The OpenAI compatibility layer was incorrectly importing
ChatCompletionMessageToolCallParam instead of the
ChatCompletionMessageFunctionToolCall class. This caused "Cannot
instantiate typing.Union" errors when processing agent requests with
tool calls.
Closes: #3141
Signed-off-by: Derek Higgins <derekh@redhat.com>
**What:**
- Added OpenAIChatCompletionTextOnlyMessageContent type for text-only
content validation
- Modified OpenAISystemMessageParam, OpenAIAssistantMessageParam,
OpenAIDeveloperMessageParam, and OpenAIToolMessageParam to use text-only
content type instead of mixed content
- OpenAIUserMessageParam unchanged - still accepts both text and images
- Updated OpenAPI spec files to reflect text-only content restrictions
in schemas
closes#2894
**Why:**
- Enforces OpenAI API compatibility by restricting image content to user
messages only
- Prevents API misuse where images might be sent in message types that
don't support them
- Aligns with OpenAI's actual API behavior where only user messages can
contain multimodal content
- Improves type safety and validation at the API boundary
**Test plan:**
- Added comprehensive parametrized tests covering all 5 OpenAI message
types
- Tests verify text string acceptance for all message types
- Tests verify text list acceptance for all message types
- Tests verify image rejection for system/assistant/developer/tool
messages (ValidationError expected)
- Tests verify user messages still accept images (backward compatibility
maintained)
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
- Added `set -e` to the beginning of the unit test script to ensure the
script exits on failure and correctly fails the CI when tests do not
pass.
- Fixed all unit tests that were silently failing in the CI.
- Fixed Python 3.13 unit test CI failing silently.
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
Closes#2877
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
- **Previously:** Unit tests passing in CI eventhough it failed 11 tests
->
[CI-run](4683681501 (step):4:2097)
- **Made the fix. Now, ensuring CI fails as expected on test failures:**
Unit tests failing in CI with 1 failed test ->
[CI-run](4684234247 (step):4:1506)
- This PR shows the CI passing and all unit tests passing.
# What does this PR do?
inference providers each have a static list of supported / known models.
some also have access to a dynamic list of currently available models.
this change gives prodivers using the ModelRegistryHelper the ability to
combine their static and dynamic lists.
for instance, OpenAIInferenceAdapter can implement
```
def query_available_models(self) -> list[str]:
return [entry.model for entry in self.openai_client.models.list()]
```
to augment its static list w/ a current list from openai.
## Test Plan
scripts/unit-test.sh
# What does this PR do?
previously, developers who ran `./scripts/unit-tests.sh` would get
`asyncio-mode=auto`, which meant `@pytest.mark.asyncio` and
`@pytest_asyncio.fixture` were redundent. developers who ran `pytest`
directly would get pytest's default (strict mode), would run into errors
leading them to add `@pytest.mark.asyncio` / `@pytest_asyncio.fixture`
to their code.
with this change -
- `asyncio_mode=auto` is included in `pyproject.toml` making behavior
consistent for all invocations of pytest
- removes all redundant `@pytest_asyncio.fixture` and
`@pytest.mark.asyncio`
- for good measure, requires `pytest>=8.4` and `pytest-asyncio>=1.0`
## Test Plan
- `./scripts/unit-tests.sh`
- `uv run pytest tests/unit`
# What does this PR do?
* Given that our API packages use "import *" in `__init.py__` we don't
need to do `from llama_stack.apis.models.models` but simply from
llama_stack.apis.models. The decision to use `import *` is debatable and
should probably be revisited at one point.
* Remove unneeded Ruff F401 rule
* Consolidate Ruff F403 rule in the pyprojectfrom
llama_stack.apis.models.models
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
Checks for RAGDocument of type InterleavedContent
I noticed when stepping through the code that the supported types for
`RAGDocument` included `InterleavedContent` as a content type. This type
is not checked against before putting the `doc.content` is regex matched
against. This would cause a runtime error. This change adds an explicit
check for type.
The only other part that I'm unclear on is how to handle the
`ImageContent` type since this would always just return `<image>` which
seems like an undesired behavior. Should the `InterleavedContent` type
be removed from `RAGDocument` and replaced with `URI | str`?
## Test Plan
[//]: # (## Documentation)
---------
Signed-off-by: Kevin <kpostlet@redhat.com>
# What does this PR do?
When converting OpenAI message content for the "system" and "assistant"
roles to Llama Stack inference APIs (used for some providers when
dealing with Llama models via OpenAI API requests to get proper prompt /
tool handling), we were not properly converting any non-string content.
I discovered this while running the new Responses AI verification suite
against the Fireworks provider, but instead of fixing it as part of some
ongoing work there split this out into a separate PR.
This fixes that, by using the `openai_content_to_content` helper we used
elsewhere to ensure content parts were mapped properly.
## Test Plan
I added a couple of new tests to `test_openai_compat` to reproduce this
issue and validate its fix. I ran those as below:
```
python -m pytest -s -v tests/unit/providers/utils/inference/test_openai_compat.py
```
Signed-off-by: Ben Browning <bbrownin@redhat.com>
# What does this PR do?
When the result of a ToolCall gets passed back into vLLM for the model
to handle the tool call result (as is often the case in agentic
tool-calling workflows), we forgot to handle the case where BuiltinTool
calls are not string values but instead instances of the BuiltinTool
enum. This fixes that, properly converting those enums to string values
before trying to serialize them into an OpenAI chat completion request
to vLLM.
PR #1931 fixed a bug where we weren't passing these tool calling results
back into vLLM, but as a side-effect it created this serialization bug
when using BuiltinTools.
Closes#2070
## Test Plan
I added a new unit test to the openai_compat unit tests to cover this
scenario, ensured the new test failed before this fix, and all the
existing tests there plus the new one passed with this fix.
```
python -m pytest -s -v tests/unit/providers/utils/inference/test_openai_compat.py
```
Signed-off-by: Ben Browning <bbrownin@redhat.com>
Include the tool call details with the chat when doing Rag with Remote
vllm
Fixes: #1929
With this PR the tool call is included in the chat returned to vllm, the
model (meta-llama/Llama-3.1-8B-Instruct) the returns the answer as
expected.
Signed-off-by: Derek Higgins <derekh@redhat.com>
# What does this PR do?
Now a separate thread is started to execute training jobs. Training
requests now return job ID before the job completes. (Which fixes API
timeouts for any jobs that take longer than a minute.)
Note: the scheduler code is meant to be spun out in the future into a
common provider service that can be reused for different APIs and
providers. It is also expected to back the /jobs API proposed here:
https://github.com/meta-llama/llama-stack/discussions/1238
Hence its somewhat generalized form which is expected to simplify its
adoption elsewhere in the future.
Note: this patch doesn't attempt to implement missing APIs (e.g. cancel
or job removal). This work will belong to follow-up PRs.
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]
Added unit tests for the scheduler module. For the API coverage, did
manual testing and was able to run a training cycle on GPU. The initial
call returned job ID before the training completed, as (now) expected.
Artifacts are returned as expected.
```
JobArtifactsResponse(checkpoints=[{'identifier': 'meta-llama/Llama-3.2-3B-Instruct-sft-0', 'created_at': '2025-03-07T22:45:19.892714', 'epoch': 0, 'post_training_job_id': 'test-job2ee77104-2fd3-4a4e-84cf-f83f8b8f1f50', 'path': '/home/ec2-user/.llama/checkpoints/meta-llama/Llama-3.2-3B-Instruct-sft-0', 'training_metrics': None}], job_uuid='test-job2ee77104-2fd3-4a4e-84cf-f83f8b8f1f50')
```
The integration test is currently disabled for the provider. I will look
into how it can be enabled in a different PR / issue context.
[//]: # (## Documentation)
Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>