[0.9]), + QueryChunksResponse(chunks=[chunk2], scores=[0.8]), + ] + ) + + result = await rag_tool.query(content="test", vector_db_ids=vector_db_ids) + returned_chunks = result.metadata["chunks"] + returned_scores = result.metadata["scores"] + returned_doc_ids = result.metadata["document_ids"] + returned_vector_db_ids = result.metadata["vector_db_ids"] + + assert returned_chunks == ["chunk from db1", "chunk from db2"] + assert returned_scores == (0.9, 0.8) + assert returned_doc_ids == ["doc1", "doc2"] + assert returned_vector_db_ids == ["db1", "db2"]