# What does this PR do?
update Groq inference provider to use OpenAIMixin for openai-compat
endpoints
changes on api.groq.com -
- json_schema is now supported for specific models, see
https://console.groq.com/docs/structured-outputs#supported-models
- response_format with streaming is now supported for models that
support response_format
- groq no longer returns a 400 error if tools are provided and
tool_choice is not "required"
## Test Plan
```
$ GROQ_API_KEY=... uv run llama stack build --image-type venv --providers inference=remote::groq --run
...
$ LLAMA_STACK_CONFIG=http://localhost:8321 uv run --group test pytest -v -ra --text-model groq/llama-3.3-70b-versatile tests/integration/inference/test_openai_completion.py -k 'not store'
...
SKIPPED [3] tests/integration/inference/test_openai_completion.py:44: Model groq/llama-3.3-70b-versatile hosted by remote::groq doesn't support OpenAI completions.
SKIPPED [3] tests/integration/inference/test_openai_completion.py:94: Model groq/llama-3.3-70b-versatile hosted by remote::groq doesn't support vllm extra_body parameters.
SKIPPED [4] tests/integration/inference/test_openai_completion.py:73: Model groq/llama-3.3-70b-versatile hosted by remote::groq doesn't support n param.
SKIPPED [1] tests/integration/inference/test_openai_completion.py💯 Model groq/llama-3.3-70b-versatile hosted by remote::groq doesn't support chat completion calls with base64 encoded files.
======================= 8 passed, 11 skipped, 8 deselected, 2 warnings in 5.13s ========================
```
---------
Co-authored-by: raghotham <rsm@meta.com>
# What does this PR do?
This change migrates the VectorDB id generation to Vector Stores.
This is a breaking change for **_some users_** that may have application
code using the `vector_db_id` parameter in the request of the VectorDB
protocol instead of the `VectorDB.identifier` in the response.
By default we will now create a Vector Store every time we register a
VectorDB. The caveat with this approach is that this maps the
`vector_db_id` → `vector_store.name`. This is a reasonable tradeoff to
transition users towards OpenAI Vector Stores.
As an added benefit, registering VectorDBs will result in them appearing
in the VectorStores admin UI.
### Why?
This PR makes the `POST` API call to `/v1/vector-dbs` swap the
`vector_db_id` parameter in the **request body** into the VectorStore's
name field and sets the `vector_db_id` to the generated vector store id
(e.g., `vs_038247dd-4bbb-4dbb-a6be-d5ecfd46cfdb`).
That means that users would have to do something like follows in their
application code:
```python
res = client.vector_dbs.register(
vector_db_id='my-vector-db-id',
embedding_model='ollama/all-minilm:l6-v2',
embedding_dimension=384,
)
vector_db_id = res.identifier
```
And then the rest of their code would behave, including `VectorIO`'s
insert protocol using `vector_db_id` in the request.
An alternative implementation would be to just delete the `vector_db_id`
parameter in `VectorDB` but the end result would still require users
having to write `vector_db_id = res.identifier` since
`VectorStores.create()` generates the ID for you.
So this approach felt the easiest way to migrate users towards
VectorStores (subsequent PRs will be added to trigger `files.create()`
and `vector_stores.files.create()`).
## Test Plan
Unit tests and integration tests have been added.
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
# What does this PR do?
Improved bedrock provider config to read from environment variables like
AWS_ACCESS_KEY_ID. Updated all
fields to use default_factory with lambda patterns like the nvidia
provider does.
Now the environment variables work as documented.
Closes#3305
## Test Plan
Ran the new bedrock config tests:
```bash
python -m pytest tests/unit/providers/inference/bedrock/test_config.py
-v
Verified existing provider tests still work:
python -m pytest tests/unit/providers/test_configs.py -v
What does this PR do?
Fixes error handling when MCP server connections fail. Instead of
returning generic 500 errors, now provides
descriptive error messages with proper HTTP status codes.
Closes#3107
Test Plan
Before fix:
curl -X GET
"http://localhost:8321/v1/tool-runtime/list-tools?tool_group_id=bad-mcp-server"
Returns: {"detail": "Internal server error: An unexpected error
occurred."} (500)
After fix:
curl -X GET
"http://localhost:8321/v1/tool-runtime/list-tools?tool_group_id=bad-mcp-server"
Returns: {"error": {"detail": "Failed to connect to MCP server at
http://localhost:9999/sse: Connection
refused"}} (502)
Tests:
- Added unit test for ConnectionError → 502 translation
- Manually tested with unreachable MCP servers (connection refused)
One needed to specify record-replay related environment variables for
running integration tests. We could not use defaults because integration
tests could be run against Ollama instances which could be running
different models. For example, text vs vision tests needed separate
instances of Ollama because a single instance typically cannot serve
both of these models if you assume the standard CI worker configuration
on Github. As a result, `client.list()` as returned by the Ollama client
would be different between these runs and we'd end up overwriting
responses.
This PR "solves" it by adding a small amount of complexity -- we store
model list responses specially, keyed by the hashes of the models they
return. At replay time, we merge all of them and pretend that we have
the union of all models available.
## Test Plan
Re-recorded all the tests using `scripts/integration-tests.sh
--inference-mode record`, including the vision tests.
# What does this PR do?
add the ability to use inequalities in the where clause of the sqlstore.
this is infrastructure for files expiration.
## Test Plan
unit tests
# What does this PR do?
During env var replacement, we're implicitly converting all config types
to their apparent types (e.g., "true" to True, "123" to 123). This may
be arguably useful for when doing an env var substitution, as those are
always strings, but we should definitely avoid touching config values
that have explicit types and are uninvolved in env var substitution.
## Test Plan
Unit
Recording files use a predictable naming format, making the SQLite index
redundant. The binary SQLite file was causing frequent git conflicts.
Simplify by calculating file paths directly from request hashes.
Signed-off-by: Derek Higgins <derekh@redhat.com>
# What does this PR do?
As described in #3134 a langchain example works against openai's
responses impl, but not against llama stack's. This turned out to be due
to the order of the inputs. The langchain example has the two function
call outputs first, followed by each call result in turn. This seems to
be valid as it is accepted by openai's impl. However in llama stack,
these inputs are converted to chat completion inputs and the resulting
order for that api is not accpeted by openai.
This PR fixes the issue by ensuring that the converted chat completions
inputs are in the expected order.
Closes#3134
## Test Plan
Added unit and integration tests. Verified this fixes original issue as
reported.
---------
Signed-off-by: Gordon Sim <gsim@redhat.com>
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
This PR removes `init()` from `LlamaStackAsLibrary`
Currently client.initialize() had to be invoked by user.
To improve dev experience and to avoid runtime errors, this PR init
LlamaStackAsLibrary implicitly upon using the client.
It prevents also multiple init of the same client, while maintaining
backward ccompatibility.
This PR does the following
- Automatic Initialization: Constructor calls initialize_impl()
automatically.
- Client is fully initialized after __init__ completes.
- Prevents consecutive initialization after the client has been
successfully initialized.
- initialize() method still exists but is now a no-op.
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
fixes https://github.com/meta-llama/llama-stack/issues/2946
---------
Signed-off-by: Mustafa Elbehery <melbeher@redhat.com>
Adds flexible CORS (Cross-Origin Resource Sharing) configuration support
to the FastAPI
server with both local development and explicit configuration modes:
- **Local development mode**: `cors: true` enables localhost-only access
with regex
pattern `https?://localhost:\d+`
- **Explicit configuration mode**: Specific origins configuration with
credential support
and validation
- Prevents insecure combinations (wildcards with credentials)
- FastAPI CORSMiddleware integration via `model_dump()`
Addresses the need for configurable CORS policies to support web
frontends and
cross-origin API access while maintaining security.
Closes#2119
## Test Plan
1. Ran Unit Tests.
2. Manual tests: FastAPI middleware integration with actual HTTP
requests
- Local development mode localhost access validation
- Explicit configuration mode origins validation
- Preflight OPTIONS request handling
Some screenshots of manual tests.
<img width="1920" height="927" alt="image"
src="https://github.com/user-attachments/assets/79322338-40c7-45c9-a9ea-e3e8d8e2f849"
/>
<img width="1911" height="1037" alt="image"
src="https://github.com/user-attachments/assets/1683524e-b0c9-48c9-a0a5-782e949cde01"
/>
cc: @leseb @rhuss @franciscojavierarceo
# What does this PR do?
Handles MCP tool calls in a previous response
Closes#3105
## Test Plan
Made call to create response with tool call, then made second call with
the first linked through previous_response_id. Did not get error.
Also added unit test.
Signed-off-by: Gordon Sim <gsim@redhat.com>
# What does this PR do?
This PR adds a step in pre-commit to enforce using `llama_stack` logger.
Currently, various parts of the code base uses different loggers. As a
custom `llama_stack` logger exist and used in the codebase, it is better
to standardize its utilization.
Signed-off-by: Mustafa Elbehery <melbeher@redhat.com>
Co-authored-by: Matthew Farrellee <matt@cs.wisc.edu>
# What does this PR do?
Refactors the OpenAI response conversion utilities by moving helper functions from `openai_responses.py` to `utils.py`. Adds unit tests.
# What does this PR do?
Refactors the OpenAI responses implementation by extracting streaming and tool execution logic into separate modules. This improves code organization by:
1. Creating a new `StreamingResponseOrchestrator` class in `streaming.py` to handle the streaming response generation logic
2. Moving tool execution functionality to a dedicated `ToolExecutor` class in `tool_executor.py`
## Test Plan
Existing tests
The OpenAI compatibility layer was incorrectly importing
ChatCompletionMessageToolCallParam instead of the
ChatCompletionMessageFunctionToolCall class. This caused "Cannot
instantiate typing.Union" errors when processing agent requests with
tool calls.
Closes: #3141
Signed-off-by: Derek Higgins <derekh@redhat.com>
# What does this PR do?
Adds content part streaming events to the OpenAI-compatible Responses API to support more granular streaming of response content. This introduces:
1. New schema types for content parts: `OpenAIResponseContentPart` with variants for text output and refusals
2. New streaming event types:
- `OpenAIResponseObjectStreamResponseContentPartAdded` for when content parts begin
- `OpenAIResponseObjectStreamResponseContentPartDone` for when content parts complete
3. Implementation in the reference provider to emit these events during streaming responses. Also emits MCP arguments just like function call ones.
## Test Plan
Updated existing streaming tests to verify content part events are properly emitted
# What does this PR do?
1. Updates `AgentPersistence.list_sessions()` to properly filter out
`Turn` keys from `Session` keys.
2. Adds a suite of unit tests to confirm the `list_sessions()` behavior
and tests the failed sample in
https://github.com/meta-llama/llama-stack/issues/3048
## Fixes https://github.com/meta-llama/llama-stack/issues/3048
## Test Plan
Unit tests added.
---------
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
# What does this PR do?
This PR implements hybrid search for Milvus DB based on the inbuilt
milvus support.
To test:
```
pytest tests/unit/providers/vector_io/remote/test_milvus.py -v -s
--tb=long --disable-warnings --asyncio-mode=auto
```
Signed-off-by: Varsha Prasad Narsing <varshaprasad96@gmail.com>
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
Extend the Shields Protocol and implement the capability to unregister
previously registered shields and CLI for shields management.
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
Closes#2581
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
First of, test API for shields
1. Install and start Ollama:
`ollama serve`
2. Pull Llama Guard Model in Ollama:
`ollama pull llama-guard3:8b`
3. Configure env variables:
```
export ENABLE_OLLAMA=ollama
export OLLAMA_URL=http://localhost:11434
```
4. Build Llama Stack distro:
`llama stack build --template starter --image-type venv `
5. Start Llama Stack server:
`llama stack run starter --port 8321`
6. Check if Ollama model is available:
`curl -X GET http://localhost:8321/v1/models | jq '.data[] |
select(.provider_id=="ollama")'`
7. Register a new Shield using Ollama provider:
```
curl -X POST http://localhost:8321/v1/shields \
-H "Content-Type: application/json" \
-d '{
"shield_id": "test-shield",
"provider_id": "llama-guard",
"provider_shield_id": "ollama/llama-guard3:8b",
"params": {}
}'
```
`{"identifier":"test-shield","provider_resource_id":"ollama/llama-guard3:8b","provider_id":"llama-guard","type":"shield","owner":{"principal":"","attributes":{}},"params":{}}%
`
8. Check if shield was registered:
`curl -X GET http://localhost:8321/v1/shields/test-shield`
`{"identifier":"test-shield","provider_resource_id":"ollama/llama-guard3:8b","provider_id":"llama-guard","type":"shield","owner":{"principal":"","attributes":{}},"params":{}}%
`
9. Run shield:
```
curl -X POST http://localhost:8321/v1/safety/run-shield \
-H "Content-Type: application/json" \
-d '{
"shield_id": "test-shield",
"messages": [
{
"role": "user",
"content": "How can I hack into someone computer?"
}
],
"params": {}
}'
```
`{"violation":{"violation_level":"error","user_message":"I can't answer
that. Can I help with something
else?","metadata":{"violation_type":"S2"}}}% `
10. Unregister shield:
`curl -X DELETE http://localhost:8321/v1/shields/test-shield`
`null% `
11. Verify shield was deleted:
`curl -X GET http://localhost:8321/v1/shields/test-shield`
`{"detail":"Invalid value: Shield 'test-shield' not found"}%`
All tests passed ✅
```
========================================================================== 430 passed, 194 warnings in 19.54s ==========================================================================
/Users/iamiller/GitHub/llama-stack/.venv/lib/python3.12/site-packages/litellm/llms/custom_httpx/async_client_cleanup.py:78: RuntimeWarning: coroutine 'close_litellm_async_clients' was never awaited
loop.close()
RuntimeWarning: Enable tracemalloc to get the object allocation traceback
Wrote HTML report to htmlcov-3.12/index.html
```
As the title says. Distributions is in, Templates is out.
`llama stack build --template` --> `llama stack build --distro`. For
backward compatibility, the previous option is kept but results in a
warning.
Updated `server.py` to remove the "config_or_template" backward
compatibility since it has been a couple releases since that change.
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
This PR is responsible for removal of Conda support in Llama Stack
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
Closes#2539
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
# What does this PR do?
Adds support to Vector store Open AI APIs in Qdrant.
<!-- If resolving an issue, uncomment and update the line below -->
Closes#2463
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
Signed-off-by: Varsha Prasad Narsing <varshaprasad96@gmail.com>
Co-authored-by: ehhuang <ehhuang@users.noreply.github.com>
Co-authored-by: Francisco Arceo <arceofrancisco@gmail.com>
# What does this PR do?
This PR (1) enables the files API for Weaviate and (2) enables
integration tests for Weaviate, which adds a docker container to the
github action.
This PR also handles a couple of edge cases for in creating the
collection and ensuring the tests all pass.
## Test Plan
CI enabled
---------
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
# What does this PR do?
Improve user experience by providing specific guidance when no API key
is available, showing both provider data header and config options with
the correct field name for each provider.
Also adds comprehensive test coverage for API key resolution scenarios.
addresses #2990 for providers using litellm openai mixin
## Test Plan
`./scripts/unit-tests.sh
tests/unit/providers/inference/test_litellm_openai_mixin.py`
# What does this PR do?
- Initialize route_impls to None in constructor to prevent
AttributeError
- Consolidate initialization checks to single point in request() method
- Improve error message to be more helpful ("Please call initialize()
first")
- Add comprehensive test suite to prevent regressions
The library client now has better error handling when users forget to
call initialize(), showing a clear ValueError instead of confusing
AttributeError. All initialization validation is now centralized in the
request() method, with internal methods (_call_non_streaming,
_call_streaming, _convert_body) relying on this single check for
cleaner, more maintainable code.
closes#2943
## Test Plan
`./scripts/unit-tests.sh`
Implements a comprehensive recording and replay system for inference API
calls that eliminates dependency on online inference providers during
testing. The system treats inference as deterministic by recording real
API responses and replaying them in subsequent test runs. Applies to
OpenAI clients (which should cover many inference requests) as well as
Ollama AsyncClient.
For storing, we use a hybrid system: Sqlite for fast lookups and JSON
files for easy greppability / debuggability.
As expected, tests become much much faster (more than 3x in just
inference testing.)
```bash
LLAMA_STACK_TEST_INFERENCE_MODE=record LLAMA_STACK_TEST_RECORDING_DIR=<...> \
uv run pytest -s -v tests/integration/inference \
--stack-config=starter \
-k "not( builtin_tool or safety_with_image or code_interpreter or test_rag )" \
--text-model="ollama/llama3.2:3b-instruct-fp16" \
--embedding-model=sentence-transformers/all-MiniLM-L6-v2
```
```bash
LLAMA_STACK_TEST_INFERENCE_MODE=replay LLAMA_STACK_TEST_RECORDING_DIR=<...> \
uv run pytest -s -v tests/integration/inference \
--stack-config=starter \
-k "not( builtin_tool or safety_with_image or code_interpreter or test_rag )" \
--text-model="ollama/llama3.2:3b-instruct-fp16" \
--embedding-model=sentence-transformers/all-MiniLM-L6-v2
```
- `LLAMA_STACK_TEST_INFERENCE_MODE`: `live` (default), `record`, or
`replay`
- `LLAMA_STACK_TEST_RECORDING_DIR`: Storage location (must be specified
for record or replay modes)
**What:**
- Added OpenAIChatCompletionTextOnlyMessageContent type for text-only
content validation
- Modified OpenAISystemMessageParam, OpenAIAssistantMessageParam,
OpenAIDeveloperMessageParam, and OpenAIToolMessageParam to use text-only
content type instead of mixed content
- OpenAIUserMessageParam unchanged - still accepts both text and images
- Updated OpenAPI spec files to reflect text-only content restrictions
in schemas
closes#2894
**Why:**
- Enforces OpenAI API compatibility by restricting image content to user
messages only
- Prevents API misuse where images might be sent in message types that
don't support them
- Aligns with OpenAI's actual API behavior where only user messages can
contain multimodal content
- Improves type safety and validation at the API boundary
**Test plan:**
- Added comprehensive parametrized tests covering all 5 OpenAI message
types
- Tests verify text string acceptance for all message types
- Tests verify text list acceptance for all message types
- Tests verify image rejection for system/assistant/developer/tool
messages (ValidationError expected)
- Tests verify user messages still accept images (backward compatibility
maintained)
# What does this PR do?
- Add base_url field to OpenAIConfig with default
"https://api.openai.com/v1"
- Update sample_run_config to support OPENAI_BASE_URL environment
variable
- Modify get_base_url() to return configured base_url instead of
hardcoded value
- Add comprehensive test suite covering:
- Default base URL behavior
- Custom base URL from config
- Environment variable override
- Config precedence over environment variables
- Client initialization with configured URL
- Model availability checks using configured URL
This enables users to configure custom OpenAI-compatible API endpoints
via environment variables or configuration files.
Closes#2910
## Test Plan
run unit tests