currently providers have a `pip_package` list. Rather than make our own form of python dependency management, we should use `pyproject.toml` files in each provider declaring the dependencies in a more trackable manner.
Each provider can then be installed using the already in place `module` field in the ProviderSpec, pointing to the directory the provider lives in
we can then simply `uv pip install` this directory as opposed to installing the dependencies one by one
Signed-off-by: Charlie Doern <cdoern@redhat.com>
The starter distribution added post-training which added torch
dependencies which pulls in all the nvidia CUDA libraries. This made our
starter container very big. We have worked hard to keep the starter
container small so it serves its purpose as a starter. This PR tries to
get it back to its size by forking off duplicate "-gpu" providers for
post-training. These forked providers are then used for a new
`starter-gpu` distribution which can pull in all dependencies.