Commit graph

12 commits

Author SHA1 Message Date
Ashwin Bharambe
94faec7bc5
chore(yaml)!: move registered resources to a sub-key (#3861)
**NOTE: this is a backwards incompatible change to the run-configs.**

A small QOL update, but this will prove useful when I do a rename for
"vector_dbs" to "vector_stores" next.

Moves all the `models, shields, ...` keys in run-config under a
`registered_resources` sub-key.
2025-10-20 14:52:48 -07:00
Francisco Arceo
48581bf651
chore: Updating how default embedding model is set in stack (#3818)
# What does this PR do?

Refactor setting default vector store provider and embedding model to
use an optional `vector_stores` config in the `StackRunConfig` and clean
up code to do so (had to add back in some pieces of VectorDB). Also
added remote Qdrant and Weaviate to starter distro (based on other PR
where inference providers were added for UX).

New config is simply (default for Starter distro):

```yaml
vector_stores:
  default_provider_id: faiss
  default_embedding_model:
    provider_id: sentence-transformers
    model_id: nomic-ai/nomic-embed-text-v1.5
```

## Test Plan
CI and Unit tests.

---------

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
2025-10-20 14:22:45 -07:00
Ashwin Bharambe
2c43285e22
feat(stores)!: use backend storage references instead of configs (#3697)
**This PR changes configurations in a backward incompatible way.**

Run configs today repeat full SQLite/Postgres snippets everywhere a
store is needed, which means duplicated credentials, extra connection
pools, and lots of drift between files. This PR introduces named storage
backends so the stack and providers can share a single catalog and
reference those backends by name.

## Key Changes

- Add `storage.backends` to `StackRunConfig`, register each KV/SQL
backend once at startup, and validate that references point to the right
family.
- Move server stores under `storage.stores` with lightweight references
(backend + namespace/table) instead of full configs.
- Update every provider/config/doc to use the new reference style;
docs/codegen now surface the simplified YAML.

## Migration

Before:
```yaml
metadata_store:
  type: sqlite
  db_path: ~/.llama/distributions/foo/registry.db
inference_store:
  type: postgres
  host: ${env.POSTGRES_HOST}
  port: ${env.POSTGRES_PORT}
  db: ${env.POSTGRES_DB}
  user: ${env.POSTGRES_USER}
  password: ${env.POSTGRES_PASSWORD}
conversations_store:
  type: postgres
  host: ${env.POSTGRES_HOST}
  port: ${env.POSTGRES_PORT}
  db: ${env.POSTGRES_DB}
  user: ${env.POSTGRES_USER}
  password: ${env.POSTGRES_PASSWORD}
```

After:
```yaml
storage:
  backends:
    kv_default:
      type: kv_sqlite
      db_path: ~/.llama/distributions/foo/kvstore.db
    sql_default:
      type: sql_postgres
      host: ${env.POSTGRES_HOST}
      port: ${env.POSTGRES_PORT}
      db: ${env.POSTGRES_DB}
      user: ${env.POSTGRES_USER}
      password: ${env.POSTGRES_PASSWORD}
  stores:
    metadata:
      backend: kv_default
      namespace: registry
    inference:
      backend: sql_default
      table_name: inference_store
      max_write_queue_size: 10000
      num_writers: 4
    conversations:
      backend: sql_default
      table_name: openai_conversations
```

Provider configs follow the same pattern—for example, a Chroma vector
adapter switches from:

```yaml
providers:
  vector_io:
  - provider_id: chromadb
    provider_type: remote::chromadb
    config:
      url: ${env.CHROMADB_URL}
      kvstore:
        type: sqlite
        db_path: ~/.llama/distributions/foo/chroma.db
```

to:

```yaml
providers:
  vector_io:
  - provider_id: chromadb
    provider_type: remote::chromadb
    config:
      url: ${env.CHROMADB_URL}
      persistence:
        backend: kv_default
        namespace: vector_io::chroma_remote
```

Once the backends are declared, everything else just points at them, so
rotating credentials or swapping to Postgres happens in one place and
the stack reuses a single connection pool.
2025-10-20 13:20:09 -07:00
ehhuang
07ff15d917
chore: distrogen enables telemetry by default (#3828)
# What does this PR do?
leftover from #3815

## Test Plan
CI


---
[//]: # (BEGIN SAPLING FOOTER)
Stack created with [Sapling](https://sapling-scm.com). Best reviewed
with
[ReviewStack](https://reviewstack.dev/llamastack/llama-stack/pull/3828).
* #3830
* __->__ #3828
2025-10-16 11:29:51 -07:00
Charlie Doern
f22aaef42f
chore!: remove telemetry API usage (#3815)
# What does this PR do?

remove telemetry as a providable API from the codebase. This includes
removing it from generated distributions but also the provider registry,
the router, etc

since `setup_logger` is tied pretty strictly to `Api.telemetry` being in
impls we still need an "instantiated provider" in our implementations.
However it should not be auto-routed or provided. So in
validate_and_prepare_providers (called from resolve_impls) I made it so
that if run_config.telemetry.enabled, we set up the meta-reference
"provider" internally to be used so that log_event will work when
called.

This is the neatest way I think we can remove telemetry from the
provider configs but also not need to rip apart the whole "telemetry is
a provider" logic just yet, but we can do it internally later without
disrupting users.

so telemetry is removed from the registry such that if a user puts
`telemetry:` as an API in their build/run config it will err out, but
can still be used by us internally as we go through this transition.


relates to #3806

Signed-off-by: Charlie Doern <cdoern@redhat.com>
2025-10-16 10:39:32 -07:00
ehhuang
6ba9db3929
chore!: BREAKING CHANGE: remove sqlite from telemetry config (#3808)
# What does this PR do?
- Removed sqlite sink from telemetry config.
- Removed related code
- Updated doc related to telemetry

## Test Plan
CI
2025-10-15 14:24:45 -07:00
Francisco Arceo
e7d21e1ee3
feat: Add support for Conversations in Responses API (#3743)
# What does this PR do?
This PR adds support for Conversations in Responses.

<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->

## Test Plan
Unit tests
Integration tests

<Details>
<Summary>Manual testing with this script: (click to expand)</Summary>

```python
from openai import OpenAI

client = OpenAI()
client = OpenAI(base_url="http://localhost:8321/v1/", api_key="none")

def test_conversation_create():
    print("Testing conversation create...")
    conversation = client.conversations.create(
        metadata={"topic": "demo"},
        items=[
            {"type": "message", "role": "user", "content": "Hello!"}
        ]
    )
    print(f"Created: {conversation}")
    return conversation

def test_conversation_retrieve(conv_id):
    print(f"Testing conversation retrieve for {conv_id}...")
    retrieved = client.conversations.retrieve(conv_id)
    print(f"Retrieved: {retrieved}")
    return retrieved

def test_conversation_update(conv_id):
    print(f"Testing conversation update for {conv_id}...")
    updated = client.conversations.update(
        conv_id,
        metadata={"topic": "project-x"}
    )
    print(f"Updated: {updated}")
    return updated

def test_conversation_delete(conv_id):
    print(f"Testing conversation delete for {conv_id}...")
    deleted = client.conversations.delete(conv_id)
    print(f"Deleted: {deleted}")
    return deleted

def test_conversation_items_create(conv_id):
    print(f"Testing conversation items create for {conv_id}...")
    items = client.conversations.items.create(
        conv_id,
        items=[
            {
                "type": "message",
                "role": "user",
                "content": [{"type": "input_text", "text": "Hello!"}]
            },
            {
                "type": "message",
                "role": "user",
                "content": [{"type": "input_text", "text": "How are you?"}]
            }
        ]
    )
    print(f"Items created: {items}")
    return items

def test_conversation_items_list(conv_id):
    print(f"Testing conversation items list for {conv_id}...")
    items = client.conversations.items.list(conv_id, limit=10)
    print(f"Items list: {items}")
    return items

def test_conversation_item_retrieve(conv_id, item_id):
    print(f"Testing conversation item retrieve for {conv_id}/{item_id}...")
    item = client.conversations.items.retrieve(conversation_id=conv_id, item_id=item_id)
    print(f"Item retrieved: {item}")
    return item

def test_conversation_item_delete(conv_id, item_id):
    print(f"Testing conversation item delete for {conv_id}/{item_id}...")
    deleted = client.conversations.items.delete(conversation_id=conv_id, item_id=item_id)
    print(f"Item deleted: {deleted}")
    return deleted

def test_conversation_responses_create():
    print("\nTesting conversation create for a responses example...")
    conversation = client.conversations.create()
    print(f"Created: {conversation}")

    response = client.responses.create(
      model="gpt-4.1",
      input=[{"role": "user", "content": "What are the 5 Ds of dodgeball?"}],
      conversation=conversation.id,
    )
    print(f"Created response: {response} for conversation {conversation.id}")

    return response, conversation

def test_conversations_responses_create_followup(
        conversation,
        content="Repeat what you just said but add 'this is my second time saying this'",
    ):
    print(f"Using: {conversation.id}")

    response = client.responses.create(
      model="gpt-4.1",
      input=[{"role": "user", "content": content}],
      conversation=conversation.id,
    )
    print(f"Created response: {response} for conversation {conversation.id}")

    conv_items = client.conversations.items.list(conversation.id)
    print(f"\nRetrieving list of items for conversation {conversation.id}:")
    print(conv_items.model_dump_json(indent=2))

def test_response_with_fake_conv_id():
    fake_conv_id = "conv_zzzzzzzzz5dc81908289d62779d2ac510a2b0b602ef00a44"
    print(f"Using {fake_conv_id}")
    try:
        response = client.responses.create(
          model="gpt-4.1",
          input=[{"role": "user", "content": "say hello"}],
          conversation=fake_conv_id,
        )
        print(f"Created response: {response} for conversation {fake_conv_id}")
    except Exception as e:
        print(f"failed to create response for conversation {fake_conv_id} with error {e}")


def main():
    print("Testing OpenAI Conversations API...")

    # Create conversation
    conversation = test_conversation_create()
    conv_id = conversation.id

    # Retrieve conversation
    test_conversation_retrieve(conv_id)

    # Update conversation
    test_conversation_update(conv_id)

    # Create items
    items = test_conversation_items_create(conv_id)

    # List items
    items_list = test_conversation_items_list(conv_id)

    # Retrieve specific item
    if items_list.data:
        item_id = items_list.data[0].id
        test_conversation_item_retrieve(conv_id, item_id)

        # Delete item
        test_conversation_item_delete(conv_id, item_id)

    # Delete conversation
    test_conversation_delete(conv_id)

    response, conversation2 = test_conversation_responses_create()
    print('\ntesting reseponse retrieval')
    test_conversation_retrieve(conversation2.id)

    print('\ntesting responses follow up')
    test_conversations_responses_create_followup(conversation2)

    print('\ntesting responses follow up x2!')

    test_conversations_responses_create_followup(
        conversation2,
        content="Repeat what you just said but add 'this is my third time saying this'",
    )

    test_response_with_fake_conv_id()

    print("All tests completed!")


if __name__ == "__main__":
    main()
```
</Details>

---------

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
2025-10-10 11:57:40 -07:00
Ashwin Bharambe
42414a1a1b
fix(logging): disable console telemetry sink by default (#3623)
Some checks failed
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 0s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Vector IO Integration Tests / test-matrix (push) Failing after 3s
Test Llama Stack Build / generate-matrix (push) Successful in 3s
Python Package Build Test / build (3.12) (push) Failing after 1s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 3s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 3s
Test External API and Providers / test-external (venv) (push) Failing after 4s
Unit Tests / unit-tests (3.13) (push) Failing after 3s
Test Llama Stack Build / build (push) Failing after 4s
Python Package Build Test / build (3.13) (push) Failing after 21s
Test Llama Stack Build / build-single-provider (push) Failing after 25s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 27s
Unit Tests / unit-tests (3.12) (push) Failing after 22s
API Conformance Tests / check-schema-compatibility (push) Successful in 33s
UI Tests / ui-tests (22) (push) Successful in 39s
Pre-commit / pre-commit (push) Successful in 1m12s
The current span processing dumps so much junk on the console that it
makes actual understanding of what is going on in the server impossible.
I am killing the console sink as a default. If you want, you are always
free to change your run.yaml to add it.

Before: 
<img width="1877" height="1107" alt="image"
src="https://github.com/user-attachments/assets/3a7ad261-e2ba-4d40-9820-fcc282c8df37"
/>

After:
<img width="1919" height="470" alt="image"
src="https://github.com/user-attachments/assets/bc7cf763-fba9-4e95-a4b5-f65f6d1c5332"
/>
2025-09-30 14:58:05 -07:00
Sébastien Han
f31bcc11bc
feat: add Azure OpenAI inference provider support (#3396)
# What does this PR do?

Llama-stack now supports a new OpenAI compatible endpoint with Azure
OpenAI. The starter distro has been updated to add the new remote
inference provider.

A few tests have been modified and improved.

## Test Plan

Deploy a model in the Aure portal then:

```
$ AZURE_API_KEY=... AZURE_API_BASE=... uv run llama stack build --image-type venv --providers inference=remote::azure --run
...
$ LLAMA_STACK_CONFIG=http://localhost:8321 uv run --group test pytest -v -ra --text-model azure/gpt-4.1 tests/integration/inference/test_openai_completion.py
...

Results:

```
============================================= test session starts
============================================== platform darwin -- Python
3.12.8, pytest-8.4.1, pluggy-1.6.0 --
/Users/leseb/Documents/AI/llama-stack/.venv/bin/python3 cachedir:
.pytest_cache
metadata: {'Python': '3.12.8', 'Platform':
'macOS-15.6.1-arm64-arm-64bit', 'Packages': {'pytest': '8.4.1',
'pluggy': '1.6.0'}, 'Plugins': {'anyio': '4.9.0', 'html': '4.1.1',
'socket': '0.7.0', 'asyncio': '1.1.0', 'json-report': '1.5.0',
'timeout': '2.4.0', 'metadata': '3.1.1', 'cov': '6.2.1', 'nbval':
'0.11.0', 'hydra-core': '1.3.2'}} rootdir:
/Users/leseb/Documents/AI/llama-stack
configfile: pyproject.toml
plugins: anyio-4.9.0, html-4.1.1, socket-0.7.0, asyncio-1.1.0,
json-report-1.5.0, timeout-2.4.0, metadata-3.1.1, cov-6.2.1,
nbval-0.11.0, hydra-core-1.3.2 asyncio: mode=Mode.AUTO,
asyncio_default_fixture_loop_scope=None,
asyncio_default_test_loop_scope=function collected 27 items


tests/integration/inference/test_openai_completion.py::test_openai_completion_non_streaming[txt=azure/gpt-5-mini-inference:completion:sanity]
SKIPPED [ 3%]
tests/integration/inference/test_openai_completion.py::test_openai_completion_non_streaming_suffix[txt=azure/gpt-5-mini-inference:completion:suffix]
SKIPPED [ 7%]
tests/integration/inference/test_openai_completion.py::test_openai_completion_streaming[txt=azure/gpt-5-mini-inference:completion:sanity]
SKIPPED [ 11%]
tests/integration/inference/test_openai_completion.py::test_openai_completion_prompt_logprobs[txt=azure/gpt-5-mini-1]
SKIPPED [ 14%]
tests/integration/inference/test_openai_completion.py::test_openai_completion_guided_choice[txt=azure/gpt-5-mini]
SKIPPED [ 18%]
tests/integration/inference/test_openai_completion.py::test_openai_chat_completion_non_streaming[openai_client-txt=azure/gpt-5-mini-inference:chat_completion:non_streaming_01]
PASSED [ 22%]
tests/integration/inference/test_openai_completion.py::test_openai_chat_completion_streaming[openai_client-txt=azure/gpt-5-mini-inference:chat_completion:streaming_01]
PASSED [ 25%]
tests/integration/inference/test_openai_completion.py::test_openai_chat_completion_streaming_with_n[openai_client-txt=azure/gpt-5-mini-inference:chat_completion:streaming_01]
PASSED [ 29%]
tests/integration/inference/test_openai_completion.py::test_inference_store[openai_client-txt=azure/gpt-5-mini-True]
PASSED [ 33%]
tests/integration/inference/test_openai_completion.py::test_inference_store_tool_calls[openai_client-txt=azure/gpt-5-mini-True]
PASSED [ 37%]
tests/integration/inference/test_openai_completion.py::test_openai_chat_completion_non_streaming_with_file[txt=azure/gpt-5-mini]
SKIPPEDed files.) [ 40%]
tests/integration/inference/test_openai_completion.py::test_openai_completion_prompt_logprobs[txt=azure/gpt-5-mini-0]
SKIPPED [ 44%]
tests/integration/inference/test_openai_completion.py::test_openai_chat_completion_non_streaming[openai_client-txt=azure/gpt-5-mini-inference:chat_completion:non_streaming_02]
PASSED [ 48%]
tests/integration/inference/test_openai_completion.py::test_openai_chat_completion_streaming[openai_client-txt=azure/gpt-5-mini-inference:chat_completion:streaming_02]
PASSED [ 51%]
tests/integration/inference/test_openai_completion.py::test_openai_chat_completion_streaming_with_n[openai_client-txt=azure/gpt-5-mini-inference:chat_completion:streaming_02]
PASSED [ 55%]
tests/integration/inference/test_openai_completion.py::test_inference_store[openai_client-txt=azure/gpt-5-mini-False]
PASSED [ 59%]
tests/integration/inference/test_openai_completion.py::test_inference_store_tool_calls[openai_client-txt=azure/gpt-5-mini-False]
PASSED [ 62%]
tests/integration/inference/test_openai_completion.py::test_openai_chat_completion_non_streaming[client_with_models-txt=azure/gpt-5-mini-inference:chat_completion:non_streaming_01]
PASSED [ 66%]
tests/integration/inference/test_openai_completion.py::test_openai_chat_completion_streaming[client_with_models-txt=azure/gpt-5-mini-inference:chat_completion:streaming_01]
PASSED [ 70%]
tests/integration/inference/test_openai_completion.py::test_openai_chat_completion_streaming_with_n[client_with_models-txt=azure/gpt-5-mini-inference:chat_completion:streaming_01]
PASSED [ 74%]
tests/integration/inference/test_openai_completion.py::test_inference_store[client_with_models-txt=azure/gpt-5-mini-True]
PASSED [ 77%]
tests/integration/inference/test_openai_completion.py::test_inference_store_tool_calls[client_with_models-txt=azure/gpt-5-mini-True]
PASSED [ 81%]
tests/integration/inference/test_openai_completion.py::test_openai_chat_completion_non_streaming[client_with_models-txt=azure/gpt-5-mini-inference:chat_completion:non_streaming_02]
PASSED [ 85%]
tests/integration/inference/test_openai_completion.py::test_openai_chat_completion_streaming[client_with_models-txt=azure/gpt-5-mini-inference:chat_completion:streaming_02]
PASSED [ 88%]
tests/integration/inference/test_openai_completion.py::test_openai_chat_completion_streaming_with_n[client_with_models-txt=azure/gpt-5-mini-inference:chat_completion:streaming_02]
PASSED [ 92%]
tests/integration/inference/test_openai_completion.py::test_inference_store[client_with_models-txt=azure/gpt-5-mini-False]
PASSED [ 96%]
tests/integration/inference/test_openai_completion.py::test_inference_store_tool_calls[client_with_models-txt=azure/gpt-5-mini-False]
PASSED [100%]

=========================================== short test summary info
============================================ SKIPPED [3]
tests/integration/inference/test_openai_completion.py:63: Model
azure/gpt-5-mini hosted by remote::azure doesn't support OpenAI
completions. SKIPPED [3]
tests/integration/inference/test_openai_completion.py:118: Model
azure/gpt-5-mini hosted by remote::azure doesn't support vllm extra_body
parameters. SKIPPED [1]
tests/integration/inference/test_openai_completion.py:124: Model
azure/gpt-5-mini hosted by remote::azure doesn't support chat completion
calls with base64 encoded files. ================================== 20
passed, 7 skipped, 2 warnings in 51.77s
==================================
```

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-09-11 13:48:38 +02:00
Derek Higgins
64b2977162
fix: Fix locations of distrubution runtime directories (#3336)
The defaults were mixed up

Signed-off-by: Derek Higgins <derekh@redhat.com>
2025-09-05 14:09:36 +02:00
Ashwin Bharambe
9fa69b0337
feat(distro): no huggingface provider for starter (#3258)
The `trl` dependency brings in `accelerate` which brings in nvidia
dependencies for torch. We cannot have that in the starter distro. As
such, no CPU-only post-training for the huggingface provider.
2025-08-26 14:06:36 -07:00
Ashwin Bharambe
7519b73fcc
feat(distro): fork off a starter-gpu distribution (#3240)
The starter distribution added post-training which added torch
dependencies which pulls in all the nvidia CUDA libraries. This made our
starter container very big. We have worked hard to keep the starter
container small so it serves its purpose as a starter. This PR tries to
get it back to its size by forking off duplicate "-gpu" providers for
post-training. These forked providers are then used for a new
`starter-gpu` distribution which can pull in all dependencies.
2025-08-22 15:47:15 -07:00