**This PR changes configurations in a backward incompatible way.**
Run configs today repeat full SQLite/Postgres snippets everywhere a
store is needed, which means duplicated credentials, extra connection
pools, and lots of drift between files. This PR introduces named storage
backends so the stack and providers can share a single catalog and
reference those backends by name.
## Key Changes
- Add `storage.backends` to `StackRunConfig`, register each KV/SQL
backend once at startup, and validate that references point to the right
family.
- Move server stores under `storage.stores` with lightweight references
(backend + namespace/table) instead of full configs.
- Update every provider/config/doc to use the new reference style;
docs/codegen now surface the simplified YAML.
## Migration
Before:
```yaml
metadata_store:
type: sqlite
db_path: ~/.llama/distributions/foo/registry.db
inference_store:
type: postgres
host: ${env.POSTGRES_HOST}
port: ${env.POSTGRES_PORT}
db: ${env.POSTGRES_DB}
user: ${env.POSTGRES_USER}
password: ${env.POSTGRES_PASSWORD}
conversations_store:
type: postgres
host: ${env.POSTGRES_HOST}
port: ${env.POSTGRES_PORT}
db: ${env.POSTGRES_DB}
user: ${env.POSTGRES_USER}
password: ${env.POSTGRES_PASSWORD}
```
After:
```yaml
storage:
backends:
kv_default:
type: kv_sqlite
db_path: ~/.llama/distributions/foo/kvstore.db
sql_default:
type: sql_postgres
host: ${env.POSTGRES_HOST}
port: ${env.POSTGRES_PORT}
db: ${env.POSTGRES_DB}
user: ${env.POSTGRES_USER}
password: ${env.POSTGRES_PASSWORD}
stores:
metadata:
backend: kv_default
namespace: registry
inference:
backend: sql_default
table_name: inference_store
max_write_queue_size: 10000
num_writers: 4
conversations:
backend: sql_default
table_name: openai_conversations
```
Provider configs follow the same pattern—for example, a Chroma vector
adapter switches from:
```yaml
providers:
vector_io:
- provider_id: chromadb
provider_type: remote::chromadb
config:
url: ${env.CHROMADB_URL}
kvstore:
type: sqlite
db_path: ~/.llama/distributions/foo/chroma.db
```
to:
```yaml
providers:
vector_io:
- provider_id: chromadb
provider_type: remote::chromadb
config:
url: ${env.CHROMADB_URL}
persistence:
backend: kv_default
namespace: vector_io::chroma_remote
```
Once the backends are declared, everything else just points at them, so
rotating credentials or swapping to Postgres happens in one place and
the stack reuses a single connection pool.
This PR updates the Conversation item related types and improves a
couple critical parts of the implemenation:
- it creates a streaming output item for the final assistant message
output by
the model. until now we only added content parts and included that
message in the final response.
- rewrites the conversation update code completely to account for items
other than messages (tool calls, outputs, etc.)
## Test Plan
Used the test script from
https://github.com/llamastack/llama-stack-client-python/pull/281 for
this
```
TEST_API_BASE_URL=http://localhost:8321/v1 \
pytest tests/integration/test_agent_turn_step_events.py::test_client_side_function_tool -xvs
```
# What does this PR do?
closes#3268closes#3498
When resuming from previous response ID, currently we attempt to convert
from the stored responses input to chat completion messages, which is
not always possible, e.g. for tool calls where some data is lost once
converted from chat completion message to repsonses input format.
This PR stores the chat completion messages that correspond to the
_last_ call to chat completion, which is sufficient to be resumed from
in the next responses API call, where we load these saved messages and
skip conversion entirely.
Separate issue to optimize storage:
https://github.com/llamastack/llama-stack/issues/3646
## Test Plan
existing CI tests
# What does this PR do?
Mirroring the same changes that was used for inference_store:
https://github.com/llamastack/llama-stack/pull/3383
Will follow up with a shared internal API for managing these write
queues.
## Test Plan
existing tests
# What does this PR do?
This PR is generated with AI and reviewed by me.
Refactors the AuthorizedSqlStore class to store the access policy as an
instance variable rather than passing it as a parameter to each method
call. This simplifies the API.
# Test Plan
existing tests
# What does this PR do?
Resolves:
```
mypy.....................................................................Failed
- hook id: mypy
- exit code: 1
llama_stack/providers/utils/responses/responses_store.py:119: error: Missing positional argument "policy" in call to "fetch_one" of "AuthorizedSqlStore" [call-arg]
llama_stack/providers/utils/responses/responses_store.py:122: error: "AuthorizedSqlStore" has no attribute "delete" [attr-defined]
Found 2 errors in 1 file (checked 403 source files)
```
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
This PR creates a webmethod for deleting open AI responses, adds and
implementation for it and makes an integration test for the OpenAI
delete response method.
[//]: # (If resolving an issue, uncomment and update the line below)
# (Closes#2077)
## Test Plan
Ran the standard tests and the pre-commit hooks and the unit tests.
# (## Documentation)
For this pr I made the routes and implementation based on the current
get and create methods. The unit tests were not able to handle this test
due to the mock interface in use, which did not allow for effective CRUD
to be tested. I instead created an integration test to match the
existing ones in the test_openai_responses.
# What does this PR do?
Inference/Response stores now store user attributes when inserting, and
respects them when fetching.
## Test Plan
pytest tests/unit/utils/test_sqlstore.py
# What does this PR do?
This is not part of the official OpenAI API, but we'll use this for the
logs UI.
In order to support more filtering options, I'm adopting the newly
introduced sql store in in place of the kv store.
## Test Plan
Added integration/unit tests.