mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-29 07:14:20 +00:00
Feat: Adding support for milvus files API
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
This commit is contained in:
parent
d165000bbc
commit
ffbadc4238
2 changed files with 166 additions and 7 deletions
|
@ -8,11 +8,11 @@ from typing import Any
|
|||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
from llama_stack.providers.utils.kvstore.config import (
|
||||
KVStoreConfig,
|
||||
SqliteKVStoreConfig,
|
||||
)
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
@json_schema_type
|
||||
|
|
|
@ -196,7 +196,7 @@ class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
|
|||
|
||||
index = VectorDBWithIndex(
|
||||
vector_db=vector_db,
|
||||
index=MilvusIndex(client=self.client, collection_name=vector_db.identifier),
|
||||
index=MilvusIndex(client=self.client, collection_name=vector_db.identifier, kvstore=self.kvstore),
|
||||
inference_api=self.inference_api,
|
||||
)
|
||||
self.cache[vector_db_id] = index
|
||||
|
@ -273,20 +273,179 @@ class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
|
|||
self, store_id: str, file_id: str, file_info: dict[str, Any], file_contents: list[dict[str, Any]]
|
||||
) -> None:
|
||||
"""Save vector store file metadata to Milvus database."""
|
||||
raise NotImplementedError("Files API not yet implemented for Milvus")
|
||||
try:
|
||||
if not await asyncio.to_thread(self.client.has_collection, "openai_vector_store_files"):
|
||||
file_schema = MilvusClient.create_schema(
|
||||
auto_id=False,
|
||||
enable_dynamic_field=True,
|
||||
description="Metadata for OpenAI vector store files",
|
||||
)
|
||||
file_schema.add_field(
|
||||
field_name="store_file_id", datatype=DataType.VARCHAR, is_primary=True, max_length=512
|
||||
)
|
||||
file_schema.add_field(field_name="store_id", datatype=DataType.VARCHAR, max_length=512)
|
||||
file_schema.add_field(field_name="file_id", datatype=DataType.VARCHAR, max_length=512)
|
||||
file_schema.add_field(field_name="file_info", datatype=DataType.VARCHAR, max_length=65535)
|
||||
|
||||
await asyncio.to_thread(
|
||||
self.client.create_collection,
|
||||
collection_name="openai_vector_store_files",
|
||||
schema=file_schema,
|
||||
)
|
||||
|
||||
if not await asyncio.to_thread(self.client.has_collection, "openai_vector_store_files_contents"):
|
||||
content_schema = MilvusClient.create_schema(
|
||||
auto_id=False,
|
||||
enable_dynamic_field=True,
|
||||
description="Contents for OpenAI vector store files",
|
||||
)
|
||||
content_schema.add_field(
|
||||
field_name="chunk_id", datatype=DataType.VARCHAR, is_primary=True, max_length=1024
|
||||
)
|
||||
content_schema.add_field(field_name="store_file_id", datatype=DataType.VARCHAR, max_length=1024)
|
||||
content_schema.add_field(field_name="store_id", datatype=DataType.VARCHAR, max_length=512)
|
||||
content_schema.add_field(field_name="file_id", datatype=DataType.VARCHAR, max_length=512)
|
||||
content_schema.add_field(field_name="content", datatype=DataType.VARCHAR, max_length=65535)
|
||||
|
||||
await asyncio.to_thread(
|
||||
self.client.create_collection,
|
||||
collection_name="openai_vector_store_files_contents",
|
||||
schema=content_schema,
|
||||
)
|
||||
|
||||
# Save file metadata
|
||||
file_data = [
|
||||
{
|
||||
"store_file_id": f"{store_id}_{file_id}",
|
||||
"store_id": store_id,
|
||||
"file_id": file_id,
|
||||
"file_info": json.dumps(file_info),
|
||||
}
|
||||
]
|
||||
await asyncio.to_thread(
|
||||
self.client.upsert,
|
||||
collection_name="openai_vector_store_files",
|
||||
data=file_data,
|
||||
)
|
||||
|
||||
# Save file contents
|
||||
contents_data = [
|
||||
{
|
||||
"chunk_id": generate_chunk_id(file_id, content.get("chunk_id", None)),
|
||||
"store_file_id": f"{store_id}_{file_id}",
|
||||
"store_id": store_id,
|
||||
"file_id": file_id,
|
||||
"content": json.dumps(content),
|
||||
}
|
||||
for content in file_contents
|
||||
]
|
||||
await asyncio.to_thread(
|
||||
self.client.upsert,
|
||||
collection_name="openai_vector_store_files_contents",
|
||||
data=contents_data,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error saving openai vector store file {file_id} for store {store_id}: {e}")
|
||||
|
||||
async def _load_openai_vector_store_file(self, store_id: str, file_id: str) -> dict[str, Any]:
|
||||
"""Load vector store file metadata from Milvus database."""
|
||||
raise NotImplementedError("Files API not yet implemented for Milvus")
|
||||
try:
|
||||
if not await asyncio.to_thread(self.client.has_collection, "openai_vector_store_files"):
|
||||
return {}
|
||||
|
||||
query_filter = f"store_id == '{store_id}' AND file_id == '{file_id}'"
|
||||
results = await asyncio.to_thread(
|
||||
self.client.query,
|
||||
collection_name="openai_vector_store_files",
|
||||
filter=query_filter,
|
||||
output_fields=["file_info"],
|
||||
)
|
||||
|
||||
if results:
|
||||
try:
|
||||
return json.loads(results[0]["file_info"])
|
||||
except json.JSONDecodeError as e:
|
||||
logger.error(f"Failed to decode file_info for store {store_id}, file {file_id}: {e}")
|
||||
return {}
|
||||
return {}
|
||||
except Exception as e:
|
||||
logger.error(f"Error loading openai vector store file {file_id} for store {store_id}: {e}")
|
||||
return {}
|
||||
|
||||
async def _load_openai_vector_store_file_contents(self, store_id: str, file_id: str) -> list[dict[str, Any]]:
|
||||
"""Load vector store file contents from Milvus database."""
|
||||
raise NotImplementedError("Files API not yet implemented for Milvus")
|
||||
try:
|
||||
if not await asyncio.to_thread(self.client.has_collection, "openai_vector_store_files_contents"):
|
||||
return []
|
||||
|
||||
query_filter = f"store_id == '{store_id}' AND file_id == '{file_id}'"
|
||||
results = await asyncio.to_thread(
|
||||
self.client.query,
|
||||
collection_name="openai_vector_store_files_contents",
|
||||
filter=query_filter,
|
||||
output_fields=["chunk_id", "store_id", "file_id", "content"],
|
||||
)
|
||||
print(f"\nresults from milvus = {results}\n")
|
||||
|
||||
contents = []
|
||||
for result in results:
|
||||
try:
|
||||
content = json.loads(result["content"])
|
||||
contents.append(content)
|
||||
except json.JSONDecodeError as e:
|
||||
logger.error(f"Failed to decode content for store {store_id}, file {file_id}: {e}")
|
||||
return contents
|
||||
except Exception as e:
|
||||
print(f"failed {e}")
|
||||
|
||||
logger.error(f"Error loading openai vector store file contents for {file_id} in store {store_id}: {e}")
|
||||
return []
|
||||
|
||||
async def _update_openai_vector_store_file(self, store_id: str, file_id: str, file_info: dict[str, Any]) -> None:
|
||||
"""Update vector store file metadata in Milvus database."""
|
||||
raise NotImplementedError("Files API not yet implemented for Milvus")
|
||||
try:
|
||||
if not await asyncio.to_thread(self.client.has_collection, "openai_vector_store_files"):
|
||||
return
|
||||
|
||||
file_data = [
|
||||
{
|
||||
"store_file_id": f"{store_id}_{file_id}",
|
||||
"store_id": store_id,
|
||||
"file_id": file_id,
|
||||
"file_info": json.dumps(file_info),
|
||||
}
|
||||
]
|
||||
await asyncio.to_thread(
|
||||
self.client.upsert,
|
||||
collection_name="openai_vector_store_files",
|
||||
data=file_data,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error updating openai vector store file {file_id} for store {store_id}: {e}")
|
||||
raise
|
||||
|
||||
async def _delete_openai_vector_store_file_from_storage(self, store_id: str, file_id: str) -> None:
|
||||
"""Delete vector store file metadata from Milvus database."""
|
||||
raise NotImplementedError("Files API not yet implemented for Milvus")
|
||||
print("milvus is trying to delete stuff")
|
||||
try:
|
||||
if not await asyncio.to_thread(self.client.has_collection, "openai_vector_store_files"):
|
||||
return
|
||||
|
||||
query_filter = f"store_id == '{store_id}' AND file_id == '{file_id}'"
|
||||
await asyncio.to_thread(
|
||||
self.client.delete,
|
||||
collection_name="openai_vector_store_files",
|
||||
filter=query_filter,
|
||||
)
|
||||
|
||||
if await asyncio.to_thread(self.client.has_collection, "openai_vector_store_files_contents"):
|
||||
await asyncio.to_thread(
|
||||
self.client.delete,
|
||||
collection_name="openai_vector_store_files_contents",
|
||||
filter=query_filter,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error deleting openai vector store file {file_id} for store {store_id}: {e}")
|
||||
raise
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue