Commit graph

16 commits

Author SHA1 Message Date
Bill Murdock
5d711d4bcb
fix: Update watsonx.ai provider to use LiteLLM mixin and list all models (#3674)
Some checks failed
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 1s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 3s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 3s
Python Package Build Test / build (3.13) (push) Failing after 2s
Python Package Build Test / build (3.12) (push) Failing after 3s
Vector IO Integration Tests / test-matrix (push) Failing after 7s
Test Llama Stack Build / generate-matrix (push) Successful in 6s
Test Llama Stack Build / build-single-provider (push) Failing after 4s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 5s
Test External API and Providers / test-external (venv) (push) Failing after 4s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 6s
Unit Tests / unit-tests (3.13) (push) Failing after 4s
API Conformance Tests / check-schema-compatibility (push) Successful in 12s
Test Llama Stack Build / build (push) Failing after 3s
Unit Tests / unit-tests (3.12) (push) Failing after 5s
UI Tests / ui-tests (22) (push) Successful in 32s
Pre-commit / pre-commit (push) Successful in 1m29s
# What does this PR do?

- The watsonx.ai provider now uses the LiteLLM mixin instead of using
IBM's library, which does not seem to be working (see #3165 for
context).
- The watsonx.ai provider now lists all the models available by calling
the watsonx.ai server instead of having a hard coded list of known
models. (That list gets out of date quickly)
- An edge case in
[llama_stack/core/routers/inference.py](https://github.com/llamastack/llama-stack/pull/3674/files#diff-a34bc966ed9befd9f13d4883c23705dff49be0ad6211c850438cdda6113f3455)
is addressed that was causing my manual tests to fail.
- Fixes `b64_encode_openai_embeddings_response` which was trying to
enumerate over a dictionary and then reference elements of the
dictionary using .field instead of ["field"]. That method is called by
the LiteLLM mixin for embedding models, so it is needed to get the
watsonx.ai embedding models to work.
- A unit test along the lines of the one in #3348 is added. A more
comprehensive plan for automatically testing the end-to-end
functionality for inference providers would be a good idea, but is out
of scope for this PR.
- Updates to the watsonx distribution. Some were in response to the
switch to LiteLLM (e.g., updating the Python packages needed). Others
seem to be things that were already broken that I found along the way
(e.g., a reference to a watsonx specific doc template that doesn't seem
to exist).

Closes #3165

Also it is related to a line-item in #3387 but doesn't really address
that goal (because it uses the LiteLLM mixin, not the OpenAI one). I
tried the OpenAI one and it doesn't work with watsonx.ai, presumably
because the watsonx.ai service is not OpenAI compatible. It works with
LiteLLM because LiteLLM has a provider implementation for watsonx.ai.

## Test Plan

The test script below goes back and forth between the OpenAI and watsonx
providers. The idea is that the OpenAI provider shows how it should work
and then the watsonx provider output shows that it is also working with
watsonx. Note that the result from the MCP test is not as good (the
Llama 3.3 70b model does not choose tools as wisely as gpt-4o), but it
is still working and providing a valid response. For more details on
setup and the MCP server being used for testing, see [the AI Alliance
sample
notebook](https://github.com/The-AI-Alliance/llama-stack-examples/blob/main/notebooks/01-responses/)
that these examples are drawn from.

```python
#!/usr/bin/env python3

import json
from llama_stack_client import LlamaStackClient
from litellm import completion
import http.client


def print_response(response):
    """Print response in a nicely formatted way"""
    print(f"ID: {response.id}")
    print(f"Status: {response.status}")
    print(f"Model: {response.model}")
    print(f"Created at: {response.created_at}")
    print(f"Output items: {len(response.output)}")
    
    for i, output_item in enumerate(response.output):
        if len(response.output) > 1:
            print(f"\n--- Output Item {i+1} ---")
        print(f"Output type: {output_item.type}")
        
        if output_item.type in ("text", "message"):
            print(f"Response content: {output_item.content[0].text}")
        elif output_item.type == "file_search_call":
            print(f"  Tool Call ID: {output_item.id}")
            print(f"  Tool Status: {output_item.status}")
            # 'queries' is a list, so we join it for clean printing
            print(f"  Queries: {', '.join(output_item.queries)}")
            # Display results if they exist, otherwise note they are empty
            print(f"  Results: {output_item.results if output_item.results else 'None'}")
        elif output_item.type == "mcp_list_tools":
            print_mcp_list_tools(output_item)
        elif output_item.type == "mcp_call":
            print_mcp_call(output_item)
        else:
            print(f"Response content: {output_item.content}")


def print_mcp_call(mcp_call):
    """Print MCP call in a nicely formatted way"""
    print(f"\n🛠️  MCP Tool Call: {mcp_call.name}")
    print(f"   Server: {mcp_call.server_label}")
    print(f"   ID: {mcp_call.id}")
    print(f"   Arguments: {mcp_call.arguments}")
    
    if mcp_call.error:
        print("Error: {mcp_call.error}")
    elif mcp_call.output:
        print("Output:")
        # Try to format JSON output nicely
        try:
            parsed_output = json.loads(mcp_call.output)
            print(json.dumps(parsed_output, indent=4))
        except:
            # If not valid JSON, print as-is
            print(f"   {mcp_call.output}")
    else:
        print("    No output yet")


def print_mcp_list_tools(mcp_list_tools):
    """Print MCP list tools in a nicely formatted way"""
    print(f"\n🔧 MCP Server: {mcp_list_tools.server_label}")
    print(f"   ID: {mcp_list_tools.id}")
    print(f"   Available Tools: {len(mcp_list_tools.tools)}")
    print("=" * 80)
    
    for i, tool in enumerate(mcp_list_tools.tools, 1):
        print(f"\n{i}. {tool.name}")
        print(f"   Description: {tool.description}")
        
        # Parse and display input schema
        schema = tool.input_schema
        if schema and 'properties' in schema:
            properties = schema['properties']
            required = schema.get('required', [])
            
            print("   Parameters:")
            for param_name, param_info in properties.items():
                param_type = param_info.get('type', 'unknown')
                param_desc = param_info.get('description', 'No description')
                required_marker = " (required)" if param_name in required else " (optional)"
                print(f"     • {param_name} ({param_type}){required_marker}")
                if param_desc:
                    print(f"       {param_desc}")
        
        if i < len(mcp_list_tools.tools):
            print("-" * 40)


def main():
    """Main function to run all the tests"""
    
    # Configuration
    LLAMA_STACK_URL = "http://localhost:8321/"
    LLAMA_STACK_MODEL_IDS = [
        "openai/gpt-3.5-turbo",
        "openai/gpt-4o",
        "llama-openai-compat/Llama-3.3-70B-Instruct",
        "watsonx/meta-llama/llama-3-3-70b-instruct"
    ]
    
    # Using gpt-4o for this demo, but feel free to try one of the others or add more to run.yaml.
    OPENAI_MODEL_ID = LLAMA_STACK_MODEL_IDS[1]
    WATSONX_MODEL_ID = LLAMA_STACK_MODEL_IDS[-1]
    NPS_MCP_URL = "http://localhost:3005/sse/"
    
    print("=== Llama Stack Testing Script ===")
    print(f"Using OpenAI model: {OPENAI_MODEL_ID}")
    print(f"Using WatsonX model: {WATSONX_MODEL_ID}")
    print(f"MCP URL: {NPS_MCP_URL}")
    print()
    
    # Initialize client
    print("Initializing LlamaStackClient...")
    client = LlamaStackClient(base_url="http://localhost:8321")
    
    # Test 1: List models
    print("\n=== Test 1: List Models ===")
    try:
        models = client.models.list()
        print(f"Found {len(models)} models")
    except Exception as e:
        print(f"Error listing models: {e}")
        raise e
    
    # Test 2: Basic chat completion with OpenAI
    print("\n=== Test 2: Basic Chat Completion (OpenAI) ===")
    try:
        chat_completion_response = client.chat.completions.create(
            model=OPENAI_MODEL_ID,
            messages=[{"role": "user", "content": "What is the capital of France?"}]
        )
        
        print("OpenAI Response:")
        for chunk in chat_completion_response.choices[0].message.content:
            print(chunk, end="", flush=True)
        print()
    except Exception as e:
        print(f"Error with OpenAI chat completion: {e}")
        raise e
    
    # Test 3: Basic chat completion with WatsonX
    print("\n=== Test 3: Basic Chat Completion (WatsonX) ===")
    try:
        chat_completion_response_wxai = client.chat.completions.create(
            model=WATSONX_MODEL_ID,
            messages=[{"role": "user", "content": "What is the capital of France?"}],
        )
        
        print("WatsonX Response:")
        for chunk in chat_completion_response_wxai.choices[0].message.content:
            print(chunk, end="", flush=True)
        print()
    except Exception as e:
        print(f"Error with WatsonX chat completion: {e}")
        raise e
    
    # Test 4: Tool calling with OpenAI
    print("\n=== Test 4: Tool Calling (OpenAI) ===")
    tools = [
        {
            "type": "function",
            "function": {
                "name": "get_current_weather",
                "description": "Get the current weather for a specific location",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "location": {
                            "type": "string",
                            "description": "The city and state, e.g., San Francisco, CA",
                        },
                        "unit": {
                            "type": "string",
                            "enum": ["celsius", "fahrenheit"]
                        },
                    },
                    "required": ["location"],
                },
            },
        }
    ]
    
    messages = [
        {"role": "user", "content": "What's the weather like in Boston, MA?"}
    ]
    
    try:
        print("--- Initial API Call ---")
        response = client.chat.completions.create(
            model=OPENAI_MODEL_ID,
            messages=messages,
            tools=tools,
            tool_choice="auto",  # "auto" is the default
        )
        print("OpenAI tool calling response received")
    except Exception as e:
        print(f"Error with OpenAI tool calling: {e}")
        raise e
    
    # Test 5: Tool calling with WatsonX
    print("\n=== Test 5: Tool Calling (WatsonX) ===")
    try:
        wxai_response = client.chat.completions.create(
            model=WATSONX_MODEL_ID,
            messages=messages,
            tools=tools,
            tool_choice="auto",  # "auto" is the default
        )
        print("WatsonX tool calling response received")
    except Exception as e:
        print(f"Error with WatsonX tool calling: {e}")
        raise e
    
    # Test 6: Streaming with WatsonX
    print("\n=== Test 6: Streaming Response (WatsonX) ===")
    try:
        chat_completion_response_wxai_stream = client.chat.completions.create(
            model=WATSONX_MODEL_ID,
            messages=[{"role": "user", "content": "What is the capital of France?"}],
            stream=True
        )
        print("Model response: ", end="")
        for chunk in chat_completion_response_wxai_stream:
            # Each 'chunk' is a ChatCompletionChunk object.
            # We want the content from the 'delta' attribute.
            if hasattr(chunk, 'choices') and chunk.choices is not None:
                content = chunk.choices[0].delta.content
                # The first few chunks might have None content, so we check for it.
                if content is not None:
                    print(content, end="", flush=True)
        print()
    except Exception as e:
        print(f"Error with streaming: {e}")
        raise e
    
    # Test 7: MCP with OpenAI
    print("\n=== Test 7: MCP Integration (OpenAI) ===")
    try:
        mcp_llama_stack_client_response = client.responses.create(
            model=OPENAI_MODEL_ID,
            input="Tell me about some parks in Rhode Island, and let me know if there are any upcoming events at them.",
            tools=[
                {
                    "type": "mcp",
                    "server_url": NPS_MCP_URL,
                    "server_label": "National Parks Service tools",
                    "allowed_tools": ["search_parks", "get_park_events"],
                }
            ]
        )
        print_response(mcp_llama_stack_client_response)
    except Exception as e:
        print(f"Error with MCP (OpenAI): {e}")
        raise e
    
    # Test 8: MCP with WatsonX
    print("\n=== Test 8: MCP Integration (WatsonX) ===")
    try:
        mcp_llama_stack_client_response = client.responses.create(
            model=WATSONX_MODEL_ID,
            input="What is the capital of France?"
        )
        print_response(mcp_llama_stack_client_response)
    except Exception as e:
        print(f"Error with MCP (WatsonX): {e}")
        raise e
    
    # Test 9: MCP with Llama 3.3
    print("\n=== Test 9: MCP Integration (Llama 3.3) ===")
    try:
        mcp_llama_stack_client_response = client.responses.create(
            model=WATSONX_MODEL_ID,
            input="Tell me about some parks in Rhode Island, and let me know if there are any upcoming events at them.",
            tools=[
                {
                    "type": "mcp",
                    "server_url": NPS_MCP_URL,
                    "server_label": "National Parks Service tools",
                    "allowed_tools": ["search_parks", "get_park_events"],
                }
            ]
        )
        print_response(mcp_llama_stack_client_response)
    except Exception as e:
        print(f"Error with MCP (Llama 3.3): {e}")
        raise e
    
    # Test 10: Embeddings
    print("\n=== Test 10: Embeddings ===")
    try:
        conn = http.client.HTTPConnection("localhost:8321")
        payload = json.dumps({
            "model": "watsonx/ibm/granite-embedding-278m-multilingual",
            "input": "Hello, world!",
        })
        headers = {
            'Content-Type': 'application/json',
            'Accept': 'application/json'
        }
        conn.request("POST", "/v1/openai/v1/embeddings", payload, headers)
        res = conn.getresponse()
        data = res.read()
        print(data.decode("utf-8"))
    except Exception as e:
        print(f"Error with Embeddings: {e}")
        raise e

    print("\n=== Testing Complete ===")


if __name__ == "__main__":
    main()
```

---------

Signed-off-by: Bill Murdock <bmurdock@redhat.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-10-08 07:29:43 -04:00
Matthew Farrellee
d266c59c2a
chore: remove deprecated inference.chat_completion implementations (#3654)
# What does this PR do?

remove unused chat_completion implementations

vllm features ported -
 - requires max_tokens be set, use config value
 - set tool_choice to none if no tools provided


## Test Plan

ci
2025-10-03 07:55:34 -04:00
Matthew Farrellee
f7c5ef4ec0
chore: remove /v1/inference/completion and implementations (#3622)
# What does this PR do?

the /inference/completion route is gone. this removes the
implementations.

## Test Plan

ci
2025-10-01 11:36:53 -04:00
Matthew Farrellee
975ead1d6a
chore(api): remove deprecated embeddings impls (#3301)
Some checks failed
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 1s
Python Package Build Test / build (3.12) (push) Failing after 1s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 3s
Vector IO Integration Tests / test-matrix (push) Failing after 4s
API Conformance Tests / check-schema-compatibility (push) Successful in 7s
Unit Tests / unit-tests (3.13) (push) Failing after 4s
Test External API and Providers / test-external (venv) (push) Failing after 4s
Python Package Build Test / build (3.13) (push) Failing after 9s
Unit Tests / unit-tests (3.12) (push) Failing after 10s
UI Tests / ui-tests (22) (push) Successful in 39s
Pre-commit / pre-commit (push) Successful in 1m25s
# What does this PR do?

remove deprecated embeddings implementations
2025-09-29 14:45:09 -04:00
Matthew Farrellee
60484c5c4e
chore(api): remove batch inference (#3261)
Some checks failed
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
Vector IO Integration Tests / test-matrix (push) Failing after 4s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 4s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 3s
Unit Tests / unit-tests (3.12) (push) Failing after 3s
Unit Tests / unit-tests (3.13) (push) Failing after 3s
Test Llama Stack Build / build (push) Failing after 3s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 1s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 3s
Test Llama Stack Build / generate-matrix (push) Successful in 3s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Test Llama Stack Build / build-single-provider (push) Failing after 4s
Python Package Build Test / build (3.12) (push) Failing after 1s
API Conformance Tests / check-schema-compatibility (push) Successful in 7s
Python Package Build Test / build (3.13) (push) Failing after 1s
Test External API and Providers / test-external (venv) (push) Failing after 4s
UI Tests / ui-tests (22) (push) Successful in 39s
Pre-commit / pre-commit (push) Successful in 1m18s
# What does this PR do?

APIs removed:
 - POST /v1/batch-inference/completion
 - POST /v1/batch-inference/chat-completion
 - POST /v1/inference/batch-completion
 - POST /v1/inference/batch-chat-completion

note -
- batch-completion & batch-chat-completion were only implemented for
inference=inline::meta-reference
 - batch-inference were not implemented
2025-09-26 14:35:34 -07:00
ehhuang
e980436a2e
chore: introduce write queue for inference_store (#3383)
# What does this PR do?
Adds a write worker queue for writes to inference store. This avoids
overwhelming request processing with slow inference writes.

## Test Plan

Benchmark:
```
cd /docs/source/distributions/k8s-benchmark
# start mock server
python openai-mock-server.py --port 8000
# start stack server
LLAMA_STACK_LOGGING="all=WARNING" uv run --with llama-stack python -m llama_stack.core.server.server docs/source/distributions/k8s-benchmark/stack_run_config.yaml
# run benchmark script
uv run python3 benchmark.py --duration 120 --concurrent 50 --base-url=http://localhost:8321/v1/openai/v1 --model=vllm-inference/meta-llama/Llama-3.2-3B-Instruct
```
## RPS from 21 -> 57
2025-09-10 11:57:42 -07:00
Francisco Arceo
a6b1588dc6
revert: Fireworks chat completion broken due to telemetry (#3402)
Reverts llamastack/llama-stack#3392
2025-09-10 11:53:38 -07:00
ehhuang
f6bf36343d
chore: logging perf improvments (#3393)
# What does this PR do?
- Use BackgroundLogger when logging metric events.
- Reuse event loop in BackgroundLogger

## Test Plan
```
cd /docs/source/distributions/k8s-benchmark
# start mock server
python openai-mock-server.py --port 8000
# start stack server
LLAMA_STACK_LOGGING="all=WARNING" uv run --with llama-stack python -m llama_stack.core.server.server docs/source/distributions/k8s-benchmark/stack_run_config.yaml
# run benchmark script
uv run python3 benchmark.py --duration 120 --concurrent 50 --base-url=http://localhost:8321/v1/openai/v1 --model=vllm-inference/meta-llama/Llama-3.2-3B-Instruct
```
### RPS from 57 -> 62
2025-09-10 11:52:23 -07:00
slekkala1
935b8e28de
fix: Fireworks chat completion broken due to telemetry (#3392)
# What does this PR do?
Fix fireworks chat completion broken due to telemetry expecting
response.usage
 Closes https://github.com/llamastack/llama-stack/issues/3391

## Test Plan
1. `uv run --with llama-stack llama stack build --distro starter
--image-type venv --run`
Try 

```
curl -X POST http://0.0.0.0:8321/v1/openai/v1/chat/completions \
    -H "Content-Type: application/json" \
    -d '{
      "model": "fireworks/accounts/fireworks/models/llama-v3p1-8b-instruct",
      "messages": [{"role": "user", "content": "Hello!"}]
    }'
```
```
{"id":"chatcmpl-ee922a08-0df0-4974-b0d3-b322113e8bc0","choices":[{"message":{"role":"assistant","content":"Hello! How can I assist you today?","name":null,"tool_calls":null},"finish_reason":"stop","index":0,"logprobs":null}],"object":"chat.completion","created":1757456375,"model":"fireworks/accounts/fireworks/models/llama-v3p1-8b-instruct"}%   
```

Without fix fails as mentioned in
https://github.com/llamastack/llama-stack/issues/3391

Co-authored-by: Francisco Arceo <arceofrancisco@gmail.com>
2025-09-10 08:48:01 -07:00
ehhuang
bcc7f2c7d0
chore: async inference store write (#3318)
# What does this PR do?


## Test Plan
```
cd /docs/source/distributions/k8s-benchmark
# start mock server
python openai-mock-server.py --port 8000
# start stack server
uv run --with llama-stack python -m llama_stack.core.server.server docs/source/distributions/k8s-benchmark/stack_run_config.yaml
# run benchmark script
uv run python3 benchmark.py --duration 30 --concurrent 50 --base-url=http://localhost:8321/v1/openai/v1 --model=vllm-inference/meta-llama/Llama-3.2-3B-Instruct
```
Before:

============================================================
BENCHMARK RESULTS
============================================================
Total time: 30.00s
Concurrent users: 50
Total requests: 1267
Successful requests: 1267
Failed requests: 0
Success rate: 100.0%
Requests per second: 42.23


After:

============================================================
BENCHMARK RESULTS
============================================================
Total time: 30.00s
Concurrent users: 50
Total requests: 1449
Successful requests: 1449
Failed requests: 0
Success rate: 100.0%
Requests per second: 48.30
2025-09-04 11:37:46 -07:00
ehhuang
5d52e0d2c5
chore: handle missing finish_reason (#3328)
Some checks failed
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 1s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 2s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 3s
Python Package Build Test / build (3.13) (push) Failing after 3s
Integration Tests (Replay) / Integration Tests (, , , client=, vision=) (push) Failing after 5s
Python Package Build Test / build (3.12) (push) Failing after 4s
Test External API and Providers / test-external (venv) (push) Failing after 4s
Vector IO Integration Tests / test-matrix (push) Failing after 7s
Unit Tests / unit-tests (3.13) (push) Failing after 4s
Unit Tests / unit-tests (3.12) (push) Failing after 5s
UI Tests / ui-tests (22) (push) Successful in 34s
Pre-commit / pre-commit (push) Successful in 1m25s
# What does this PR do?
Sometimes the stream don't have chunks with finish_reason, e.g. canceled
stream, which throws a pydantic error as OpenAIChoice.finish_reason: str

## Test Plan
observe no more such error when benchmarking
2025-09-04 13:23:18 +02:00
Mustafa Elbehery
c3b2b06974
refactor(logging): rename llama_stack logger categories (#3065)
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
This PR renames categories of llama_stack loggers.

This PR aligns logging categories as per the package name, as well as
reviews from initial
https://github.com/meta-llama/llama-stack/pull/2868. This is a follow up
to #3061.

<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->

Replaces https://github.com/meta-llama/llama-stack/pull/2868
Part of https://github.com/meta-llama/llama-stack/issues/2865

cc @leseb @rhuss

Signed-off-by: Mustafa Elbehery <melbeher@redhat.com>
2025-08-21 17:31:04 -07:00
Ashwin Bharambe
3d90117891
chore(tests): fix responses and vector_io tests (#3119)
Some fixes to MCP tests. And a bunch of fixes for Vector providers.

I also enabled a bunch of Vector IO tests to be used with
`LlamaStackLibraryClient`

## Test Plan

Run Responses tests with llama stack library client:
```
pytest -s -v tests/integration/non_ci/responses/ --stack-config=server:starter \
   --text-model openai/gpt-4o \
  --embedding-model=sentence-transformers/all-MiniLM-L6-v2 \
  -k "client_with_models"
```

Do the same with `-k openai_client`

The rest should be taken care of by CI.
2025-08-12 16:15:53 -07:00
Nathan Weinberg
19123ca957
refactor: standardize InferenceRouter model handling (#2965)
Some checks failed
Integration Tests (Replay) / discover-tests (push) Successful in 3s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Python Package Build Test / build (3.12) (push) Failing after 12s
Vector IO Integration Tests / test-matrix (3.13, remote::pgvector) (push) Failing after 15s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 19s
Integration Tests (Replay) / Integration Tests (, , , client=, vision=) (push) Failing after 15s
Vector IO Integration Tests / test-matrix (3.12, remote::chromadb) (push) Failing after 19s
Vector IO Integration Tests / test-matrix (3.13, remote::chromadb) (push) Failing after 21s
Python Package Build Test / build (3.13) (push) Failing after 16s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 23s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 29s
Test External API and Providers / test-external (venv) (push) Failing after 20s
Vector IO Integration Tests / test-matrix (3.13, inline::faiss) (push) Failing after 25s
Unit Tests / unit-tests (3.12) (push) Failing after 23s
Vector IO Integration Tests / test-matrix (3.13, inline::sqlite-vec) (push) Failing after 17s
Vector IO Integration Tests / test-matrix (3.13, inline::milvus) (push) Failing after 27s
Vector IO Integration Tests / test-matrix (3.13, remote::qdrant) (push) Failing after 21s
Unit Tests / unit-tests (3.13) (push) Failing after 27s
Vector IO Integration Tests / test-matrix (3.13, remote::weaviate) (push) Failing after 23s
Vector IO Integration Tests / test-matrix (3.12, inline::sqlite-vec) (push) Failing after 29s
Vector IO Integration Tests / test-matrix (3.12, remote::pgvector) (push) Failing after 22s
Vector IO Integration Tests / test-matrix (3.12, inline::milvus) (push) Failing after 25s
Vector IO Integration Tests / test-matrix (3.12, remote::weaviate) (push) Failing after 22s
Vector IO Integration Tests / test-matrix (3.12, remote::qdrant) (push) Failing after 17s
Vector IO Integration Tests / test-matrix (3.12, inline::faiss) (push) Failing after 24s
Pre-commit / pre-commit (push) Successful in 1m19s
2025-08-12 04:20:39 -06:00
Charlie Doern
0caef40e0d
fix: telemetry fixes (inference and core telemetry) (#2733)
# What does this PR do?

I found a few issues while adding new metrics for various APIs:

currently metrics are only propagated in `chat_completion` and
`completion`

since most providers use the `openai_..` routes as the default in
`llama-stack-client inference chat-completion`, metrics are currently
not working as expected.

in order to get them working the following had to be done:

1. get the completion as usual
2. use new `openai_` versions of the metric gathering functions which
use `.usage` from the `OpenAI..` response types to gather the metrics
which are already populated.
3. define a `stream_generator` which counts the tokens and computes the
metrics (only for stream=True)
5. add metrics to response


NOTE: I could not add metrics to `openai_completion` where stream=True
because that ONLY returns an `OpenAICompletion` not an AsyncGenerator
that we can manipulate.


acquire the lock, and add event to the span as the other `_log_...`
methods do

some new output:

`llama-stack-client inference chat-completion --message hi`

<img width="2416" height="425" alt="Screenshot 2025-07-16 at 8 28 20 AM"
src="https://github.com/user-attachments/assets/ccdf1643-a184-4ddd-9641-d426c4d51326"
/>


and in the client:

<img width="763" height="319" alt="Screenshot 2025-07-16 at 8 28 32 AM"
src="https://github.com/user-attachments/assets/6bceb811-5201-47e9-9e16-8130f0d60007"
/>

these were not previously being recorded nor were they being printed to
the server due to the improper console sink handling

---------

Signed-off-by: Charlie Doern <cdoern@redhat.com>
2025-08-06 13:37:40 -07:00
Ashwin Bharambe
2665f00102
chore(rename): move llama_stack.distribution to llama_stack.core (#2975)
We would like to rename the term `template` to `distribution`. To
prepare for that, this is a precursor.

cc @leseb
2025-07-30 23:30:53 -07:00
Renamed from llama_stack/distribution/routers/inference.py (Browse further)