# What does this PR do?
- Add new Vertex AI remote inference provider with litellm integration
- Support for Gemini models through Google Cloud Vertex AI platform
- Uses Google Cloud Application Default Credentials (ADC) for
authentication
- Added VertexAI models: gemini-2.5-flash, gemini-2.5-pro,
gemini-2.0-flash.
- Updated provider registry to include vertexai provider
- Updated starter template to support Vertex AI configuration
- Added comprehensive documentation and sample configuration
<!-- If resolving an issue, uncomment and update the line below -->
relates to https://github.com/meta-llama/llama-stack/issues/2747
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
Signed-off-by: Eran Cohen <eranco@redhat.com>
Co-authored-by: Francisco Arceo <arceofrancisco@gmail.com>
A bunch of miscellaneous cleanup focusing on tests, but ended up
speeding up starter distro substantially.
- Pulled llama stack client init for tests into `pytest_sessionstart` so
it does not clobber output
- Profiling of that told me where we were doing lots of heavy imports
for starter, so lazied them
- starter now starts 20seconds+ faster on my Mac
- A few other smallish refactors for `compat_client`
**Description**
This PR removes some of the warnings when uv builds the docs
- Errors appear when generating docs about .md files not appearing in
toctree. ~~Adding content to the `providers-gen.py ` file that adds `---
orphan: true ---` to to each file.~~. Added a toctree generator to the
`providers-gen.py` file, this gets rid of the errors in the builds.
- Deletes the `_openai_compat` files, extension of PR #2849
- Adds the `files` APIs section to the `providers` toctree on the index
page
- Manually adds the `--- orphan: true ---` to the advanced apis. Ill try
to find a way to modify the providers code gen so it automatically adds
it, but this fixes the errors.
- Adds the `testing.md` to the `contributing` toctree
- Adds `starting_llama_stack_server.md` to `distributions` toctree
There are some other warnings im still looking at but this PR gets rid
of most of the toctree errors
Theres also an issue with the actual distribution-codegen that I can
investigate in another PR. Opened a bug for it here #2873
# What does this PR do?
- Add base_url field to OpenAIConfig with default
"https://api.openai.com/v1"
- Update sample_run_config to support OPENAI_BASE_URL environment
variable
- Modify get_base_url() to return configured base_url instead of
hardcoded value
- Add comprehensive test suite covering:
- Default base URL behavior
- Custom base URL from config
- Environment variable override
- Config precedence over environment variables
- Client initialization with configured URL
- Model availability checks using configured URL
This enables users to configure custom OpenAI-compatible API endpoints
via environment variables or configuration files.
Closes#2910
## Test Plan
run unit tests
This flips #2823 and #2805 by making the Stack periodically query the
providers for models rather than the providers going behind the back and
calling "register" on to the registry themselves. This also adds support
for model listing for all other providers via `ModelRegistryHelper`.
Once this is done, we do not need to manually list or register models
via `run.yaml` and it will remove both noise and annoyance (setting
`INFERENCE_MODEL` environment variables, for example) from the new user
experience.
In addition, it adds a configuration variable `allowed_models` which can
be used to optionally restrict the set of models exposed from a
provider.
Just like #2805 but for vLLM.
We also make VLLM_URL env variable optional (not required) -- if not
specified, the provider silently sits idle and yells eventually if
someone tries to call a completion on it. This is done so as to allow
this provider to be present in the `starter` distribution.
## Test Plan
Set up vLLM, copy the starter template and set `{ refresh_models: true,
refresh_models_interval: 10 }` for the vllm provider and then run:
```
ENABLE_VLLM=vllm VLLM_URL=http://localhost:8000/v1 \
uv run llama stack run --image-type venv /tmp/starter.yaml
```
Verify that `llama-stack-client models list` brings up the model
correctly from vLLM.
Inline _inference_ providers haven't proved to be very useful -- they
are rarely used. And for good reason -- it is almost never a good idea
to include a complex (distributed) inference engine bundled into a
distributed stateful front-end server serving many other things.
Responsibility should be split properly.
See Discord discussion:
1395849853
For self-hosted providers like Ollama (or vLLM), the backing server is
running a set of models. That server should be treated as the source of
truth and the Stack registry should just be a cache for those models. Of
course, in production environments, you may not want this (because you
know what model you are running statically) hence there's a config
boolean to control this behavior.
_This is part of a series of PRs aimed at removing the requirement of
needing to set `INFERENCE_MODEL` env variables for running Llama Stack
server._
## Test Plan
Copy and modify the starter.yaml template / config and enable
`refresh_models: true, refresh_models_interval: 10` for the ollama
provider. Then, run:
```
LLAMA_STACK_LOGGING=all=debug \
ENABLE_OLLAMA=ollama uv run llama stack run --image-type venv /tmp/starter.yaml
```
See a gargantuan amount of logs, but verify that the provider is
periodically refreshing models. Stop and prune a model from ollama
server, restart the server. Verify that the model goes away when I call
`uv run llama-stack-client models list`
# What does this PR do?
* Removes a bunch of distros
* Removed distros were added into the "starter" distribution
* Doc for "starter" has been added
* Partially reverts https://github.com/meta-llama/llama-stack/pull/2482
since inference providers are disabled by default and can be turned on
manually via env variable.
* Disables safety in starter distro
Closes: https://github.com/meta-llama/llama-stack/issues/2502.
~Needs: https://github.com/meta-llama/llama-stack/pull/2482 for Ollama
to work properly in the CI.~
TODO:
- [ ] We can only update `install.sh` when we get a new release.
- [x] Update providers documentation
- [ ] Update notebooks to reference starter instead of ollama
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
We were not using conditionals correctly, conditionals can only be used
when the env variable is set, so `${env.ENVIRONMENT:+}` would return
None is ENVIRONMENT is not set.
If you want to create a conditional value, you need to do
`${env.ENVIRONMENT:=}`, this will pick the value of ENVIRONMENT if set,
otherwise will return None.
Closes: https://github.com/meta-llama/llama-stack/issues/2564
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
Simple approach to get some provider pages in the docs.
Add or update description fields in the provider configuration class
using Pydantic’s Field, ensuring these descriptions are clear and
complete, as they will be used to auto-generate provider documentation
via ./scripts/distro_codegen.py instead of editing the docs manually.
Signed-off-by: Sébastien Han <seb@redhat.com>