Commit graph

13 commits

Author SHA1 Message Date
Francisco Arceo
e7d21e1ee3
feat: Add support for Conversations in Responses API (#3743)
# What does this PR do?
This PR adds support for Conversations in Responses.

<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->

## Test Plan
Unit tests
Integration tests

<Details>
<Summary>Manual testing with this script: (click to expand)</Summary>

```python
from openai import OpenAI

client = OpenAI()
client = OpenAI(base_url="http://localhost:8321/v1/", api_key="none")

def test_conversation_create():
    print("Testing conversation create...")
    conversation = client.conversations.create(
        metadata={"topic": "demo"},
        items=[
            {"type": "message", "role": "user", "content": "Hello!"}
        ]
    )
    print(f"Created: {conversation}")
    return conversation

def test_conversation_retrieve(conv_id):
    print(f"Testing conversation retrieve for {conv_id}...")
    retrieved = client.conversations.retrieve(conv_id)
    print(f"Retrieved: {retrieved}")
    return retrieved

def test_conversation_update(conv_id):
    print(f"Testing conversation update for {conv_id}...")
    updated = client.conversations.update(
        conv_id,
        metadata={"topic": "project-x"}
    )
    print(f"Updated: {updated}")
    return updated

def test_conversation_delete(conv_id):
    print(f"Testing conversation delete for {conv_id}...")
    deleted = client.conversations.delete(conv_id)
    print(f"Deleted: {deleted}")
    return deleted

def test_conversation_items_create(conv_id):
    print(f"Testing conversation items create for {conv_id}...")
    items = client.conversations.items.create(
        conv_id,
        items=[
            {
                "type": "message",
                "role": "user",
                "content": [{"type": "input_text", "text": "Hello!"}]
            },
            {
                "type": "message",
                "role": "user",
                "content": [{"type": "input_text", "text": "How are you?"}]
            }
        ]
    )
    print(f"Items created: {items}")
    return items

def test_conversation_items_list(conv_id):
    print(f"Testing conversation items list for {conv_id}...")
    items = client.conversations.items.list(conv_id, limit=10)
    print(f"Items list: {items}")
    return items

def test_conversation_item_retrieve(conv_id, item_id):
    print(f"Testing conversation item retrieve for {conv_id}/{item_id}...")
    item = client.conversations.items.retrieve(conversation_id=conv_id, item_id=item_id)
    print(f"Item retrieved: {item}")
    return item

def test_conversation_item_delete(conv_id, item_id):
    print(f"Testing conversation item delete for {conv_id}/{item_id}...")
    deleted = client.conversations.items.delete(conversation_id=conv_id, item_id=item_id)
    print(f"Item deleted: {deleted}")
    return deleted

def test_conversation_responses_create():
    print("\nTesting conversation create for a responses example...")
    conversation = client.conversations.create()
    print(f"Created: {conversation}")

    response = client.responses.create(
      model="gpt-4.1",
      input=[{"role": "user", "content": "What are the 5 Ds of dodgeball?"}],
      conversation=conversation.id,
    )
    print(f"Created response: {response} for conversation {conversation.id}")

    return response, conversation

def test_conversations_responses_create_followup(
        conversation,
        content="Repeat what you just said but add 'this is my second time saying this'",
    ):
    print(f"Using: {conversation.id}")

    response = client.responses.create(
      model="gpt-4.1",
      input=[{"role": "user", "content": content}],
      conversation=conversation.id,
    )
    print(f"Created response: {response} for conversation {conversation.id}")

    conv_items = client.conversations.items.list(conversation.id)
    print(f"\nRetrieving list of items for conversation {conversation.id}:")
    print(conv_items.model_dump_json(indent=2))

def test_response_with_fake_conv_id():
    fake_conv_id = "conv_zzzzzzzzz5dc81908289d62779d2ac510a2b0b602ef00a44"
    print(f"Using {fake_conv_id}")
    try:
        response = client.responses.create(
          model="gpt-4.1",
          input=[{"role": "user", "content": "say hello"}],
          conversation=fake_conv_id,
        )
        print(f"Created response: {response} for conversation {fake_conv_id}")
    except Exception as e:
        print(f"failed to create response for conversation {fake_conv_id} with error {e}")


def main():
    print("Testing OpenAI Conversations API...")

    # Create conversation
    conversation = test_conversation_create()
    conv_id = conversation.id

    # Retrieve conversation
    test_conversation_retrieve(conv_id)

    # Update conversation
    test_conversation_update(conv_id)

    # Create items
    items = test_conversation_items_create(conv_id)

    # List items
    items_list = test_conversation_items_list(conv_id)

    # Retrieve specific item
    if items_list.data:
        item_id = items_list.data[0].id
        test_conversation_item_retrieve(conv_id, item_id)

        # Delete item
        test_conversation_item_delete(conv_id, item_id)

    # Delete conversation
    test_conversation_delete(conv_id)

    response, conversation2 = test_conversation_responses_create()
    print('\ntesting reseponse retrieval')
    test_conversation_retrieve(conversation2.id)

    print('\ntesting responses follow up')
    test_conversations_responses_create_followup(conversation2)

    print('\ntesting responses follow up x2!')

    test_conversations_responses_create_followup(
        conversation2,
        content="Repeat what you just said but add 'this is my third time saying this'",
    )

    test_response_with_fake_conv_id()

    print("All tests completed!")


if __name__ == "__main__":
    main()
```
</Details>

---------

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
2025-10-10 11:57:40 -07:00
Akram Ben Aissi
072dca0609
feat: Add Kubernetes auth provider to use SelfSubjectReview and kubernetes api server (#2559)
# What does this PR do?
Add Kubernetes authentication provider support
- Add KubernetesAuthProvider class for token validation using Kubernetes
SelfSubjectReview API
- Add KubernetesAuthProviderConfig with configurable API server URL, TLS
settings, and claims mapping
- Implement authentication via POST requests to
/apis/authentication.k8s.io/v1/selfsubjectreviews endpoint
- Add support for parsing Kubernetes SelfSubjectReview response format
to extract user information
- Add KUBERNETES provider type to AuthProviderType enum
- Update create_auth_provider factory function to handle 'kubernetes'
provider type
- Add comprehensive unit tests for KubernetesAuthProvider functionality
- Add documentation with configuration examples and usage instructions

The provider validates tokens by sending SelfSubjectReview requests to
the Kubernetes API server and extracts user information from the
userInfo structure in the response.


<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->

## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
What This Verifies:
Authentication header validation
Token validation with Kubernetes SelfSubjectReview and kubernetes server
API endpoint
Error handling for invalid tokens and HTTP errors
Request payload structure and headers

```
python -m pytest tests/unit/server/test_auth.py -k "kubernetes" -v
```

Signed-off-by: Akram Ben Aissi <akram.benaissi@gmail.com>
2025-09-08 11:25:10 +02:00
Matthew Farrellee
914c7be288
feat: add batches API with OpenAI compatibility (with inference replay) (#3162)
Add complete batches API implementation with protocol, providers, and
tests:

Core Infrastructure:
- Add batches API protocol using OpenAI Batch types directly
- Add Api.batches enum value and protocol mapping in resolver
- Add OpenAI "batch" file purpose support
- Include proper error handling (ConflictError, ResourceNotFoundError)

Reference Provider:
- Add ReferenceBatchesImpl with full CRUD operations (create, retrieve,
cancel, list)
- Implement background batch processing with configurable concurrency
- Add SQLite KVStore backend for persistence
- Support /v1/chat/completions endpoint with request validation

Comprehensive Test Suite:
- Add unit tests for provider implementation with validation
- Add integration tests for end-to-end batch processing workflows
- Add error handling tests for validation, malformed inputs, and edge
cases

Configuration:
- Add max_concurrent_batches and max_concurrent_requests_per_batch
options
- Add provider documentation with sample configurations

Test with -

```
$ uv run llama stack build --image-type venv --providers inference=YOU_PICK,files=inline::localfs,batches=inline::reference --run &
$ LLAMA_STACK_CONFIG=http://localhost:8321 uv run pytest tests/unit/providers/batches tests/integration/batches --text-model YOU_PICK
```

addresses #3066

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
2025-08-15 15:34:15 -07:00
Ashwin Bharambe
ee7631b6cf
Revert "feat: add batches API with OpenAI compatibility" (#3149)
Reverts llamastack/llama-stack#3088

The PR broke integration tests.
2025-08-14 10:08:54 -07:00
Matthew Farrellee
de692162af
feat: add batches API with OpenAI compatibility (#3088)
Some checks failed
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Integration Tests (Replay) / discover-tests (push) Successful in 12s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 15s
Python Package Build Test / build (3.12) (push) Failing after 16s
Vector IO Integration Tests / test-matrix (3.12, inline::milvus) (push) Failing after 25s
Vector IO Integration Tests / test-matrix (3.12, remote::chromadb) (push) Failing after 23s
Python Package Build Test / build (3.13) (push) Failing after 17s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 29s
Vector IO Integration Tests / test-matrix (3.13, inline::milvus) (push) Failing after 21s
Vector IO Integration Tests / test-matrix (3.13, remote::pgvector) (push) Failing after 25s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 28s
Vector IO Integration Tests / test-matrix (3.12, remote::pgvector) (push) Failing after 29s
Unit Tests / unit-tests (3.12) (push) Failing after 20s
Integration Tests (Replay) / Integration Tests (, , , client=, vision=) (push) Failing after 12s
Test External API and Providers / test-external (venv) (push) Failing after 22s
Unit Tests / unit-tests (3.13) (push) Failing after 18s
Vector IO Integration Tests / test-matrix (3.13, inline::faiss) (push) Failing after 23s
Vector IO Integration Tests / test-matrix (3.12, remote::qdrant) (push) Failing after 24s
Vector IO Integration Tests / test-matrix (3.12, remote::weaviate) (push) Failing after 27s
Vector IO Integration Tests / test-matrix (3.12, inline::sqlite-vec) (push) Failing after 24s
Vector IO Integration Tests / test-matrix (3.13, remote::weaviate) (push) Failing after 23s
Vector IO Integration Tests / test-matrix (3.13, remote::qdrant) (push) Failing after 24s
Vector IO Integration Tests / test-matrix (3.13, remote::chromadb) (push) Failing after 25s
Vector IO Integration Tests / test-matrix (3.13, inline::sqlite-vec) (push) Failing after 27s
Vector IO Integration Tests / test-matrix (3.12, inline::faiss) (push) Failing after 24s
Update ReadTheDocs / update-readthedocs (push) Failing after 38s
Pre-commit / pre-commit (push) Successful in 1m53s
Add complete batches API implementation with protocol, providers, and
tests:

Core Infrastructure:
- Add batches API protocol using OpenAI Batch types directly
- Add Api.batches enum value and protocol mapping in resolver
- Add OpenAI "batch" file purpose support
- Include proper error handling (ConflictError, ResourceNotFoundError)

Reference Provider:
- Add ReferenceBatchesImpl with full CRUD operations (create, retrieve,
cancel, list)
- Implement background batch processing with configurable concurrency
- Add SQLite KVStore backend for persistence
- Support /v1/chat/completions endpoint with request validation

Comprehensive Test Suite:
- Add unit tests for provider implementation with validation
- Add integration tests for end-to-end batch processing workflows
- Add error handling tests for validation, malformed inputs, and edge
cases

Configuration:
- Add max_concurrent_batches and max_concurrent_requests_per_batch
options
- Add provider documentation with sample configurations

Test with -

```
$ uv run llama stack build --image-type venv --providers inference=YOU_PICK,files=inline::localfs,batches=inline::reference --run &
$ LLAMA_STACK_CONFIG=http://localhost:8321 uv run pytest tests/unit/providers/batches tests/integration/batches --text-model YOU_PICK
```

addresses #3066
2025-08-14 09:42:02 -04:00
Nathan Weinberg
19123ca957
refactor: standardize InferenceRouter model handling (#2965)
Some checks failed
Integration Tests (Replay) / discover-tests (push) Successful in 3s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Python Package Build Test / build (3.12) (push) Failing after 12s
Vector IO Integration Tests / test-matrix (3.13, remote::pgvector) (push) Failing after 15s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 19s
Integration Tests (Replay) / Integration Tests (, , , client=, vision=) (push) Failing after 15s
Vector IO Integration Tests / test-matrix (3.12, remote::chromadb) (push) Failing after 19s
Vector IO Integration Tests / test-matrix (3.13, remote::chromadb) (push) Failing after 21s
Python Package Build Test / build (3.13) (push) Failing after 16s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 23s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 29s
Test External API and Providers / test-external (venv) (push) Failing after 20s
Vector IO Integration Tests / test-matrix (3.13, inline::faiss) (push) Failing after 25s
Unit Tests / unit-tests (3.12) (push) Failing after 23s
Vector IO Integration Tests / test-matrix (3.13, inline::sqlite-vec) (push) Failing after 17s
Vector IO Integration Tests / test-matrix (3.13, inline::milvus) (push) Failing after 27s
Vector IO Integration Tests / test-matrix (3.13, remote::qdrant) (push) Failing after 21s
Unit Tests / unit-tests (3.13) (push) Failing after 27s
Vector IO Integration Tests / test-matrix (3.13, remote::weaviate) (push) Failing after 23s
Vector IO Integration Tests / test-matrix (3.12, inline::sqlite-vec) (push) Failing after 29s
Vector IO Integration Tests / test-matrix (3.12, remote::pgvector) (push) Failing after 22s
Vector IO Integration Tests / test-matrix (3.12, inline::milvus) (push) Failing after 25s
Vector IO Integration Tests / test-matrix (3.12, remote::weaviate) (push) Failing after 22s
Vector IO Integration Tests / test-matrix (3.12, remote::qdrant) (push) Failing after 17s
Vector IO Integration Tests / test-matrix (3.12, inline::faiss) (push) Failing after 24s
Pre-commit / pre-commit (push) Successful in 1m19s
2025-08-12 04:20:39 -06:00
Nathan Weinberg
e9fced773a
refactor: introduce common 'ResourceNotFoundError' exception (#3032)
# What does this PR do?
1. Introduce new base custom exception class `ResourceNotFoundError`
2. All other "not found" exception classes now inherit from
`ResourceNotFoundError`

Closes #3030

Signed-off-by: Nathan Weinberg <nweinber@redhat.com>
2025-08-06 10:22:55 -07:00
Nathan Weinberg
68b0071861
chore: standardize session not found error (#3031)
# What does this PR do?
1. Creates a new `SessionNotFoundError` class
2. Implements the new class where appropriate 

Relates to #2379

Signed-off-by: Nathan Weinberg <nweinber@redhat.com>
2025-08-04 13:12:02 -07:00
Nathan Weinberg
05cfa213b6
chore: standardize tool group not found error (#2986)
# What does this PR do?
1. Creates a new `ToolGroupNotFoundError` class
2. Implements the new class where appropriate 

Relates to #2379

Signed-off-by: Nathan Weinberg <nweinber@redhat.com>
2025-08-04 11:41:33 -07:00
Nathan Weinberg
cd5c6a2fcd
chore: standardize vector store not found error (#2968)
# What does this PR do?
1. Creates a new `VectorStoreNotFoundError` class
2. Implements the new class where appropriate 

Relates to #2379

Signed-off-by: Nathan Weinberg <nweinber@redhat.com>
2025-07-30 15:19:16 -07:00
Nathan Weinberg
272a3e9937
chore: standardize dataset not found error (#2962)
# What does this PR do?
1. Adds a broad schema for custom exception classes in the Llama Stack
project
2. Creates a new `DatasetNotFoundError` class
3. Implements the new class where appropriate 

Relates to #2379

Signed-off-by: Nathan Weinberg <nweinber@redhat.com>
2025-07-30 14:52:46 -07:00
Nathan Weinberg
c5622c79de
chore: standardize model not found error (#2964)
# What does this PR do?
1. Creates a new `ModelNotFoundError` class
2. Implements the new class where appropriate 

Relates to #2379

Signed-off-by: Nathan Weinberg <nweinber@redhat.com>
2025-07-30 12:19:53 -07:00
Rohan Awhad
7cb5d3c60f
chore: standardize unsupported model error #2517 (#2518)
# What does this PR do?

- llama_stack/exceptions.py: Add UnsupportedModelError class
- remote inference ollama.py and utils/inference/model_registry.py:
Changed ValueError in favor of UnsupportedModelError
- utils/inference/litellm_openai_mixin.py: remove `register_model`
function implementation from `LiteLLMOpenAIMixin` class. Now uses the
parent class `ModelRegistryHelper`'s function implementation

Closes #2517


## Test Plan


1. Create a new `test_run_openai.yaml` and paste the following config in
it:

```yaml
version: '2'
image_name: test-image
apis:
- inference
providers:
  inference:
  - provider_id: openai
    provider_type: remote::openai
    config:
      max_tokens: 8192
models:
- metadata: {}
  model_id: "non-existent-model"
  provider_id: openai
  model_type: llm
server:
  port: 8321
```

And run the server with:
```bash
uv run llama stack run test_run_openai.yaml
```

You should now get a `llama_stack.exceptions.UnsupportedModelError` with
the supported list of models in the error message.

---

Tested for the following remote inference providers, and they all raise
the `UnsupportedModelError`:
- Anthropic
- Cerebras
- Fireworks
- Gemini
- Groq
- Ollama
- OpenAI
- SambaNova
- Together
- Watsonx

---------

Co-authored-by: Rohan Awhad <rawhad@redhat.com>
2025-06-27 14:26:58 -04:00