What does this PR do?
This PR adds support for Direct Preference Optimization (DPO) training
via the existing HuggingFace inline provider. It introduces a new DPO
training recipe, config schema updates, dataset integration, and
end-to-end testing to support preference-based fine-tuning with TRL.
Test Plan
Added integration test:
tests/integration/post_training/test_post_training.py::TestPostTraining::test_preference_optimize
Ran tests on both CPU and CUDA environments
---------
Co-authored-by: Ubuntu <ubuntu@ip-172-31-43-83.ec2.internal>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
**Description**
This PR removes some of the warnings when uv builds the docs
- Errors appear when generating docs about .md files not appearing in
toctree. ~~Adding content to the `providers-gen.py ` file that adds `---
orphan: true ---` to to each file.~~. Added a toctree generator to the
`providers-gen.py` file, this gets rid of the errors in the builds.
- Deletes the `_openai_compat` files, extension of PR #2849
- Adds the `files` APIs section to the `providers` toctree on the index
page
- Manually adds the `--- orphan: true ---` to the advanced apis. Ill try
to find a way to modify the providers code gen so it automatically adds
it, but this fixes the errors.
- Adds the `testing.md` to the `contributing` toctree
- Adds `starting_llama_stack_server.md` to `distributions` toctree
There are some other warnings im still looking at but this PR gets rid
of most of the toctree errors
Theres also an issue with the actual distribution-codegen that I can
investigate in another PR. Opened a bug for it here #2873
# What does this PR do?
* Removes a bunch of distros
* Removed distros were added into the "starter" distribution
* Doc for "starter" has been added
* Partially reverts https://github.com/meta-llama/llama-stack/pull/2482
since inference providers are disabled by default and can be turned on
manually via env variable.
* Disables safety in starter distro
Closes: https://github.com/meta-llama/llama-stack/issues/2502.
~Needs: https://github.com/meta-llama/llama-stack/pull/2482 for Ollama
to work properly in the CI.~
TODO:
- [ ] We can only update `install.sh` when we get a new release.
- [x] Update providers documentation
- [ ] Update notebooks to reference starter instead of ollama
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
We were not using conditionals correctly, conditionals can only be used
when the env variable is set, so `${env.ENVIRONMENT:+}` would return
None is ENVIRONMENT is not set.
If you want to create a conditional value, you need to do
`${env.ENVIRONMENT:=}`, this will pick the value of ENVIRONMENT if set,
otherwise will return None.
Closes: https://github.com/meta-llama/llama-stack/issues/2564
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
Simple approach to get some provider pages in the docs.
Add or update description fields in the provider configuration class
using Pydantic’s Field, ensuring these descriptions are clear and
complete, as they will be used to auto-generate provider documentation
via ./scripts/distro_codegen.py instead of editing the docs manually.
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
the providers list is missing post_training. Add that column and
`HuggingFace`, `TorchTune`, and `NVIDIA NEMO` as supported providers.
also point to these providers in docs/source/providers/index.md, and
describe basic functionality
There are other missing provider types here as well, but starting with
this
Signed-off-by: Charlie Doern <cdoern@redhat.com>
Co-authored-by: Francisco Arceo <arceofrancisco@gmail.com>