Commit graph

11 commits

Author SHA1 Message Date
Sai Prashanth S
cb7354a9ce
docs: Add detailed docstrings to API models and update OpenAPI spec (#2889)
This PR focuses on improving the developer experience by adding
comprehensive docstrings to the API data models across the Llama Stack.
These docstrings provide detailed explanations for each model and its
fields, making the API easier to understand and use.

**Key changes:**
- **Added Docstrings:** Added reST formatted docstrings to Pydantic
models in the `llama_stack/apis/` directory. This includes models for:
  - Agents (`agents.py`)
  - Benchmarks (`benchmarks.py`)
  - Datasets (`datasets.py`)
  - Inference (`inference.py`)
  - And many other API modules.
- **OpenAPI Spec Update:** Regenerated the OpenAPI specification
(`docs/_static/llama-stack-spec.yaml` and
`docs/_static/llama-stack-spec.html`) to include the new docstrings.
This will be reflected in the API documentation, providing richer
information to users.

**Impact:**
- Developers using the Llama Stack API will have a better understanding
of the data structures.
- The auto-generated API documentation is now more informative.

---------

Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
2025-07-30 16:32:59 -07:00
Mustafa Elbehery
b2c7543af7
fix(vectordb): VectorDBInput has no provider_id (#2830)
Some checks failed
Coverage Badge / unit-tests (push) Failing after 3s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 13s
Test External Providers / test-external-providers (venv) (push) Failing after 8s
Vector IO Integration Tests / test-matrix (3.12, inline::faiss) (push) Failing after 14s
Python Package Build Test / build (3.13) (push) Failing after 11s
Python Package Build Test / build (3.12) (push) Failing after 11s
Vector IO Integration Tests / test-matrix (3.12, inline::sqlite-vec) (push) Failing after 17s
Vector IO Integration Tests / test-matrix (3.13, inline::sqlite-vec) (push) Failing after 16s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 20s
Vector IO Integration Tests / test-matrix (3.12, remote::chromadb) (push) Failing after 18s
Unit Tests / unit-tests (3.12) (push) Failing after 13s
Integration Tests / discover-tests (push) Successful in 21s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 21s
Vector IO Integration Tests / test-matrix (3.13, remote::chromadb) (push) Failing after 16s
Unit Tests / unit-tests (3.13) (push) Failing after 13s
Vector IO Integration Tests / test-matrix (3.13, remote::pgvector) (push) Failing after 22s
Vector IO Integration Tests / test-matrix (3.13, inline::faiss) (push) Failing after 24s
Integration Tests / test-matrix (push) Failing after 15s
Vector IO Integration Tests / test-matrix (3.12, inline::milvus) (push) Failing after 53s
Vector IO Integration Tests / test-matrix (3.13, inline::milvus) (push) Failing after 51s
Vector IO Integration Tests / test-matrix (3.12, remote::pgvector) (push) Failing after 59s
Pre-commit / pre-commit (push) Successful in 1m35s
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
This PR add `provider_id` field to `VectorDBInput` class.

<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->

fixes https://github.com/meta-llama/llama-stack/issues/2819

Signed-off-by: Mustafa Elbehery <melbeher@redhat.com>
2025-07-21 14:03:40 +02:00
Francisco Arceo
31b088978a
fix: Fix /vector-stores/create API when vector store with duplicate name (#2617)
# What does this PR do?

Resolves https://github.com/meta-llama/llama-stack/issues/2735

Currently, if you test against OpenAI's Vector Stores API the
`client.vector_stores.search` call fails with an invalid vector_db
during routing (see the script referenced in the clickable item under
the Test Plan section).

This PR ensures that `client.vector_stores.search()` is compatible with
OpenAI's Vector Stores API.

Two biggest changes:
1. The `name`, which was previously used as the `vector_db_id`, has been
changed to be consistent with OpenAI's `vs_{uuid}` format.
2. The vector store ID has to be referenced by the ID, the name is not
reliable as every `client.vector_stores.create` results in a new vector
store.

NOTE: I believe this is a breaking change for end users as they'll need
to update their VectorDB identifiers.

## Test Plan
Unit tests:
```bash
./scripts/unit-tests.sh tests/unit/providers/vector_io/ -v
```
Integration tests:
```bash
ENABLE_MILVUS=milvus llama stack run /Users/farceo/dev/llama-stack/llama_stack/templates/starter/run.yaml --image-type venv

LLAMA_STACK_CONFIG=http://localhost:8321 pytest -sv tests/integration/vector_io/test_openai_vector_stores.py --embedding-model=all-MiniLM-L6-v2 -vv
```

Unit tests and test script below 👇 

<details> 
<summary>Click here for script used to test OpenAI and Llama Stack
Vector Store implementation</summary>

```python
import json
import argparse
from openai import OpenAI, pagination
import logging
from colorama import Fore, Style, init
import traceback
import os

# Initialize colorama for color support in terminal
init(autoreset=True)

# Setup basic logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

DEMO_VECTOR_STORE_NAME = "Support FAQ FJA"
global DEMO_VECTOR_STORE_ID
global DEMO_VECTOR_STORE_ID2


def colored_print(color, text):
    """Prints text to the console with the specified color."""
    print(f"{color}{text}{Style.RESET_ALL}")


def log_and_print(color, message, level=logging.INFO):
    """Logs a message and prints it to the console with the specified color."""
    logging.log(level, message)
    colored_print(color, message)


def run_tests(client, prefix="openai"):
    """
    Runs all tests using the provided OpenAI client and saves the output
    to JSON files with the given prefix.
    """
    # Create the directory if it doesn't exist
    os.makedirs('openai_testing', exist_ok=True)

    # Default values in case tests fail
    global DEMO_VECTOR_STORE_ID, DEMO_VECTOR_STORE_ID2
    DEMO_VECTOR_STORE_ID = None
    DEMO_VECTOR_STORE_ID2 = None

    def test_idempotent_vector_store_creation():
        """
        Test that creating a vector store with the same name is idempotent.
        """
        log_and_print(Fore.BLUE, "Starting vector store creation test...")
        try:
            vector_store = client.vector_stores.create(
                name=DEMO_VECTOR_STORE_NAME,
            )

            # Attempt to create the same vector store again
            vector_store2 = client.vector_stores.create(
                name=DEMO_VECTOR_STORE_NAME,
            )

            # Check instead of assert
            if vector_store2.id != vector_store.id:
                log_and_print(Fore.YELLOW, f"FAILED IDEMPOTENCY: the same VectorStore name for {prefix.upper()} does not return the same ID",
                              level=logging.WARNING)
            else:
                log_and_print(Fore.GREEN, f"PASSED IDEMPOTENCY: f{vector_store2.id} == {vector_store.id} the same VectorStore name for {prefix.upper()} returns the same ID")

            vector_store_data = vector_store.to_dict()
            log_and_print(Fore.WHITE, f"vector_stores.create = {json.dumps(vector_store_data, indent=2)}")
            with open(f'openai_testing/{prefix}_vector_store_create.json', 'w') as f:
                json.dump(vector_store_data, f, indent=2)

            global DEMO_VECTOR_STORE_ID, DEMO_VECTOR_STORE_ID2
            DEMO_VECTOR_STORE_ID = vector_store.id
            DEMO_VECTOR_STORE_ID2 = vector_store2.id
            return DEMO_VECTOR_STORE_ID, DEMO_VECTOR_STORE_ID2
        except Exception as e:
            log_and_print(Fore.RED, f"Idempotent vector store creation test failed: {e}", level=logging.ERROR)
            logging.error(traceback.format_exc())
            # Create a fallback vector store ID if needed
            if 'vector_store' in locals() and vector_store:
                DEMO_VECTOR_STORE_ID = vector_store.id
            return DEMO_VECTOR_STORE_ID, DEMO_VECTOR_STORE_ID2

    def test_vector_store_list():
        """
        Test listing vector stores.
        """
        log_and_print(Fore.BLUE, "Starting vector store list test...")
        try:
            vector_stores = client.vector_stores.list()

            # Check instead of assert
            if not isinstance(vector_stores, pagination.SyncCursorPage):
                log_and_print(Fore.YELLOW, f"FAILED: Expected a list of vector stores, got {type(vector_stores)}",
                              level=logging.WARNING)
            else:
                log_and_print(Fore.GREEN, "Vector store list test passed!")

            vector_stores_data = vector_stores.to_dict()
            log_and_print(Fore.WHITE, f"vector_stores.list = {json.dumps(vector_stores_data, indent=2)}")
            with open(f'openai_testing/{prefix}_vector_store_list.json', 'w') as f:
                json.dump(vector_stores_data, f, indent=2)
        except Exception as e:
            log_and_print(Fore.RED, f"Vector store list test failed: {e}", level=logging.ERROR)
            logging.error(traceback.format_exc())

    def test_retrieve_vector_store():
        """
        Test retrieving a specific vector store.
        """
        log_and_print(Fore.BLUE, "Starting retrieve vector store test...")
        if not DEMO_VECTOR_STORE_ID:
            log_and_print(Fore.YELLOW, "Skipping retrieve vector store test - no vector store ID available",
                          level=logging.WARNING)
            return

        try:
            vector_store = client.vector_stores.retrieve(
                vector_store_id=DEMO_VECTOR_STORE_ID,
            )

            # Check instead of assert
            if vector_store.id != DEMO_VECTOR_STORE_ID:
                log_and_print(Fore.YELLOW, "FAILED: Retrieved vector store ID does not match", level=logging.WARNING)
            else:
                log_and_print(Fore.GREEN, "Retrieve vector store test passed!")

            vector_store_data = vector_store.to_dict()
            log_and_print(Fore.WHITE, f"vector_stores.retrieve = {json.dumps(vector_store_data, indent=2)}")
            with open(f'openai_testing/{prefix}_vector_store_retrieve.json', 'w') as f:
                json.dump(vector_store_data, f, indent=2)
        except Exception as e:
            log_and_print(Fore.RED, f"Retrieve vector store test failed: {e}", level=logging.ERROR)
            logging.error(traceback.format_exc())

    def test_modify_vector_store():
        """
        Test modifying a vector store.
        """
        log_and_print(Fore.BLUE, "Starting modify vector store test...")
        if not DEMO_VECTOR_STORE_ID:
            log_and_print(Fore.YELLOW, "Skipping modify vector store test - no vector store ID available",
                          level=logging.WARNING)
            return

        try:
            updated_vector_store = client.vector_stores.update(
                vector_store_id=DEMO_VECTOR_STORE_ID,
                name="Updated Support FAQ FJA",
            )

            # Check instead of assert
            if updated_vector_store.name != "Updated Support FAQ FJA":
                log_and_print(Fore.YELLOW, "FAILED: Vector store name was not updated correctly", level=logging.WARNING)
            else:
                log_and_print(Fore.GREEN, "Modify vector store test passed!")

            updated_vector_store_data = updated_vector_store.to_dict()
            log_and_print(Fore.WHITE, f"vector_stores.modify = {json.dumps(updated_vector_store_data, indent=2)}")
            with open(f'openai_testing/{prefix}_vector_store_modify.json', 'w') as f:
                json.dump(updated_vector_store_data, f, indent=2)
        except Exception as e:
            log_and_print(Fore.RED, f"Modify vector store test failed: {e}", level=logging.ERROR)
            logging.error(traceback.format_exc())

    def test_delete_vector_store():
        """
        Test deleting a vector store.
        """
        log_and_print(Fore.BLUE, "Starting delete vector store test...")
        if not DEMO_VECTOR_STORE_ID2:
            log_and_print(Fore.YELLOW, "Skipping delete vector store test - no second vector store ID available",
                          level=logging.WARNING)
            return

        try:
            response = client.vector_stores.delete(
                vector_store_id=DEMO_VECTOR_STORE_ID2,
            )

            log_and_print(Fore.GREEN, "Delete vector store test passed!")

            response_data = response.to_dict()
            log_and_print(Fore.WHITE, f"Vector store delete response = {json.dumps(response_data, indent=2)}")
            with open(f'openai_testing/{prefix}_vector_store_delete.json', 'w') as f:
                json.dump(response_data, f, indent=2)
        except Exception as e:
            log_and_print(Fore.RED, f"Delete vector store test failed: {e}", level=logging.ERROR)
            logging.error(traceback.format_exc())

    def test_create_vector_store_file():
        log_and_print(Fore.BLUE, "Starting create vector store file test...")
        if not DEMO_VECTOR_STORE_ID:
            log_and_print(Fore.YELLOW, "Skipping create vector store file test - no vector store ID available",
                          level=logging.WARNING)
            return

        try:
            # create jsonl of files as an example
            with open("mydata.jsonl", "w") as f:
                f.write('{"text": "What is the return policy?", "metadata": {"category": "support"}}\n')
                f.write('{"text": "How do I reset my password?", "metadata": {"category": "support"}}\n')
                f.write('{"text": "Where can I find my order history?", "metadata": {"category": "support"}}\n')
                f.write('{"text": "What are the shipping options?", "metadata": {"category": "support"}}\n')
                f.write('{"text": "What is your favorite banana?", "metadata": {"category": "support"}}\n')

            # Create a simple text file if my_data_small.txt doesn't exist
            if not os.path.exists("my_data_small.txt"):
                with open("my_data_small.txt", "w") as f:
                    f.write("This is a test file for vector store testing.\n")

            created_file = client.files.create(
                file=open("my_data_small.txt", "rb"),
                purpose="assistants",
            )

            created_file_data = created_file.to_dict()
            log_and_print(Fore.WHITE, f"Created file {json.dumps(created_file_data, indent=2)}")
            with open(f'openai_testing/{prefix}_file_create.json', 'w') as f:
                json.dump(created_file_data, f, indent=2)

            retrieved_files = client.files.retrieve(created_file.id)
            retrieved_files_data = retrieved_files.to_dict()
            log_and_print(Fore.WHITE, f"Retrieved file {json.dumps(retrieved_files_data, indent=2)}")
            with open(f'openai_testing/{prefix}_file_retrieve.json', 'w') as f:
                json.dump(retrieved_files_data, f, indent=2)

            vector_store_file = client.vector_stores.files.create(
                vector_store_id=DEMO_VECTOR_STORE_ID,
                file_id=created_file.id,
            )
            log_and_print(Fore.GREEN, "Create vector store file test passed!")
        except Exception as e:
            log_and_print(Fore.RED, f"Create vector store file test failed: {e}", level=logging.ERROR)
            logging.error(traceback.format_exc())

    def test_search_vector_store():
        """
        Test searching a vector store.
        """
        log_and_print(Fore.BLUE, "Starting search vector store test...")
        if not DEMO_VECTOR_STORE_ID:
            log_and_print(Fore.YELLOW, "Skipping search vector store test - no vector store ID available",
                          level=logging.WARNING)
            return

        try:
            query = "What is the banana policy?"
            search_results = client.vector_stores.search(
                vector_store_id=DEMO_VECTOR_STORE_ID,
                query=query,
                max_num_results=10,
                ranking_options={
                    'ranker': 'default-2024-11-15',
                    'score_threshold': 0.0,
                },
                rewrite_query=False,
            )

            # Check instead of assert
            if not isinstance(search_results, pagination.SyncPage):
                log_and_print(Fore.YELLOW, f"FAILED: Expected a list of search results, got {type(search_results)}",
                              level=logging.WARNING)
            else:
                log_and_print(Fore.GREEN, "Search vector store test passed!")

            search_results_dict = search_results.to_dict()
            log_and_print(Fore.WHITE, f"Search results = {search_results_dict}")
            with open(f'openai_testing/{prefix}_vector_store_search.json', 'w') as f:
                json.dump(search_results_dict, f, indent=2)

            log_and_print(Fore.WHITE, f"vector_stores.search = {search_results.to_json()}")
        except Exception as e:
            log_and_print(Fore.RED, f"Search vector store test failed: {e}", level=logging.ERROR)
            logging.error(traceback.format_exc())

    # Run all tests in sequence, even if some fail
    test_results = []

    try:
        result = test_idempotent_vector_store_creation()
        if result and len(result) == 2:
            DEMO_VECTOR_STORE_ID, DEMO_VECTOR_STORE_ID2 = result
        test_results.append(True)
    except Exception as e:
        log_and_print(Fore.RED, f"Vector store creation test failed: {e}", level=logging.ERROR)
        logging.error(traceback.format_exc())
        test_results.append(False)

    for test_func in [
        test_vector_store_list,
        test_retrieve_vector_store,
        test_modify_vector_store,
        test_delete_vector_store,
        test_create_vector_store_file,
        test_search_vector_store
    ]:
        try:
            test_func()
            test_results.append(True)
        except Exception as e:
            log_and_print(Fore.RED, f"{test_func.__name__} failed: {e}", level=logging.ERROR)
            logging.error(traceback.format_exc())
            test_results.append(False)

    if all(test_results):
        log_and_print(Fore.GREEN, f"All {prefix} tests completed successfully!")
    else:
        failed_count = test_results.count(False)
        log_and_print(Fore.YELLOW, f"{failed_count} {prefix} test(s) failed, but script completed.")


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Run OpenAI and/or LlamaStack tests.")
    parser.add_argument(
        "--provider",
        type=str,
        default="llama",
        choices=["openai", "llama", "both"],
        help="Specify which environment to test: openai, llama, or both. Default is both.",
    )
    args = parser.parse_args()

    try:
        if args.provider in ("openai", "both"):
            openai_client = OpenAI()
            run_tests(openai_client, prefix="openai")

        if args.provider in ("llama", "both"):
            llama_client = OpenAI(base_url="http://localhost:8321/v1/openai/v1", api_key="none")
            run_tests(llama_client, prefix="llama")

        log_and_print(Fore.GREEN, "All tests completed!")

    except Exception as e:
        log_and_print(Fore.RED, f"Tests failed to complete: {e}", level=logging.ERROR)
        logging.error(traceback.format_exc())
```
</details>

---------

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
2025-07-15 11:24:41 -04:00
Sébastien Han
ac5fd57387
chore: remove nested imports (#2515)
# What does this PR do?

* Given that our API packages use "import *" in `__init.py__` we don't
need to do `from llama_stack.apis.models.models` but simply from
llama_stack.apis.models. The decision to use `import *` is debatable and
should probably be revisited at one point.

* Remove unneeded Ruff F401 rule
* Consolidate Ruff F403 rule in the pyprojectfrom
llama_stack.apis.models.models

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-06-26 08:01:05 +05:30
Sébastien Han
bb5fca9521
chore: more API validators (#2165)
# What does this PR do?

We added:

* make sure docstrings are present with 'params' and 'returns'
* fail if someone sets 'returns: None'
* fix the failing APIs

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-05-15 11:22:51 -07:00
Sébastien Han
1a529705da
chore: more mypy fixes (#2029)
# What does this PR do?

Mainly tried to cover the entire llama_stack/apis directory, we only
have one left. Some excludes were just noop.

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-05-06 09:52:31 -07:00
Ihar Hrachyshka
9e6561a1ec
chore: enable pyupgrade fixes (#1806)
# What does this PR do?

The goal of this PR is code base modernization.

Schema reflection code needed a minor adjustment to handle UnionTypes
and collections.abc.AsyncIterator. (Both are preferred for latest Python
releases.)

Note to reviewers: almost all changes here are automatically generated
by pyupgrade. Some additional unused imports were cleaned up. The only
change worth of note can be found under `docs/openapi_generator` and
`llama_stack/strong_typing/schema.py` where reflection code was updated
to deal with "newer" types.

Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
2025-05-01 14:23:50 -07:00
Sébastien Han
c029fbcd13
fix: return 4xx for non-existent resources in GET requests (#1635)
# What does this PR do?

- Removed Optional return types for GET methods
- Raised ValueError when requested resource is not found
- Ensures proper 4xx response for missing resources
- Updated the API generator to check for wrong signatures

```
$ uv run --with ".[dev]" ./docs/openapi_generator/run_openapi_generator.sh
Validating API method return types...

API Method Return Type Validation Errors:

Method ScoringFunctions.get_scoring_function returns Optional type
```

Closes: https://github.com/meta-llama/llama-stack/issues/1630

## Test Plan

Run the server then:

```
curl http://127.0.0.1:8321/v1/models/foo     
{"detail":"Invalid value: Model 'foo' not found"}%  
```

Server log:

```
INFO:     127.0.0.1:52307 - "GET /v1/models/foo HTTP/1.1" 400 Bad Request
09:51:42.654 [END] /v1/models/foo [StatusCode.OK] (134.65ms)
 09:51:42.651 [ERROR] Error executing endpoint route='/v1/models/{model_id:path}' method='get'
Traceback (most recent call last):
  File "/Users/leseb/Documents/AI/llama-stack/llama_stack/distribution/server/server.py", line 193, in endpoint
    return await maybe_await(value)
  File "/Users/leseb/Documents/AI/llama-stack/llama_stack/distribution/server/server.py", line 156, in maybe_await
    return await value
  File "/Users/leseb/Documents/AI/llama-stack/llama_stack/providers/utils/telemetry/trace_protocol.py", line 102, in async_wrapper
    result = await method(self, *args, **kwargs)
  File "/Users/leseb/Documents/AI/llama-stack/llama_stack/distribution/routers/routing_tables.py", line 217, in get_model
    raise ValueError(f"Model '{model_id}' not found")
ValueError: Model 'foo' not found
```

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-03-18 14:06:53 -07:00
Ashwin Bharambe
314ee09ae3
chore: move all Llama Stack types from llama-models to llama-stack (#1098)
llama-models should have extremely minimal cruft. Its sole purpose
should be didactic -- show the simplest implementation of the llama
models and document the prompt formats, etc.

This PR is the complement to
https://github.com/meta-llama/llama-models/pull/279

## Test Plan

Ensure all `llama` CLI `model` sub-commands work:

```bash
llama model list
llama model download --model-id ...
llama model prompt-format -m ...
```

Ran tests:
```bash
cd tests/client-sdk
LLAMA_STACK_CONFIG=fireworks pytest -s -v inference/
LLAMA_STACK_CONFIG=fireworks pytest -s -v vector_io/
LLAMA_STACK_CONFIG=fireworks pytest -s -v agents/
```

Create a fresh venv `uv venv && source .venv/bin/activate` and run
`llama stack build --template fireworks --image-type venv` followed by
`llama stack run together --image-type venv` <-- the server runs

Also checked that the OpenAPI generator can run and there is no change
in the generated files as a result.

```bash
cd docs/openapi_generator
sh run_openapi_generator.sh
```
2025-02-14 09:10:59 -08:00
Xi Yan
2fa9e3c941
fix: make backslash work in GET /models/{model_id:path} (#1068) 2025-02-13 08:46:43 -08:00
Ashwin Bharambe
3ae8585b65
[memory refactor][1/n] Rename Memory -> VectorIO, MemoryBanks -> VectorDBs (#828)
See https://github.com/meta-llama/llama-stack/issues/827 for the broader
design.

This is the first part:

- delete other kinds of memory banks (keyvalue, keyword, graph) for now;
we will introduce a keyvalue store API as part of this design but not
use it in the RAG tool yet.
- renaming of the APIs
2025-01-22 09:59:30 -08:00