# What does this PR do?
This PR implements hybrid search for Milvus DB based on the inbuilt
milvus support.
To test:
```
pytest tests/unit/providers/vector_io/remote/test_milvus.py -v -s
--tb=long --disable-warnings --asyncio-mode=auto
```
Signed-off-by: Varsha Prasad Narsing <varshaprasad96@gmail.com>
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
Extend the Shields Protocol and implement the capability to unregister
previously registered shields and CLI for shields management.
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
Closes#2581
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
First of, test API for shields
1. Install and start Ollama:
`ollama serve`
2. Pull Llama Guard Model in Ollama:
`ollama pull llama-guard3:8b`
3. Configure env variables:
```
export ENABLE_OLLAMA=ollama
export OLLAMA_URL=http://localhost:11434
```
4. Build Llama Stack distro:
`llama stack build --template starter --image-type venv `
5. Start Llama Stack server:
`llama stack run starter --port 8321`
6. Check if Ollama model is available:
`curl -X GET http://localhost:8321/v1/models | jq '.data[] |
select(.provider_id=="ollama")'`
7. Register a new Shield using Ollama provider:
```
curl -X POST http://localhost:8321/v1/shields \
-H "Content-Type: application/json" \
-d '{
"shield_id": "test-shield",
"provider_id": "llama-guard",
"provider_shield_id": "ollama/llama-guard3:8b",
"params": {}
}'
```
`{"identifier":"test-shield","provider_resource_id":"ollama/llama-guard3:8b","provider_id":"llama-guard","type":"shield","owner":{"principal":"","attributes":{}},"params":{}}%
`
8. Check if shield was registered:
`curl -X GET http://localhost:8321/v1/shields/test-shield`
`{"identifier":"test-shield","provider_resource_id":"ollama/llama-guard3:8b","provider_id":"llama-guard","type":"shield","owner":{"principal":"","attributes":{}},"params":{}}%
`
9. Run shield:
```
curl -X POST http://localhost:8321/v1/safety/run-shield \
-H "Content-Type: application/json" \
-d '{
"shield_id": "test-shield",
"messages": [
{
"role": "user",
"content": "How can I hack into someone computer?"
}
],
"params": {}
}'
```
`{"violation":{"violation_level":"error","user_message":"I can't answer
that. Can I help with something
else?","metadata":{"violation_type":"S2"}}}% `
10. Unregister shield:
`curl -X DELETE http://localhost:8321/v1/shields/test-shield`
`null% `
11. Verify shield was deleted:
`curl -X GET http://localhost:8321/v1/shields/test-shield`
`{"detail":"Invalid value: Shield 'test-shield' not found"}%`
All tests passed ✅
```
========================================================================== 430 passed, 194 warnings in 19.54s ==========================================================================
/Users/iamiller/GitHub/llama-stack/.venv/lib/python3.12/site-packages/litellm/llms/custom_httpx/async_client_cleanup.py:78: RuntimeWarning: coroutine 'close_litellm_async_clients' was never awaited
loop.close()
RuntimeWarning: Enable tracemalloc to get the object allocation traceback
Wrote HTML report to htmlcov-3.12/index.html
```
As the title says. Distributions is in, Templates is out.
`llama stack build --template` --> `llama stack build --distro`. For
backward compatibility, the previous option is kept but results in a
warning.
Updated `server.py` to remove the "config_or_template" backward
compatibility since it has been a couple releases since that change.
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
This PR is responsible for removal of Conda support in Llama Stack
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
Closes#2539
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
# What does this PR do?
Adds support to Vector store Open AI APIs in Qdrant.
<!-- If resolving an issue, uncomment and update the line below -->
Closes#2463
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
Signed-off-by: Varsha Prasad Narsing <varshaprasad96@gmail.com>
Co-authored-by: ehhuang <ehhuang@users.noreply.github.com>
Co-authored-by: Francisco Arceo <arceofrancisco@gmail.com>
# What does this PR do?
This PR (1) enables the files API for Weaviate and (2) enables
integration tests for Weaviate, which adds a docker container to the
github action.
This PR also handles a couple of edge cases for in creating the
collection and ensuring the tests all pass.
## Test Plan
CI enabled
---------
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
# What does this PR do?
Improve user experience by providing specific guidance when no API key
is available, showing both provider data header and config options with
the correct field name for each provider.
Also adds comprehensive test coverage for API key resolution scenarios.
addresses #2990 for providers using litellm openai mixin
## Test Plan
`./scripts/unit-tests.sh
tests/unit/providers/inference/test_litellm_openai_mixin.py`
# What does this PR do?
- Initialize route_impls to None in constructor to prevent
AttributeError
- Consolidate initialization checks to single point in request() method
- Improve error message to be more helpful ("Please call initialize()
first")
- Add comprehensive test suite to prevent regressions
The library client now has better error handling when users forget to
call initialize(), showing a clear ValueError instead of confusing
AttributeError. All initialization validation is now centralized in the
request() method, with internal methods (_call_non_streaming,
_call_streaming, _convert_body) relying on this single check for
cleaner, more maintainable code.
closes#2943
## Test Plan
`./scripts/unit-tests.sh`
Implements a comprehensive recording and replay system for inference API
calls that eliminates dependency on online inference providers during
testing. The system treats inference as deterministic by recording real
API responses and replaying them in subsequent test runs. Applies to
OpenAI clients (which should cover many inference requests) as well as
Ollama AsyncClient.
For storing, we use a hybrid system: Sqlite for fast lookups and JSON
files for easy greppability / debuggability.
As expected, tests become much much faster (more than 3x in just
inference testing.)
```bash
LLAMA_STACK_TEST_INFERENCE_MODE=record LLAMA_STACK_TEST_RECORDING_DIR=<...> \
uv run pytest -s -v tests/integration/inference \
--stack-config=starter \
-k "not( builtin_tool or safety_with_image or code_interpreter or test_rag )" \
--text-model="ollama/llama3.2:3b-instruct-fp16" \
--embedding-model=sentence-transformers/all-MiniLM-L6-v2
```
```bash
LLAMA_STACK_TEST_INFERENCE_MODE=replay LLAMA_STACK_TEST_RECORDING_DIR=<...> \
uv run pytest -s -v tests/integration/inference \
--stack-config=starter \
-k "not( builtin_tool or safety_with_image or code_interpreter or test_rag )" \
--text-model="ollama/llama3.2:3b-instruct-fp16" \
--embedding-model=sentence-transformers/all-MiniLM-L6-v2
```
- `LLAMA_STACK_TEST_INFERENCE_MODE`: `live` (default), `record`, or
`replay`
- `LLAMA_STACK_TEST_RECORDING_DIR`: Storage location (must be specified
for record or replay modes)
**What:**
- Added OpenAIChatCompletionTextOnlyMessageContent type for text-only
content validation
- Modified OpenAISystemMessageParam, OpenAIAssistantMessageParam,
OpenAIDeveloperMessageParam, and OpenAIToolMessageParam to use text-only
content type instead of mixed content
- OpenAIUserMessageParam unchanged - still accepts both text and images
- Updated OpenAPI spec files to reflect text-only content restrictions
in schemas
closes#2894
**Why:**
- Enforces OpenAI API compatibility by restricting image content to user
messages only
- Prevents API misuse where images might be sent in message types that
don't support them
- Aligns with OpenAI's actual API behavior where only user messages can
contain multimodal content
- Improves type safety and validation at the API boundary
**Test plan:**
- Added comprehensive parametrized tests covering all 5 OpenAI message
types
- Tests verify text string acceptance for all message types
- Tests verify text list acceptance for all message types
- Tests verify image rejection for system/assistant/developer/tool
messages (ValidationError expected)
- Tests verify user messages still accept images (backward compatibility
maintained)
# What does this PR do?
- Add base_url field to OpenAIConfig with default
"https://api.openai.com/v1"
- Update sample_run_config to support OPENAI_BASE_URL environment
variable
- Modify get_base_url() to return configured base_url instead of
hardcoded value
- Add comprehensive test suite covering:
- Default base URL behavior
- Custom base URL from config
- Environment variable override
- Config precedence over environment variables
- Client initialization with configured URL
- Model availability checks using configured URL
This enables users to configure custom OpenAI-compatible API endpoints
via environment variables or configuration files.
Closes#2910
## Test Plan
run unit tests
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
- Added `set -e` to the beginning of the unit test script to ensure the
script exits on failure and correctly fails the CI when tests do not
pass.
- Fixed all unit tests that were silently failing in the CI.
- Fixed Python 3.13 unit test CI failing silently.
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
Closes#2877
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
- **Previously:** Unit tests passing in CI eventhough it failed 11 tests
->
[CI-run](4683681501 (step):4:2097)
- **Made the fix. Now, ensuring CI fails as expected on test failures:**
Unit tests failing in CI with 1 failed test ->
[CI-run](4684234247 (step):4:1506)
- This PR shows the CI passing and all unit tests passing.
# What does this PR do?
Enable Chroma inline unit tests and fix integration tests.
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
---------
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
# What does this PR do?
Today, external providers are installed via the `external_providers_dir`
in the config. This necessitates users to understand the `ProviderSpec`
and set up their directories accordingly. This process splits up the
config for the stack across multiple files, directories, and formats.
Most (if not all) external providers today have a
[get_provider_spec](559cb18fbb/src/ramalama_stack/provider.py (L9))
method that sits unused. Utilizing this method rather than the
providers.d route allows for a much easier installation process for
external providers and limits the amount of extra configuration a
regular user has to do to get their stack off the ground.
To accomplish this and wire it throughout the build process, Introduce
the concept of a `module` for users to specify for an external provider
upon build time. In order to facilitate this, align the build and run
spec to use `Provider` class rather than the stringified provider_type
that build currently uses.
For example, say this is in your build config:
```
- provider_id: ramalama
provider_type: remote::ramalama
module: ramalama_stack
```
during build (in the various `build_...` scripts), additionally to
installing any pip dependencies we will also install this module and use
the `get_provider_spec` method to retrieve the ProviderSpec that is
currently specified using `providers.d`.
In production so far, providing instructions for installing external
providers for users has been difficult: they need to install the module
as a pre-req, create the providers.d directory, copy in the provider
spec, and also copy in the necessary build/run yaml files. Accessing an
external provider should be as easy as possible, and pointing to its
installable module aligns more with the rest of our build and dependency
management process.
For now, `external_providers_dir` still exists as an alternate more
declarative method of using external providers.
## Test Plan
added an integration test installing an external provider from module
and more unit test coverage for `get_provider_registry`
( the warning in yellow is expected, the module is installed inside of
the build env, not where we are running the command)
<img width="1119" height="400" alt="Screenshot 2025-07-24 at 11 30
48 AM"
src="https://github.com/user-attachments/assets/1efbaf45-b9e8-451a-bd63-264ed664706d"
/>
<img width="1154" height="618" alt="Screenshot 2025-07-24 at 11 31
14 AM"
src="https://github.com/user-attachments/assets/feb2b3ea-c5dd-418e-9662-9a3bd5dd6bdc"
/>
---------
Signed-off-by: Charlie Doern <cdoern@redhat.com>
# What does this PR do?
- Added ability to specify `required_scope` when declaring an API. This
is part of the `@webmethod` decorator.
- If auth is enabled, a user can access an API only if
`user.attributes['scope']` includes the `required_scope`
- We add `required_scope='telemetry.read'` to the telemetry read APIs.
## Test Plan
CI with added tests
1. Enable server.auth with github token
2. Observe `client.telemetry.query_traces()` returns 403
This flips #2823 and #2805 by making the Stack periodically query the
providers for models rather than the providers going behind the back and
calling "register" on to the registry themselves. This also adds support
for model listing for all other providers via `ModelRegistryHelper`.
Once this is done, we do not need to manually list or register models
via `run.yaml` and it will remove both noise and annoyance (setting
`INFERENCE_MODEL` environment variables, for example) from the new user
experience.
In addition, it adds a configuration variable `allowed_models` which can
be used to optionally restrict the set of models exposed from a
provider.
# What does this PR do?
This PR implements the openai compatible endpoints for chromadb
Closes#2462
## Test Plan
Ran ollama llama stack server and ran the command
`pytest -sv --stack-config=http://localhost:8321
tests/integration/vector_io/test_openai_vector_stores.py
--embedding-model all-MiniLM-L6-v2`
8 failed, 27 passed, 8 skipped, 1 xfailed
The failed ones are regarding files api
---------
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
Co-authored-by: sarthakdeshpande <sarthak.deshpande@engati.com>
Co-authored-by: Francisco Javier Arceo <farceo@redhat.com>
Co-authored-by: Francisco Arceo <arceofrancisco@gmail.com>
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
I fixed test_access_policy() function providing provider_model_id in
each register model endpoint to pass assertions.
Initially I faced this issue:
```
tests/unit/server/test_quota.py::test_authenticated_quota_allows_up_to_limit
tests/unit/server/test_quota.py::test_authenticated_quota_blocks_after_limit
tests/unit/server/test_quota.py::test_anonymous_quota_allows_up_to_limit
tests/unit/server/test_quota.py::test_anonymous_quota_blocks_after_limit
/Users/iamiller/GitHub/llama-stack/.venv/lib/python3.12/site-packages/aiosqlite/core.py:105: DeprecationWarning: The default datetime adapter is deprecated as of Python 3.12; see the sqlite3 documentation for suggested replacement recipes
result = function()
-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html
============================================================================== short test summary info ===============================================================================
FAILED tests/unit/server/test_access_control.py::test_access_policy - AssertionError: assert 'test_provider/model-1' == 'model-1'
==================================================================== 1 failed, 436 passed, 194 warnings in 20.09s ====================================================================
```
After resolved, all works:
```
-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html
========================================================================= 437 passed, 194 warnings in 19.41s =========================================================================
```
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
Run ` ./scripts/unit-tests.sh`
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
I noticed a few issues with my implementation of the search mode
validation for RagQuery.
This PR replaces the check for search mode in RagQuery with a Literal.
There were issues before with
```
TypeError: Object of type RAGSearchMode is not JSON serializable
```
When using
```
query_config = RAGQueryConfig(max_chunks=6, mode="vector").model_dump()
```
It also fixes the fact that despite user input "vector" was always the
used search mode.
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
Verify that a chosen search mode works when using Rag Query or use below
agent config:
```
agent = Agent(
client,
model=model_id,
instructions="You are a helpful assistant",
tools=[
{
"name": "builtin::rag/knowledge_search",
"args": {
"vector_db_ids": [vector_db_id],
"query_config": {
"mode": "keyword",
"max_chunks": 6
}
},
}
],
)
```
Running Unit Tests:
```
uv sync --extra dev
uv run pytest tests/unit/rag/test_rag_query.py -v
```
# What does this PR do?
add an `OpenAIMixin` for use by inference providers who remote endpoints
support an OpenAI compatible API.
use is demonstrated by refactoring
- OpenAIInferenceAdapter
- NVIDIAInferenceAdapter (adds embedding support)
- LlamaCompatInferenceAdapter
## Test Plan
existing unit and integration tests
This PR updates model registration and lookup behavior to be slightly
more general / flexible. See
https://github.com/meta-llama/llama-stack/issues/2843 for more details.
Note that this change is backwards compatible given the design of the
`lookup_model()` method.
## Test Plan
Added unit tests
# What does this PR do?
Refactors the vector store routing logic by moving OpenAI-compatible
vector store operations from the `VectorIORouter` to the
`VectorDBsRoutingTable`.
Closes https://github.com/meta-llama/llama-stack/issues/2761
## Test Plan
Added unit tests to cover new routing logic and ACL checks.
---------
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
The pre-commit workflow was failing in the main branch and removing
`@pytest.mark.asyncio `from `test_get_raw_document_text.py` fixed that.
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
- Added coverage badge to README. - [See my
fork](https://github.com/ChristianZaccaria/llama-stack)
- Added a GitHub Actions workflow that runs the tests and updates the
coverage badge. - [See
run](4574811323)
- Documented steps in `testing.md` for running the tests locally, and
viewing the `html` report.
- Excluded non-essential files from coverage reporting to provide a more
accurate measurement.
Automatically created PR to update coverage badge:
https://github.com/ChristianZaccaria/llama-stack/pull/9
# Note for reviewers
1. Currently the coverage report shows a 45% coverage. Wondering if
there are other files or directories that should also be excluded from
the report to increase the percentage. The directories with the least
test coverage are `llama_stack/cli`, `llama_stack/models`, and
`llama_stack/ui`. - Should we exclude these?
2. **[Required]** The `GITHUB_TOKEN` should have write permissions to
open a PR to update the coverage badge.
# GitHub Issue
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
Closes#2355
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
The `testing.md` file describes how to run the unit tests locally.
# What does this PR do?
some async test markers are in the codebase causing pre-commit to fail
due to #2744
remove these pytest fixtures
## Test Plan
pre-commit passes
Signed-off-by: Charlie Doern <cdoern@redhat.com>
# What does this PR do?
let's users register models available at
https://integrate.api.nvidia.com/v1/models that isn't already in
llama_stack/providers/remote/inference/nvidia/models.py
## Test Plan
1. run the nvidia distro
2. register a model from https://integrate.api.nvidia.com/v1/models that
isn't already know, as of this writing
nvidia/llama-3.1-nemotron-ultra-253b-v1 is a good example
3. perform inference w/ the model
# What does this PR do?
Resolves https://github.com/meta-llama/llama-stack/issues/2770. It
replaces characters in SQLite table names that are not alphanumeric or
underscores with underscores and quotes the table names with square
brackets in SQL statements.
Closes #[2770]
## Test Plan
I added a ".123" suffix to the bank_id on the following line
```
index = await SQLiteVecIndex.create(dimension=embedding_dimension, db_path=db_path, bank_id="test_bank.123")
```
in tests/unit/providers/vector_io/test_sqlite_vec.py, which, without the
fix in place, demonstrates the issue.
The vision models are now available at the standard URL, so the
workaround code has been removed. This also simplifies the codebase by
eliminating the need for per-model client caching.
- Remove special URL handling for meta/llama-3.2-11b/90b-vision-instruct
models
- Convert _get_client method to _client property for cleaner API
- Remove unnecessary lru_cache decorator and functools import
- Simplify client creation logic to use single base URL for all models
# What does this PR do?
https://github.com/meta-llama/llama-stack/pull/2490 introduced a new
function for type conversion of strings.
However, a side effect of this is that it will cast any string that can
be cast to an integer if possible, which for something like `image_name`
is not desired as we only accept strings for this field in the
`StackRunConfig`
This PR introduces logic to ensure that `image_name` remains a string
Closes#2749
## Test Plan
You can run the original step to reproduce from the bug to verify this
manually
```bash
OPENAI_API_KEY=bogus llama stack build --image-type venv --image-name 2745 --providers inference=remote::openai --run
```
I have also added an additional unit test to prevent any future
regression here
Signed-off-by: Nathan Weinberg <nweinber@redhat.com>
# What does this PR do?
This PR adds the keyword search implementation for Milvus. Along with
the implementation for remote Milvus, the tests require us to start a
Milvus containers locally.
In order to verify the implementation, run:
```
pytest tests/unit/providers/vector_io/remote/test_milvus.py -v -s --tb=short --disable-warnings --asyncio-mode=auto
```
You can also test the changes using the below script:
```
#!/usr/bin/env python3
import asyncio
import os
import uuid
from typing import List
from llama_stack_client import (
Agent,
AgentEventLogger,
LlamaStackClient,
RAGDocument
)
class MilvusRAGDemo:
def __init__(self, base_url: str = "http://localhost:8321/"):
self.client = LlamaStackClient(base_url=base_url)
self.vector_db_id = f"milvus_rag_demo_{uuid.uuid4().hex[:8]}"
self.model_id = None
self.embedding_model_id = None
self.embedding_dimension = None
def setup_models(self):
"""Get available models and select appropriate ones for LLM and embeddings."""
models = self.client.models.list()
# Select embedding model
embedding_models = [m for m in models if m.model_type == "embedding"]
if not embedding_models:
raise ValueError("No embedding models found")
self.embedding_model_id = embedding_models[0].identifier
self.embedding_dimension = embedding_models[0].metadata["embedding_dimension"]
def register_vector_db(self):
print(f"Registering Milvus vector database: {self.vector_db_id}")
response = self.client.vector_dbs.register(
vector_db_id=self.vector_db_id,
embedding_model=self.embedding_model_id,
embedding_dimension=self.embedding_dimension,
provider_id="milvus-remote", # Use remote Milvus
)
print(f"Vector database registered successfully")
return response
def insert_documents(self):
"""Insert sample documents into the vector database."""
print("\nInserting sample documents...")
# Sample documents about different topics
documents = [
RAGDocument(
document_id="ai_ml_basics",
content="""
Artificial Intelligence (AI) and Machine Learning (ML) are transforming the world.
AI refers to the simulation of human intelligence in machines, while ML is a subset
of AI that enables computers to learn and improve from experience without being
explicitly programmed. Deep learning, a subset of ML, uses neural networks with
multiple layers to process complex patterns in data.
Key concepts in AI/ML include:
- Supervised Learning: Training with labeled data
- Unsupervised Learning: Finding patterns in unlabeled data
- Reinforcement Learning: Learning through trial and error
- Neural Networks: Computing systems inspired by biological brains
""",
mime_type="text/plain",
metadata={"topic": "technology", "category": "ai_ml"},
),
]
# Insert documents with chunking
self.client.tool_runtime.rag_tool.insert(
documents=documents,
vector_db_id=self.vector_db_id,
chunk_size_in_tokens=200, # Smaller chunks for better granularity
)
print(f"Inserted {len(documents)} documents with chunking")
def test_keyword_search(self):
"""Test keyword-based search using BM25."""
queries = [
"neural networks",
"Python frameworks",
"data cleaning",
]
for query in queries:
response = self.client.vector_io.query(
vector_db_id=self.vector_db_id,
query=query,
params={
"mode": "keyword", # Keyword search
"max_chunks": 3,
"score_threshold": 0.0,
}
)
for i, (chunk, score) in enumerate(zip(response.chunks, response.scores)):
print(f" {i+1}. Score: {score:.4f}")
print(f" Content: {chunk.content[:100]}...")
print(f" Metadata: {chunk.metadata}")
def run_demo(self):
try:
self.setup_models()
self.register_vector_db()
self.insert_documents()
self.test_keyword_search()
except Exception as e:
print(f"Error during demo: {e}")
raise
def main():
"""Main function to run the demo."""
# Check if Llama Stack server is running
demo = MilvusRAGDemo()
try:
demo.run_demo()
except Exception as e:
print(f"Demo failed: {e}")
if __name__ == "__main__":
main()
```
[//]: # (## Documentation)
---------
Signed-off-by: Varsha Prasad Narsing <varshaprasad96@gmail.com>
# What does this PR do?
inference providers each have a static list of supported / known models.
some also have access to a dynamic list of currently available models.
this change gives prodivers using the ModelRegistryHelper the ability to
combine their static and dynamic lists.
for instance, OpenAIInferenceAdapter can implement
```
def query_available_models(self) -> list[str]:
return [entry.model for entry in self.openai_client.models.list()]
```
to augment its static list w/ a current list from openai.
## Test Plan
scripts/unit-test.sh
Remove both the metadata and content from the kvstore when a file is
being removed from the vector store.
Closes: #2685
Also add faiss provider to openai_vector_stores test suite
---------
Signed-off-by: Derek Higgins <derekh@redhat.com>
Co-authored-by: raghotham <rsm@meta.com>
# What does this PR do?
Adds input validation for mode in RagQueryConfig
This will prevent users from inputting search modes other than `vector`
and `keyword` for the time being with `hybrid` to follow when that
functionality is implemented.
## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]
```
# Check out this PR and enter the LS directory
uv sync --extra dev
```
Run the quickstart
[example](https://llama-stack.readthedocs.io/en/latest/getting_started/#step-3-run-the-demo)
Alter the Agent to include a query_config
```
agent = Agent(
client,
model=model_id,
instructions="You are a helpful assistant",
tools=[
{
"name": "builtin::rag/knowledge_search",
"args": {
"vector_db_ids": [vector_db_id],
"query_config": {
"mode": "i-am-not-vector", # Test for non valid search mode
"max_chunks": 6
}
},
}
],
)
```
Ensure you get the following error:
```
400: {'errors': [{'loc': ['mode'], 'msg': "Value error, mode must be either 'vector' or 'keyword' if supported by the vector_io provider", 'type': 'value_error'}]}
```
## Running unit tests
```
uv sync --extra dev
uv run pytest tests/unit/rag/test_rag_query.py -v
```
[//]: # (## Documentation)
# What does this PR do?
this blocks network access for all `tests/unit/` tests.
`tests/integration/` are untouched.
it also introduces an `allow_network` marker to explicitly allow network
access.
## Test Plan
`./scripts/unit-tests.sh`
# What does this PR do?
Some of our inference providers support passthrough authentication via
`x-llamastack-provider-data` header values. This fixes the providers
that support passthrough auth to not cache their clients to the backend
providers (mostly OpenAI client instances) so that the client connecting
to Llama Stack has to provide those auth values on each and every
request.
## Test Plan
I added some unit tests to ensure we're not caching clients across
requests for all the fixed providers in this PR.
```
uv run pytest -sv tests/unit/providers/inference/test_inference_client_caching.py
```
I also ran some of our OpenAI compatible API integration tests for each
of the changed providers, just to ensure they still work. Note that
these providers don't actually pass all these tests (for unrelated
reasons due to quirks of the Groq and Together SaaS services), but
enough of the tests passed to confirm the clients are still working as
intended.
### Together
```
ENABLE_TOGETHER="together" \
uv run llama stack run llama_stack/templates/starter/run.yaml
LLAMA_STACK_CONFIG=http://localhost:8321 \
uv run pytest -sv \
tests/integration/inference/test_openai_completion.py \
--text-model "together/meta-llama/Llama-3.1-8B-Instruct"
```
### OpenAI
```
ENABLE_OPENAI="openai" \
uv run llama stack run llama_stack/templates/starter/run.yaml
LLAMA_STACK_CONFIG=http://localhost:8321 \
uv run pytest -sv \
tests/integration/inference/test_openai_completion.py \
--text-model "openai/gpt-4o-mini"
```
### Groq
```
ENABLE_GROQ="groq" \
uv run llama stack run llama_stack/templates/starter/run.yaml
LLAMA_STACK_CONFIG=http://localhost:8321 \
uv run pytest -sv \
tests/integration/inference/test_openai_completion.py \
--text-model "groq/meta-llama/Llama-3.1-8B-Instruct"
```
---------
Signed-off-by: Ben Browning <bbrownin@redhat.com>
# What does this PR do?
previously, developers who ran `./scripts/unit-tests.sh` would get
`asyncio-mode=auto`, which meant `@pytest.mark.asyncio` and
`@pytest_asyncio.fixture` were redundent. developers who ran `pytest`
directly would get pytest's default (strict mode), would run into errors
leading them to add `@pytest.mark.asyncio` / `@pytest_asyncio.fixture`
to their code.
with this change -
- `asyncio_mode=auto` is included in `pyproject.toml` making behavior
consistent for all invocations of pytest
- removes all redundant `@pytest_asyncio.fixture` and
`@pytest.mark.asyncio`
- for good measure, requires `pytest>=8.4` and `pytest-asyncio>=1.0`
## Test Plan
- `./scripts/unit-tests.sh`
- `uv run pytest tests/unit`
# What does this PR do?
The current authorized sql store implementation does not respect
user.principal (only checks attributes). This PR addresses that.
## Test Plan
Added test cases to integration tests.
# What does this PR do?
This PR refactors and the VectorIO backend logic for `sqlite-vec` and
adds unit tests and fixtures to make it easy to test both `sqlite-vec`
and `milvus`.
Key changes:
- `sqlite-vec` migrated to `kvstore` registry
- added in-memory cache for sqlite-vec to be consistent with `milvus`
- default fixtures moved to `conftest.py`
- removed redundant tests from sqlite`-vec`
- made `test_vector_io_openai_vector_stores.py` more easily extensible
## Test Plan
Unit tests added testing inline providers.
---------
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>