Commit graph

24 commits

Author SHA1 Message Date
Dinesh Yeduguru
0850ad656a
unregister for memory banks and remove update API (#458)
The semantics of an Update on resources is very tricky to reason about
especially for memory banks and models. The best way to go forward here
is for the user to unregister and register a new resource. We don't have
a compelling reason to support update APIs.


Tests:
pytest -v -s llama_stack/providers/tests/memory/test_memory.py -m
"chroma" --env CHROMA_HOST=localhost --env CHROMA_PORT=8000

pytest -v -s llama_stack/providers/tests/memory/test_memory.py -m
"pgvector" --env PGVECTOR_DB=postgres --env PGVECTOR_USER=postgres --env
PGVECTOR_PASSWORD=mysecretpassword --env PGVECTOR_HOST=0.0.0.0

$CONDA_PREFIX/bin/pytest -v -s -m "ollama"
llama_stack/providers/tests/inference/test_model_registration.py

---------

Co-authored-by: Dinesh Yeduguru <dineshyv@fb.com>
2024-11-14 17:12:11 -08:00
Ashwin Bharambe
bba6edd06b Fix OpenAPI generation to have text/event-stream for streamable methods 2024-11-14 12:51:38 -08:00
Dinesh Yeduguru
efe791bab7
Support model resource updates and deletes (#452)
# What does this PR do?
* Changes the registry to store only one RoutableObject per identifier.
Before it was a list, which is not really required.
* Adds impl for updates and deletes
* Updates routing table to handle updates correctly



## Test Plan
```
❯ llama-stack-client models list
+------------------------+---------------+------------------------------------+------------+
| identifier             | provider_id   | provider_resource_id               | metadata   |
+========================+===============+====================================+============+
| Llama3.1-405B-Instruct | fireworks-0   | fireworks/llama-v3p1-405b-instruct | {}         |
+------------------------+---------------+------------------------------------+------------+
| Llama3.1-8B-Instruct   | fireworks-0   | fireworks/llama-v3p1-8b-instruct   | {}         |
+------------------------+---------------+------------------------------------+------------+
| Llama3.2-3B-Instruct   | fireworks-0   | fireworks/llama-v3p2-1b-instruct   | {}         |
+------------------------+---------------+------------------------------------+------------+
❯ llama-stack-client models register dineshyv-model --provider-model-id=fireworks/llama-v3p1-70b-instruct
Successfully registered model dineshyv-model
❯ llama-stack-client models list
+------------------------+---------------+------------------------------------+------------+
| identifier             | provider_id   | provider_resource_id               | metadata   |
+========================+===============+====================================+============+
| Llama3.1-405B-Instruct | fireworks-0   | fireworks/llama-v3p1-405b-instruct | {}         |
+------------------------+---------------+------------------------------------+------------+
| Llama3.1-8B-Instruct   | fireworks-0   | fireworks/llama-v3p1-8b-instruct   | {}         |
+------------------------+---------------+------------------------------------+------------+
| Llama3.2-3B-Instruct   | fireworks-0   | fireworks/llama-v3p2-1b-instruct   | {}         |
+------------------------+---------------+------------------------------------+------------+
| dineshyv-model         | fireworks-0   | fireworks/llama-v3p1-70b-instruct  | {}         |
+------------------------+---------------+------------------------------------+------------+
❯ llama-stack-client models update dineshyv-model --provider-model-id=fireworks/llama-v3p1-405b-instruct
Successfully updated model dineshyv-model
❯ llama-stack-client models list
+------------------------+---------------+------------------------------------+------------+
| identifier             | provider_id   | provider_resource_id               | metadata   |
+========================+===============+====================================+============+
| Llama3.1-405B-Instruct | fireworks-0   | fireworks/llama-v3p1-405b-instruct | {}         |
+------------------------+---------------+------------------------------------+------------+
| Llama3.1-8B-Instruct   | fireworks-0   | fireworks/llama-v3p1-8b-instruct   | {}         |
+------------------------+---------------+------------------------------------+------------+
| Llama3.2-3B-Instruct   | fireworks-0   | fireworks/llama-v3p2-1b-instruct   | {}         |
+------------------------+---------------+------------------------------------+------------+
| dineshyv-model         | fireworks-0   | fireworks/llama-v3p1-405b-instruct | {}         |
+------------------------+---------------+------------------------------------+------------+
llama-stack-client models delete dineshyv-model
❯ llama-stack-client models list
+------------------------+---------------+------------------------------------+------------+
| identifier             | provider_id   | provider_resource_id               | metadata   |
+========================+===============+====================================+============+
| Llama3.1-405B-Instruct | fireworks-0   | fireworks/llama-v3p1-405b-instruct | {}         |
+------------------------+---------------+------------------------------------+------------+
| Llama3.1-8B-Instruct   | fireworks-0   | fireworks/llama-v3p1-8b-instruct   | {}         |
+------------------------+---------------+------------------------------------+------------+
| Llama3.2-3B-Instruct   | fireworks-0   | fireworks/llama-v3p2-1b-instruct   | {}         |
+------------------------+---------------+------------------------------------+------------+

```

---------

Co-authored-by: Dinesh Yeduguru <dineshyv@fb.com>
2024-11-13 21:55:41 -08:00
Xi Yan
94a6f57812
change schema -> dataset_schema for register_dataset api (#443)
# What does this PR do?

- API updates: change schema to dataset_schema for register_dataset for
resolving pydantic naming conflict
- Note: this OpenAPI update will be synced with
llama-stack-client-python SDK.

cc @dineshyv 

## Test Plan

```
pytest -v -s -m meta_reference_eval_together_inference_huggingface_datasetio eval/test_eval.py
```

## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-11-13 11:17:46 -05:00
Dinesh Yeduguru
fdff24e77a
Inference to use provider resource id to register and validate (#428)
This PR changes the way model id gets translated to the final model name
that gets passed through the provider.
Major changes include:
1) Providers are responsible for registering an object and as part of
the registration returning the object with the correct provider specific
name of the model provider_resource_id
2) To help with the common look ups different names a new ModelLookup
class is created.



Tested all inference providers including together, fireworks, vllm,
ollama, meta reference and bedrock
2024-11-12 20:02:00 -08:00
Ashwin Bharambe
983d6ce2df
Remove the "ShieldType" concept (#430)
# What does this PR do?

This PR kills the notion of "ShieldType". The impetus for this is the
realization:

> Why is keyword llama-guard appearing so many times everywhere,
sometimes with hyphens, sometimes with underscores?

Now that we have a notion of "provider specific resource identifiers"
and "user specific aliases" for those and the fact that this works with
models ("Llama3.1-8B-Instruct" <> "fireworks/llama-3pv1-..."), we can
follow the same rules for Shields.

So each Safety provider can make up a notion of identifiers it has
registered. This already happens with Bedrock correctly. We just
generalize it for Llama Guard, Prompt Guard, etc.

For Llama Guard, we further simplify by just adopting the underlying
model name itself as the identifier! No confusion necessary.

While doing this, I noticed a bug in our DistributionRegistry where we
weren't scoping identifiers by type. Fixed.

## Feature/Issue validation/testing/test plan

Ran (inference, safety, memory, agents) tests with ollama and fireworks
providers.
2024-11-12 12:37:24 -08:00
Ashwin Bharambe
09269e2a44
Enable sane naming of registered objects with defaults (#429)
# What does this PR do? 

This is a follow-up to #425. That PR allows for specifying models in the
registry, but each entry needs to look like:

```yaml
- identifier: ...
  provider_id: ...
  provider_resource_identifier: ...
```

This is headache-inducing.

The current PR makes this situation better by adopting the shape of our
APIs. Namely, we need the user to only specify `model-id`. The rest
should be optional and figured out by the Stack. You can always override
it.

Here's what example `ollama` "full stack" registry looks like (we still
need to kill or simplify shield_type crap):
```yaml
models:
- model_id: Llama3.2-3B-Instruct
- model_id: Llama-Guard-3-1B
shields:
- shield_id: llama_guard
  shield_type: llama_guard
```

## Test Plan

See test plan for #425. Re-ran it.
2024-11-12 11:18:05 -08:00
Ashwin Bharambe
47e7c2dc15 Fix openapi generator and regenerator OpenAPI types 2024-11-11 18:44:38 -08:00
Xi Yan
6b9850e11b run openapi gen 2024-11-11 18:12:24 -05:00
Xi Yan
2b7d70ba86
[Evals API][11/n] huggingface dataset provider + mmlu scoring fn (#392)
* wip

* scoring fn api

* eval api

* eval task

* evaluate api update

* pre commit

* unwrap context -> config

* config field doc

* typo

* naming fix

* separate benchmark / app eval

* api name

* rename

* wip tests

* wip

* datasetio test

* delete unused

* fixture

* scoring resolve

* fix scoring register

* scoring test pass

* score batch

* scoring fix

* fix eval

* test eval works

* huggingface provider

* datasetdef files

* mmlu scoring fn

* test wip

* remove type ignore

* api refactor

* add default task_eval_id for routing

* add eval_id for jobs

* remove type ignore

* huggingface provider

* wip huggingface register

* only keep 1 run_eval

* fix optional

* register task required

* register task required

* delete old tests

* fix

* mmlu loose

* refactor

* msg

* fix tests

* move benchmark task def to file

* msg

* gen openapi

* openapi gen

* move dataset to hf llamastack repo

* remove todo

* refactor

* add register model to unit test

* rename

* register to client

* delete preregistered dataset/eval task

* comments

* huggingface -> remote adapter

* openapi gen
2024-11-11 14:49:50 -05:00
Ashwin Bharambe
37b330b4ef
add dynamic clients for all APIs (#348)
* add dynamic clients for all APIs

* fix openapi generator

* inference + memory + agents tests now pass with "remote" providers

* Add docstring which fixes openapi generator :/
2024-10-31 14:46:25 -07:00
Xi Yan
3b1917d5ea run openapi generator 2024-10-30 16:17:35 -07:00
Xi Yan
abdf7cddf3
[Evals API][4/n] evals with generation meta-reference impl (#303)
* wip

* dataset validation

* test_scoring

* cleanup

* clean up test

* comments

* error checking

* dataset client

* test client:

* datasetio client

* clean up

* basic scoring function works

* scorer wip

* equality scorer

* score batch impl

* score batch

* update scoring test

* refactor

* validate scorer input

* address comments

* evals with generation

* add all rows scores to ScoringResult

* minor typing

* bugfix

* scoring function def rename

* rebase name

* refactor

* address comments

* Update iOS inference instructions for new quantization

* Small updates to quantization config

* Fix score threshold in faiss

* Bump version to 0.0.45

* Handle both ipv6 and ipv4 interfaces together

* update manifest for build templates

* Update getting_started.md

* chatcompletion & completion input type validation

* inclusion->subsetof

* error checking

* scoring_function -> scoring_fn rename, scorer -> scoring_fn rename

* address comments

* [Evals API][5/n] fixes to generate openapi spec (#323)

* generate openapi

* typing comment, dataset -> dataset_id

* remove custom type

* sample eval run.yaml

---------

Co-authored-by: Dalton Flanagan <6599399+dltn@users.noreply.github.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
2024-10-25 13:12:39 -07:00
Ashwin Bharambe
2089427d60
Make all methods async def again; add completion() for meta-reference (#270)
PR #201 had made several changes while trying to fix issues with getting the stream=False branches of inference and agents API working. As part of this, it made a change which was slightly gratuitous. Namely, making chat_completion() and brethren "def" instead of "async def".

The rationale was that this allowed the user (within llama-stack) of this to use it as:

```
async for chunk in api.chat_completion(params)
```

However, it causes unnecessary confusion for several folks. Given that clients (e.g., llama-stack-apps) anyway use the SDK methods (which are completely isolated) this choice was not ideal. Let's revert back so the call now looks like:

```
async for chunk in await api.chat_completion(params)
```

Bonus: Added a completion() implementation for the meta-reference provider. Technically should have been another PR :)
2024-10-18 20:50:59 -07:00
Xi Yan
7ff5800dea generate openapi 2024-10-10 15:30:34 -07:00
Ashwin Bharambe
6bb57e72a7
Remove "routing_table" and "routing_key" concepts for the user (#201)
This PR makes several core changes to the developer experience surrounding Llama Stack.

Background: PR #92 introduced the notion of "routing" to the Llama Stack. It introduces three object types: (1) models, (2) shields and (3) memory banks. Each of these objects can be associated with a distinct provider. So you can get model A to be inferenced locally while model B, C can be inference remotely (e.g.)

However, this had a few drawbacks:

you could not address the provider instances -- i.e., if you configured "meta-reference" with a given model, you could not assign an identifier to this instance which you could re-use later.
the above meant that you could not register a "routing_key" (e.g. model) dynamically and say "please use this existing provider I have already configured" for a new model.
the terms "routing_table" and "routing_key" were exposed directly to the user. in my view, this is way too much overhead for a new user (which almost everyone is.) people come to the stack wanting to do ML and encounter a completely unexpected term.
What this PR does: This PR structures the run config with only a single prominent key:

- providers
Providers are instances of configured provider types. Here's an example which shows two instances of the remote::tgi provider which are serving two different models.

providers:
  inference:
  - provider_id: foo
    provider_type: remote::tgi
    config: { ... }
  - provider_id: bar
    provider_type: remote::tgi
    config: { ... }
Secondly, the PR adds dynamic registration of { models | shields | memory_banks } to the API surface. The distribution still acts like a "routing table" (as previously) except that it asks the backing providers for a listing of these objects. For example it asks a TGI or Ollama inference adapter what models it is serving. Only the models that are being actually served can be requested by the user for inference. Otherwise, the Stack server will throw an error.

When dynamically registering these objects, you can use the provider IDs shown above. Info about providers can be obtained using the Api.inspect set of endpoints (/providers, /routes, etc.)

The above examples shows the correspondence between inference providers and models registry items. Things work similarly for the safety <=> shields and memory <=> memory_banks pairs.

Registry: This PR also makes it so that Providers need to implement additional methods for registering and listing objects. For example, each Inference provider is now expected to implement the ModelsProtocolPrivate protocol (naming is not great!) which consists of two methods

register_model
list_models
The goal is to inform the provider that a certain model needs to be supported so the provider can make any relevant backend changes if needed (or throw an error if the model cannot be supported.)

There are many other cleanups included some of which are detailed in a follow-up comment.
2024-10-10 10:24:13 -07:00
Xi Yan
ce70d21f65
Add files via upload 2024-10-08 15:29:19 -07:00
Ashwin Bharambe
8d049000e3 Add an introspection "Api.inspect" API 2024-10-02 15:41:14 -07:00
Ashwin Bharambe
fe4aabd690 provider_id => provider_type, adapter_id => adapter_type 2024-10-02 14:05:59 -07:00
Xi Yan
2802ac8e9d
add llama-stack.png 2024-09-26 11:17:46 -07:00
Ashwin Bharambe
56aed59eb4
Support for Llama3.2 models and Swift SDK (#98) 2024-09-25 10:29:58 -07:00
Ashwin Bharambe
ec4fc800cc
[API Updates] Model / shield / memory-bank routing + agent persistence + support for private headers (#92)
This is yet another of those large PRs (hopefully we will have less and less of them as things mature fast). This one introduces substantial improvements and some simplifications to the stack.

Most important bits:

* Agents reference implementation now has support for session / turn persistence. The default implementation uses sqlite but there's also support for using Redis.

* We have re-architected the structure of the Stack APIs to allow for more flexible routing. The motivating use cases are:
  - routing model A to ollama and model B to a remote provider like Together
  - routing shield A to local impl while shield B to a remote provider like Bedrock
  - routing a vector memory bank to Weaviate while routing a keyvalue memory bank to Redis

* Support for provider specific parameters to be passed from the clients. A client can pass data using `x_llamastack_provider_data` parameter which can be type-checked and provided to the Adapter implementations.
2024-09-23 14:22:22 -07:00
Xi Yan
5ec64ac68c moving rfc->docs 2024-09-18 16:54:24 -07:00
Xi Yan
2c1ad10710 move openapi from rfcs->docs 2024-09-18 16:09:17 -07:00